Marketing Research Methods in SAS

Experimental Design, Choice, Conjoint, and Graphical Techniques

Warren F. Kuhfeld

May 1, 2003
SAS 9.1 Edition
TS-689

Copyright © 2003 by SAS Institute Inc., Cary, NC, USA
This information is provided by SAS as a service to its users. The text, macros, and code are provided "as is." There are no warranties, expressed or implied, as to merchantability or fitness for a particular purpose regarding the accuracy of the materials or code contained herein.

SAS ${ }^{\circledR}$, SAS $/ A F^{\circledR}$, SAS/ETS ${ }^{\circledR}$, SAS/GRAPH ${ }^{\circledR}$, SAS $/$ IML $^{\circledR}$, SAS $/$ QC ${ }^{\circledR}$, and SAS/STAT ${ }^{\circledR}$ are trademarks or registered trademarks of SAS in the USA and other countries. ${ }^{\circledR}$ indicates USA registration.

Marketing Research Methods in SAS

Marketing Research Methods in SAS discusses experimental design, discrete choice, conjoint analysis, and graphical and perceptual mapping techniques. The book has grown and evolved over many years and many revisions. For example, the section on choice models grew from a two page handout written by Dave DeLong about ten years ago. This is the May 1, 2003 edition for SAS 9.1. All of the macros and code used in this book should work in SAS 8.2, 9.0, and 9.1. However, if you are not running SAS 9.1, you must get the latest macros from the web or from me. The macros shipped with SAS 8.2 and 9.0 are obsolete. I hope that this book and tool set will help you do better research, do it quickly, and do it more easily. I would like to hear what you think. Many of my examples and enhancements to the software are based on feedback from people like you. If you would like to be added to a mailing list to receive periodic email updates on SAS marketing research tools (probably no more than once every few months), email Warren.Kuhfeld@sas.com. This list will not be sold or used for any other purpose.

With this edition, Marketing Research Methods in SAS becomes for the first time a true book and more than its original collection of papers and handouts. For the first time, all chapters are composed in $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ using the same style, with a single table of contents, reference section, and index. For the first time, there is a complete set of referrals (see page ...) between different sections of the book. Several chapters are based on papers written in the early 1990's. In past editions, I tried to maintain as much of the original paper as I could. For example, the "Efficient Experimental Design with Marketing Research Applications" chapter is based on a paper that appeared in the Journal of Marketing Research in 1994. In previous editions, I kept all of the words in the original paper but added new footnotes to discuss new tools. In this edition, that approach started getting a bit silly. The tools have changed so much in these past nine years, so the article needed to be revised to reflect that. Similarly, the chapter on splines has been revised as well. Another change you might notice is I changed to a larger font. Going from a 10 point to an 11 point font added around 80 pages to the book, so I apologize to the trees, but I am not as young as I used to be, and even with these progressive multifocal lenses, I just can't read what I used to be able to read. Please help save trees and use the PDF files. Copies of this book are available on the web http://support.sas.com/techsup/tnote/tnote_stat.html\#market (reports beginning with "TS-689") or by writing Warren.Kuhfeld@sas.com. I used to distribute printed copies with each new edition. I quit doing that several editions back because the book got too big.

The following people contributed to writing portions of this book: Mark Garratt, Joel Huber, Ying So, Randy Tobias, Wayne Watson, and Klaus Zwerina. My parts could not have been written without the help of many people. I would like to thank Joel Huber, Ying So, Randy Tobias, and John Wurst. My involvement in the area of experimental design and choice modeling can be traced to several conversations with Mark Garratt in the early 1990's and then to the influence of Don Anderson, Joel Huber, Jordan Louviere, and Randy Tobias. Don Anderson, Neil Sloane, and J.C. Wang kindly helped me with some of the orthogonal designs in the \%MktEx macro. Brad Jones helped me with coordinate exchange. Randy Tobias has been a great colleague and a huge help to me over the years in the area of experimental design, and many components of the \%MktEx macro and other design macros are based on his ideas.

Finishing a project this size causes one to pause and reflect. I am particularly proud of this edition of the book, this version of the tools, and the \%MktEx macro, which is the world's most comprehensive factorial designer. Reflecting back however, it is clear that I have stood on the shoulders of giants.

There are a few other people I would like to acknowledge. Without these people, I would have never been in the position to write a book such as this. From my undergraduate days at Kent State, I would like to thank Roy Lilly, Larry Melamed, my mentor Ben Newberry, and Steve Simnick. From graduate school at UNC, I would like to thank Ron Helms, Keith Muller, and especially my advisor and mentor Forrest Young. From SAS, I would like to thank Warren Sarle and all of my colleagues in SAS/STAT Research and Development. It is great to work with such a smart, talented, productive, and helpful group of people. Finally, I would like to thank my mother, my late father, and my stepfather Ed, for being so good to my Mom and for being such a wonderful grandfather to my children. I dedicate this book to my wife Peg and my children Megan and Rusty.

Warren F. Kuhfeld, Ph.D.
Manager, Multivariate Models R\&D
SAS Institute Inc.
May 1, 2003

Contents

Marketing Research: Uncovering Competitive Advantages 15
Abstract 15
Introduction 15
Perceptual Mapping 16
Conjoint Analysis 22
Software 23
Conclusions 26
Introducing the Market Research Analysis Application 27
Abstract 27
Conjoint Analysis 27
Discrete Choice Analysis 30
Correspondence Analysis 32
Multidimensional Preference Analysis 35
Multidimensional Scaling 36
Summary 38
Acknowledgements 38
Efficient Experimental Design with Marketing Research Applications 39
Abstract 39
Introduction 39
Design of Experiments 41
Design Comparisons 45
Design Considerations 47
Examples 51
Conclusions 56
A General Method for Constructing Efficient Choice Designs 61
Abstract 61
Introduction 61
Criteria For Choice Design Efficiency 62
A General Method For Efficient Choice Designs 64
Choice Design Applications 65
Conclusions 74
Appendix 76
Discrete Choice 81
Abstract 81
Introduction 81
Preliminaries 84
Experimental Design Terminology 84
Experimental Design Efficiency 86
Conjoint, Linear, and Choice Designs 87
Efficiency of a Choice Design 88
Canonical Correlations 90
Coding, Efficiency, Balance, and Orthogonality 91
Customizing the Multinomial Logit Output 95
Candy Example 96
The Multinomial Logit Model 96
The Input Data 98
Choice and Survival Models 101
Fitting the Multinomial Logit Model 101
Multinomial Logit Model Results 102
Fitting the Multinomial Logit Model, All Levels 104
Probability of Choice 106
Fabric Softener Example 108
Set Up 108
Designing the Choice Experiment 110
Examining the Design 112
Randomizing the Design, Postprocessing 114
Generating the Questionnaire 116
Entering the Data 118
Processing the Data 118
Binary Coding 122
Fitting the Multinomial Logit Model 124
Multinomial Logit Model Results 125
Probability of Choice 126
Custom Questionnaires 128
Processing the Data for Custom Questionnaires 132
Vacation Example 134
Set Up 135
Designing the Choice Experiment 138
The \%MktEx Macro Algorithm 142
Examining the Design 144
Generating the Questionnaire 152
Entering and Processing the Data 154
Binary Coding 158
Quantitative Price Effect 163
Quadratic Price Effect 165
Effects Coding 168
Alternative-Specific Effects 171
Vacation Example, with Alternative-Specific Attributes 178
Choosing the Number of Choice Sets 179
Designing the Choice Experiment 181
Ensuring that Certain Key Interactions are Estimable 182
Examining the Design 189
Blocking an Existing Design 191
Generating the Questionnaire 193
Generating Artificial Data 195
Reading, Processing, and Analyzing the Data 197
Aggregating the Data 202
Brand Choice Example with Aggregate Data 205
Processing the Data 205
Simple Price Effects 207
Alternative-Specific Price Effects 209
Mother Logit Model 212
Aggregating the Data 220
Choice and Breslow Likelihood Comparison 226
Food Product Example with Asymmetry and Availability Cross Effects 228
The Multinomial Logit Model 228
Set Up 229
Designing the Choice Experiment 231
When You Have a Long Time to Search for an Efficient Design 236
Examining the Design 237
Designing the Choice Experiment, More Choice Sets 240
Examining the Subdesigns 245
Examining the Aliasing Structure 246
Blocking the Design 248
The Final Design 251
Testing the Design Before Data Collection 256
Generating Artificial Data 267
Processing the Data 269
Cross Effects 270
Multinomial Logit Model Results 271
Modeling Subject Attributes 274
Allocation of Prescription Drugs 284
Designing the Allocation Experiment 284
Processing the Data 290
Coding and Analysis 296
Multinomial Logit Model Results 297
Analyzing Proportions 299
Chair Design with Generic Attributes 303
Generic Attributes, Alternative Swapping, Large Candidate Set 304
Generic Attributes, Alternative Swapping, Small Candidate Set 310
Generic Attributes, a Constant Alternative, and Alternative Swapping 314
Generic Attributes, a Constant Alternative, and Choice Set Swapping 318
Design Algorithm Comparisons 322
Initial Designs 323
Improving an Existing Design 323
When Some Choice Sets are Fixed in Advance 325
Partial Profiles and Restrictions 331
Pair-wise Partial Profile Choice Design 331
Linear Partial Profile Design 335
Choice from Triples; Partial Profiles Constructed Using Restrictions 337
Multinomial Logit Models 345
Abstract 345
Introduction 345
Modeling Discrete Choice Data 347
Fitting Discrete Choice Models 348
Cross-Alternative Effects 353
Final Comments 358
Conjoint Analysis 361
Abstract 361
Introduction 361
Conjoint Measurement 361
Conjoint Analysis 362
Choice-Based Conjoint 363
Preliminaries 364
Design of Experiments 364
The Output Delivery System 366
Chocolate Candy Example 369
Metric Conjoint Analysis 369
Nonmetric Conjoint Analysis 372
Frozen Diet Entrées Example (Basic) 376
Choosing the Number of Stimuli 376
Generating the Design 378
Evaluating and Preparing the Design 379
Printing the Stimuli and Data Collection 381
Data Processing 383
Nonmetric Conjoint Analysis 385
Frozen Diet Entrées Example (Advanced) 389
Creating a Design with the \%MktEx Macro 389
Designing Holdouts 391
Print the Stimuli 396
Data Collection, Entry, and Preprocessing 397
Metric Conjoint Analysis 402
Analyzing Holdouts 417
Simulations 419
Summarizing Results Across Subjects 423
Spaghetti Sauce 431
Create an Efficient Experimental Design with the \%MktEx Macro 431
Generating the Questionnaire 439
Data Processing 443
Metric Conjoint Analysis 444
Simulating Market Share 448
Simulating Market Share, Maximum Utility Model 451
Simulating Market Share, Bradley-Terry-Luce and Logit Models 457
Change in Market Share 458
PROC TRANSREG Specifications 467
PROC TRANSREG Statement 467
Algorithm Options 468
Output Options 469
Transformations and Expansions 470
Transformation Options 472
BY Statement 473
ID Statement 473
WEIGHT Statement 474
Monotone, Spline, and Monotone Spline Comparisons 474
Samples of PROC TRANSREG Usage 476
Metric Conjoint Analysis with Rating-Scale Data 476
Nonmetric Conjoint Analysis 476
Monotone Splines 477
Constraints on the Utilities 477
A Discontinuous Price Function 478
Experimental Design and Choice Modeling Macros 479
Abstract 479
Introduction 479
Installation 480
\%ChoicEff Macro 481
\%ChoicEff Macro Options 506
\%ChoicEff Macro Notes 511
\%MktAllo Macro 512
\%MktAllo Macro Options 513
\%MktAllo Macro Notes 514
\%MktBal Macro 515
\%MktBal Macro Options 516
\%MktBal Macro Notes 517
\%MktBlock Macro 518
\%MktBlock Macro Options 524
\%MktBlock Macro Notes 526
\%MktDes Macro 527
\%MktDes Macro Options 528
\%MktDes Macro Notes 533
\%MktDups Macro 534
\%MktDups Macro Options 539
\%MktDups Macro Notes 541
\%MktEval Macro 542
\%MktEval Macro Options 544
\%MktEval Macro Notes 545
\%MktEx Macro 546
\%MktEx Macro Notes 550
\%MktEx Macro Iteration History 552
\%MktEx Macro Options 554
Advanced Restrictions 566
\%MktKey Macro 576
\%MktKey Macro Options 576
\%MktLab Macro 577
\%MktLab Macro Options 585
\%MktLab Macro Notes 587
\%MktMerge Macro 588
\%MktMerge Macro Options 588
\%MktMerge Macro Notes 589
\%MktOrth Macro 590
\%MktOrth Macro Options 593
\%MktOrth Macro Notes 594
\%MktRoll Macro 595
\%MktRoll Macro Options 598
\%MktRoll Macro Notes 599
\%MktRuns Macro 600
\%MktRuns Macro Options 604
\%MktRuns Macro Notes 605
\%PhChoice Macro 606
\%PhChoice Macro Options 609
\%PlotIt Macro 611
\%PlotIt Macro Options 618
Macro Errors 641
Linear Models and Conjoint Analysis with Nonlinear Spline Transformations 643
Abstract 643
Why Use Nonlinear Transformations? 643
Background and History 644
The General Linear Univariate Model 644
Polynomial Splines 645
Splines with Knots 646
Derivatives of a Polynomial Spline 648
Discontinuous Spline Functions 649
Monotone Splines and B-Splines 651
Transformation Regression 652
Degrees of Freedom 653
Dependent Variable Transformations 654
Scales of Measurement 654
Conjoint Analysis 655
Curve Fitting Applications 655
Spline Functions of Price 657
Benefits of Splines 660
Conclusions 660
Graphical Scatter Plots of Labeled Points 661
Abstract 661
Introduction 661
An Overview of the \%PlotIt Macro 662
Examples 663
Availability 672
Conclusions 674
Graphical Methods for Marketing Research 675
Abstract 675
Introduction 675
Methods 676
Notes . 686

Conclusions . 687

Concluding Remarks 689

References 691

Index 697

Marketing Research:
 Uncovering Competitive Advantages

Warren F. Kuhfeld

Abstract

SAS provides a variety of methods for analyzing marketing data including conjoint analysis, correspondence analysis, preference mapping, multidimensional preference analysis, and multidimensional scaling. These methods allow you to analyze purchasing decision trade-offs, display product positioning, and examine differences in customer preferences. They can help you gain insight into your products, your customers, and your competition. This chapter discusses these methods and their implementation in SAS.*

Introduction

Marketing research is an area of applied data analysis whose purpose is to support marketing decision making. Marketing researchers ask many questions, including:

- Who are my customers?
- Who else should be my customers?
- Who are my competitors' customers?
- Where is my product positioned relative to my competitors' products?
- Why is my product positioned there?
- How can I reposition my existing products?
- What new products should I create?
- What audience should I target for my new products?

[^0]Marketing researchers try to answer these questions using both standard data analysis methods, such as descriptive statistics and crosstabulations, and more specialized marketing research methods. This chapter discusses two families of specialized marketing research methods, perceptual mapping and conjoint analysis. Perceptual mapping methods produce plots that display product positioning, product preferences, and differences between customers in their product preferences. Conjoint analysis is used to investigate how consumers trade off product attributes when making a purchasing decision.

Perceptual Mapping

Perceptual mapping methods, including correspondence analysis (CA), multiple correspondence analysis (MCA), preference mapping (PREFMAP), multidimensional preference analysis (MDPREF), and multidimensional scaling (MDS), are data analysis methods that generate graphical displays from data. These methods are used to investigate relationships among products as well as individual differences in preferences for those products. ${ }^{\dagger}$

CA and MCA can be used to display demographic and survey data. CA simultaneously displays in a scatter plot the row and column labels from a two-way contingency table (crosstabulation) constructed from two categorical variables. MCA simultaneously displays in a scatterplot the category labels from more than two categorical variables.

MDPREF displays products positioned by overall preference patterns. MDPREF also displays differences in how customers prefer products. MDPREF displays in a scatter plot both the row labels (products) and column labels (consumers) from a data matrix of continuous variables.

MDS is used to investigate product positioning. MDS displays a set of object labels (products) whose perceived similarity or dissimilarity has been measured.

PREFMAP is used to interpret preference patterns and help determine why products are positioned where they are. PREFMAP displays rating scale data in the same plot as an MDS or MDPREF plot. PREFMAP shows both products and product attributes in one plot.

MDPREF, PREFMAP, CA, and MCA are all similar in spirit to the biplot, so first the biplot is discussed to provide a foundation for discussing these methods.

The Biplot. A biplot (Gabriel, 1981) simultaneously displays the row and column labels of a data matrix in a low-dimensional (typically two-dimensional) plot. The "bi" in "biplot" refers to the joint display of rows and columns, not to the dimensionality of the plot. Typically, the row coordinates are plotted as points, and the column coordinates are plotted as vectors.

Consider the artificial preference data matrix in Figure 1. Consumers were asked to rate their preference for products on a 0 to 9 scale where 0 means little preference and 9 means high preference. Consumer 1's preference for Product 1 is 4 . Consumer 1's most preferred product is Product 4, which has a preference of 6 .

The biplot is based on the idea of a matrix decomposition. The $(n \times m)$ data matrix \mathbf{Y} is decomposed into the product of an $(n \times q)$ matrix \mathbf{A} and a $(q \times m)$ matrix \mathbf{B}^{\prime}. Figure 2 shows a decomposition of the data in Figure 1. \ddagger The rows of \mathbf{A} are coordinates in a two-dimensional plot for the row points in

[^1]| | | | | Y | $=$ | A | \times | | B^{\prime} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Consumer 1 | Consumer 2 | Consumer 3 | | | | | | |
| Product 1 | [4 | 1 | 6 | $\left[\begin{array}{lll}4 & 1 & 6\end{array}\right]$ | $=$ | $\left[\begin{array}{ll}1 & 2 \\ 2\end{array}\right]$ | \times | | $\begin{array}{lll}2 & 1 & 2\end{array}$ |
| Product 2 | 4 | 2 | 4 | $\begin{array}{llll}4 & 2 & 4\end{array}$ | | 20 | | | $1 \begin{array}{lll}1 & 0 & 2\end{array}$ |
| Product 3 | 1 | 0 | 2 | $\begin{array}{lll}1 & 0 & 2\end{array}$ | | 0 | | | |
| Product 4 | 6 | 2 | 8] | $\left[\begin{array}{lll}6 & 2 & 8\end{array}\right]$ | | $\left[\begin{array}{ll}2 & 2\end{array}\right]$ | | | |

Figure 1. Preference Data Matrix
Figure 2. Preference Data Decomposition
\mathbf{Y}, and the columns of \mathbf{B}^{\prime} are coordinates in the same two-dimensional plot for the column points in Y. In this artificial example, the entries in \mathbf{Y} are exactly reproduced by scalar products of coordinates. For example, the $(1,1)$ entry in \mathbf{Y} is $y_{11}=a_{11} \times b_{11}+a_{12} \times b_{12}=4=1 \times 2+2 \times 1$.

The rank of \mathbf{Y} is $q \leq M I N(n, m)$. The rank of a matrix is the minimum number of dimensions that are required to represent the data without loss of information. The rank of \mathbf{Y} is the full number of columns in \mathbf{A} and \mathbf{B}. In the example, $q=2$. When the rows of \mathbf{A} and \mathbf{B} are plotted in a two-dimensional scatter plot, the scalar product of the coordinates of \mathbf{a}_{i}^{\prime} and \mathbf{b}_{j}^{\prime} exactly equals the data value $y_{i j}$. This kind of scatter plot is a biplot. When $q>2$ and the first two dimensions are plotted, then $\mathbf{A B}^{\prime}$ is approximately equal to \mathbf{Y}, and the display is an approximate biplot. ${ }^{\S}$ The best values for \mathbf{A} and \mathbf{B}, in terms of minimum squared error in approximating \mathbf{Y}, are found using a singular value decomposition (SVD). ${ }^{\boldsymbol{\top}}$ An approximate biplot is constructed by plotting the first two columns of \mathbf{A} and \mathbf{B}.

When $q>2$, the full geometry of the data cannot be represented in two dimensions. The first two columns of \mathbf{A} and \mathbf{B} provide the best approximation of the high dimensional data in two dimensions. Consider a cloud of data in the shape of an American football. The data are three dimensional. The best one dimensional representation of the data-the first principal component-is the line that runs from one end of the football, through the center of gravity or centroid and to the other end. It is the longest line that can run through the football. The second principal component also runs through the centroid and is perpendicular or orthogonal to the first line. It is the longest line that can be drawn through the centroid that is perpendicular to the first. If the football is a little thicker at the laces, the second principal component runs from the laces through the centroid and to the other side of the football. All of the points in the football shaped cloud can be projected into the plane of the first two principal components. The resulting scatter plot will show the approximate shape of the data. The two longest dimensions are shown, but the information in the other dimensions are lost. This is the principle behind approximate biplots. See Gabriel (1981) for more information on the biplot.

Multidimensional Preference Analysis. Multidimensional Preference Analysis (Carroll, 1972) or MDPREF is a biplot analysis for preference data. Data are collected by asking respondents to rate their preference for a set of objects-products in marketing research.

Questions that can be addressed with MDPREF analyses include: Who are my customers? Who else should be my customers? Who are my competitors' customers? Where is my product positioned relative to my competitors' products? What new products should I create? What audience should I target for my new products?

[^2]

Figure 3. Multidimensional Preference Analysis

For example, consumers were asked to rate their preference for a group of automobiles on a 0 to 9 scale, where 0 means no preference and 9 means high preference. \mathbf{Y} is an $(n \times m)$ matrix that contains ratings of the n products by the m consumers. Figure 3 displays an example in which 25 consumers rated their preference for 17 new (at the time) 1980 automobiles. Each consumer is a vector in the space, and each car is a point identified by an asterisk $\left(^{*}\right)$. Each consumer's vector points in approximately the direction of the cars that the consumer most preferred.

The dimensions of this plot are the first two principal components. The plot differs from a proper biplot of \mathbf{Y} due to scaling factors. At one end of the plot of the first principal component are the most preferred automobiles; the least preferred automobiles are at the other end. The American cars on the average were least preferred, and the European and Japanese cars were most preferred. The second principal component is the longest dimension that is orthogonal to the first principal component. In the example, the larger cars tend to be at the top and the smaller cars tend to be at the bottom.

The automobile that projects farthest along a consumer vector is that consumer's most preferred automobile. To project a point onto a vector, draw an imaginary line through a point crossing the vector at a right angle. The point where the line crosses the vector is the projection. The length of this projection differs from the predicted preference, the scalar product, by a factor of the length of the consumer vector, which is constant within each consumer. Since the goal is to look at projections of points onto the vectors, the absolute length of a consumer's vector is unimportant. The relative lengths of the vectors indicate fit, with longer vectors indicating better fit. The coordinates for the endpoints of the vectors were multiplied by 2.5 to extend the vectors and create a better graphical display. The direction of the preference scale is important. The vectors point in the direction of increasing values of the data values. If the data had been ranks, with 1 the most preferred and n the least preferred, then the vectors would point in the direction of the least preferred automobiles.

Figure 4. Preference Mapping, Vector Model

Figure 5. Preference Mapping, Ideal Point Model

Consumers 9 and 16, in the top left portion of the plot, most prefer the large American cars. Other consumers, with vectors pointing up and nearly vertical, also show this pattern of preference. There is a large cluster of consumers, from 14 through 20, who prefer the Japanese and European cars. A few consumers, most notably consumer 24 , prefer the small and inexpensive American cars. There are no consumer vectors pointing through the bottom left portion of the plot between consumers 24 and 25 , which suggests that the smaller American cars are generally not preferred by any of these consumers.

Some cars have a similar pattern of preference, most notably Continental and Eldorado, which share a symbol in the plot. This indicates that marketers of Continental or Eldorado may want to try to distinguish their car from the competition. Dasher, Accord, and Rabbit were rated similarly, as were Malibu, Mustang, Volare, and Horizon. Several vectors point into the open area between Continental/Eldorado and the European and Japanese cars. The vectors point away from the small American cars, so these consumers do not prefer the small American cars. What car would these consumers like? Perhaps they would like a Mercedes or BMW.

Preference Mapping. Preference mapping ${ }^{\|}$(Carroll, 1972) or PREFMAP plots resemble biplots, but are based on a different model. The goal in PREFMAP is to project external information into a configuration of points, such as the set of coordinates for the cars in the MDPREF example in Figure 3. The external information can aid interpretation.

Questions that can be addressed with PREFMAP analyses include: Where is my product positioned relative to my competitors' products? Why is my product positioned there? How can I reposition my existing products? What new products should I create?

[^3]The PREFMAP Vector Model. Figure 4 contains an example in which three attribute variables (ride, reliability, and miles per gallon) are displayed in the plot of the first two principal components of the car preference data. Each of the automobiles was rated on a 1 to 5 scale, where 1 is poor and 5 is good. The end points for the attribute vectors are obtained by projecting the attribute variables into the car space. Orthogonal projections of the car points on an attribute vector give an approximate ordering of the cars on the attribute rating. The ride vector points almost straight up, indicating that the larger cars, such as the Eldorado and Continental, have the best ride. Figure 3 shows that most consumers preferred the DL, Japanese cars, and larger American cars. Figure 4 shows that the DL and Japanese cars were rated the most reliable and have the best fuel economy. The small American cars were not rated highly on any of the three dimensions.

Figure 4 is based on the simplest version of PREFMAP - the vector model. The vector model operates under the assumption that some is good and more is always better. This model is appropriate for miles per gallon and reliability - the more miles you can travel without refueling or breaking down, the better.

The PREFMAP Ideal Point Model. The ideal point model differs from the vector model, in that the ideal point model does not assume that more is better, ad infinitum. Consider the sugar content of cake. There is an ideal amount of sugar that cake should contain - not enough sugar is not good, and too much sugar is also not good. In the cars example, the ideal number of miles per gallon and the ideal reliability are unachievable. It makes sense to consider a vector model, because the ideal point is infinitely far away. This argument is less compelling for ride; the point for a car with smooth, quiet ride may not be infinitely far away. Figure 5 shows the results of fitting an ideal point model for the three attributes. In the vector model, results are interpreted by orthogonally projecting the car points on the attribute vectors. In the ideal point model, Euclidean distances between car points and ideal points are compared. Eldorado and Continental have the best predicted ride, because they are closest to the ride ideal point. The concentric circles drawn around the ideal points help to show distances between the cars and the ideal points. The numbers of circles and their radii are arbitrary. The overall interpretations of Figures 4 and 5 are the same. All three ideal points are at the edge of the car points, which suggests the simpler vector model is sufficient for these data. The ideal point model is fit with a multiple regression model and some pre- and post-processing. The regression model uses the MDS or MDPREF coordinates as independent variables along with an additional independent variable that is the sum of squares of the coordinates. The model is a constrained response-surface model.

The results in Figure 5 were modified from the raw results to eliminate anti-ideal points. The ideal point model is a distance model. The rating data are interpreted as distances between attribute ideal points and the products. In this example, each of the automobiles was rated on these three dimensions, on a 1 to 5 scale, where 1 is poor and 5 is good. The data are the reverse of what they should be - a ride rating of 1 should mean this car is similar to a car with a good ride, and a rating of 5 should mean this car is different from a car with a good ride. So the raw coordinates must be multiplied by -1 to get ideal points. Even if the scoring had been reversed, anti-ideal points can occur. If the coefficient for the sum-of-squares variable is negative, the point is an anti-ideal point. In this example, there is the possibility of anti-anti-ideal points. When the coefficient for the sum-of-squares variable is negative, the two multiplications by -1 cancel, and the coordinates are ideal points. When the coefficient for the sum-of-squares variable is positive, the coordinates are multiplied by -1 to get an ideal point.

Figure 6. Multiple Correspondence Analysis

Figure 7. MDS and PREFMAP

Correspondence Analysis. Correspondence analysis (CA) is used to find a low-dimensional graphical representation of the association between rows and columns of a contingency table (crosstabulation). It graphically shows relationships between the rows and columns of a table; it graphically shows the relationships that the ordinary chi-square statistic tests. Each row and column is represented by a point in a Euclidean space determined from cell frequencies. CA is a popular data analysis method in France and Japan. In France, CA analysis was developed under the strong influence of Jean-Paul Benzécri; in Japan, under Chikio Hayashi. CA is described in Lebart, Morineau, and Warwick (1984); Greenacre (1984); Nishisato (1980); Tenenhaus and Young (1985); Gifi (1990); Greenacre and Hastie (1987); and many other sources. Hoffman and Franke (1986) provide a good introductory treatment using examples from marketing research.

Questions that can be addressed with CA and MCA include: Who are my customers? Who else should be my customers? Who are my competitors' customers? Where is my product positioned relative to my competitors' products? Why is my product positioned there? How can I reposition my existing products? What new products should I create? What audience should I target for my new products?

MCA Example. Figure 6 contains a plot of the results of a multiple correspondence analysis (MCA) of a survey of car owners. The questions included origin of the car (American, Japanese, European), size of car (small, medium, large), type of car (family, sporty, work vehicle), home ownership (owns, rents), marital/family status (single, married, single and living with children, and married living with children), and sex (male, female). The variables are all categorical.

The top-right quadrant of the plot suggests that the categories single, single with kids, one income, and renting a home are associated. Proceeding clockwise, the categories sporty, small, and Japanese are associated. In the bottom-left quadrant you can see the association between being married, owning your own home, and having two incomes. Having children is associated with owning a large American family car. Such information can be used to identify target audiences for advertisements. This interpretation is based on points being located in approximately the same direction from the origin and in approximately
the same region of the space. Distances between points are not interpretable in MCA.

Multidimensional Scaling. Multidimensional scaling (MDS) is a class of methods for estimating the coordinates of a set of objects in a space of specified dimensionality from data measuring the distances between pairs of objects (Kruskal and Wish, 1978; Schiffman, Reynolds, and Young, 1981; Young, 1987). The data for MDS consist of one or more square symmetric or asymmetric matrices of similarities or dissimilarities between objects or stimuli. Such data are also called proximity data. In marketing research, the objects are often products. MDS is used to investigate product positioning.

For example, consumers were asked to rate the differences between pairs of beverages. In addition, the beverages were rated on adjectives such as Good, Sweet, Healthy, Refreshing, and Simple Tasting. Figure 7 contains a plot of the beverage configuration along with attribute vectors derived through preference mapping. The alcoholic beverages are clustered at the bottom. The juices and carbonated soft drinks are clustered at the left. Grape and Apple juice are above the carbonated and sweet soft drinks and are perceived as more healthy than the other soft drinks. Perhaps sales of these drinks would increase if they were marketed as a healthy alternative to sugary soft drinks. A future analysis, after a marketing campaign, could check to see if their positions in the plot change in the healthy direction.

Water, coffee and tea drinks form a cluster at the right. V8 Juice and Milk form two clusters of one point each. Milk and V8 are perceived as the most healthy, whereas the alcoholic beverages are perceived as least healthy. The juices and carbonated soft drinks were rated as the sweetest. Pepsi and Coke are mapped to coincident points, as are Postum (a coffee substitute) and Hot Coffee. Orange Soda is near Orange Crush, and Lemon Koolaid is near Lemonade.

Geometry of the Scatter Plots. It is important that scatter plots displaying perceptual mapping information accurately portray the underlying geometry. All of the scatter plots in this chapter were created with the axes equated so that a centimeter on the y-axis represents the same data range as a centimeter on the x-axis.** This is important. Distances, angles between vectors, and projections are evaluated to interpret the plots. When the axes are equated, distances and angles are correctly presented in the plot. When axes are scaled independently, for example to fill the page, then the correct geometry is not presented. This important step of equating the axes is often overlooked in practice.

For MDPREF and PREFMAP, the absolute lengths of the vectors are not important since the goal is to project points on vectors, not look at scalar products of row points and column vectors. It is often necessary to change the lengths of all of the vectors to improve the graphical display. If all of the vectors are relatively short with end points clustered near the origin, the display will be difficult to interpret. To avoid this problem in Figure 3, both the x-axis and y-axis coordinates were multiplied by the same constant, 2.5 , to lengthen all vectors by the same relative amount. The coordinates must not be scaled independently.

Conjoint Analysis

Conjoint analysis is used in marketing research to analyze consumer preferences for products and services. See Green and Rao (1971) and Green and Wind (1975) for early introductions to conjoint analysis and Green and Srinivasan (1990) for a recent review article.

[^4]Conjoint analysis grew out of the area of conjoint measurement in mathematical psychology. In its original form, conjoint analysis is a main effects analysis-of-variance problem with an ordinal scale-of-measurement dependent variable. Conjoint analysis decomposes rankings or rating-scale evaluation judgments of products into components based on qualitative attributes of the products. Attributes can include price, color, guarantee, environmental impact, and so on. A numerical utility or part-worth utility value is computed for each level of each attribute. The goal is to compute utilities such that the rank ordering of the sums of each product's set of utilities is the same as the original rank ordering or violates that ordering as little as possible.

When a monotonic transformation of the judgments is requested, a nonmetric conjoint analysis is performed. Nonmetric conjoint analysis models are fit iteratively. When the judgments are not transformed, a metric conjoint analysis is performed. Metric conjoint analysis models are fit directly with ordinary least squares. When all of the attributes are nominal, the metric conjoint analysis problem is a simple main-effects ANOVA model. The attributes are the independent variables, the judgments comprise the dependent variable, and the utilities are the parameter estimates from the ANOVA model. The metric conjoint analysis model is more restrictive than the nonmetric model and will generally fit the data less well than the nonmetric model. However, this is not necessarily a disadvantage since over-fitting is less of a problem and the results should be more reproducible with the metric model.

In both metric and nonmetric conjoint analysis, the respondents are typically not asked to rate all possible combinations of the attributes. For example, with five attributes, three with three levels and two with two levels, there are $3 \times 3 \times 3 \times 2 \times 2=108$ possible combinations. Rating that many combinations would be difficult for consumers, so typically only a small fraction of the combinations are rated. It is still possible to compute utilities, even if not all combinations are rated. Typically, combinations are chosen from an orthogonal array which is a fractional-factorial design. In an orthogonal array, the zero/one indicator variables are uncorrelated for all pairs in which the two indicator variables are not from the same factor. The main effects are orthogonal but are confounded with interactions. These interaction effects are typically assumed to be zero.

Questions that can be addressed with conjoint analysis include: How can I reposition my existing products? What new products should I create? What audience should I target for my new products?

Consider an example in which the effects of four attributes of tea on preference were evaluated. The attributes are temperature (Hot, Warm, and Iced), sweetness (No Sugar, 1 Teaspoon, 2 Teaspoons), strength (Strong, Moderate, Weak), and lemon (With Lemon, No Lemon). There are four factors: three with three levels and one with two levels. Figure 8 contains the results. ${ }^{\dagger \dagger}$

Sweetness was the most important attribute (the importance is 55.795). This consumer preferred two teaspoons of sugar over one teaspoon, and some sugar was preferred over no sugar. The second most important attribute was strength (25.067), with moderate and strong tea preferred over weak tea. This consumer's most preferred temperature was iced, and no lemon was preferred over lemon.

Software

SAS includes software that implements these methods. SAS/STAT software was used to perform the analyses for all of the examples. Perceptual mapping methods are described with more mathematical detail in Kuhfeld (2003) starting on page 675.

[^5]The TRANSREG Procedure

The TRANSREG Procedure Hypothesis Tests for Linear (subj2)

Univariate ANOVA Table Based on the Usual Degrees of Freedom

Source		DF	Sum of Squares	Mean Square	F Value	$\operatorname{Pr}>\mathrm{F}$
Model		7	617.7222	88.24603	32.95	<. 0001
Error		10	26.7778	2.67778		
Corrected	Total	17	644.5000			
	Root MSE		1.63639	R-Square	0.9585	
	Dependent	Mean	12.16667	Adj R-Sq	0.9294	
	Coeff Var		13.44979			

Utilities Table Based on the Usual Degrees of Freedom

Label	Utility	Standard Error	Importance (\% Utility Range)
Intercept	12.1667	0.38570	
Lemon: No	0.7222	0.38570	7.008
Lemon: Yes	-0.7222	0.38570	
Temperature: Hot	0.5000	0.54546	12.129
Temperature: Iced	1.0000	0.54546	
Temperature: Warm	-1.5000	0.54546	
Sweetness: No Sugar	-7.3333	0.54546	55.795
Sweetness: 1 Teaspoon	3.1667	0.54546	
Sweetness: 2 Teaspoons	4.1667	0.54546	
Strength: Moderate	1.8333	0.54546	25.067
Strength: Strong	1.5000	0.54546	
Strength: Weak	-3.3333	0.54546	

Figure 8. Conjoint Analysis

Correspondence Analysis. The SAS/STAT procedure CORRESP performs simple and multiple correspondence analysis and outputs the coordinates for plotting. Raw data or tables may be input. Supplementary classes are allowed.

Multidimensional Preference Analysis. The SAS/STAT procedure PRINQUAL performs multidimensional preference analysis and outputs the coordinates for plotting. Nonmetric MDPREF, with transformations of continuous and categorical variables, is also available.

Preference Mapping. The SAS/STAT procedure TRANSREG performs preference mapping and outputs the coordinates. Nonmetric PREFMAP, with transformations of continuous and categorical variables, is also available.

Multidimensional Scaling. The SAS/STAT procedure MDS performs multidimensional scaling and outputs the coordinates. Metric, nonmetric, two-way, and three-way models are available.

Scatter Plots. The Base SAS procedure PLOT can plot the results from these analyses and optimally position labels in the scatter plot. PROC PLOT uses an algorithm, developed by Kuhfeld (1991), that uses a heuristic approach to avoid label collisions. Labels up to 200 characters long can be plotted.

The \%PlotIt macro, was used to create graphical scatter plots of labeled points. There are options to draw vectors to certain symbols and draw circles around other symbols. This macro is in the SAS autocall macro library. Also see Kuhfeld (2003) starting on page 661.

Conjoint Analysis. The SAS/STAT procedure TRANSREG can perform both metric and nonmetric conjoint analysis. PROC TRANSREG can handle both holdout observations and simulations. Holdouts are ranked by the consumers but are excluded from contributing to the analysis. They are used to validate the results of the study. Simulation observations are not rated by the consumers and do not contribute to the analysis. They are scored as passive observations. Simulations are what-if combinations. They are combinations that are entered to get a prediction of what their utility would have been if they had been rated. Conjoint analysis is described in more detail in Kuhfeld (2003) starting on page 361.

The \%MktEx macro can generate orthogonal designs for both main-effects models and models with interactions. Nonorthogonal designs-for example, when strictly orthogonal designs require too many observations - can also be generated. Nonorthogonal designs can be used in conjoint analysis studies to minimize the number of stimuli when there are many attributes and levels. This macro is in the SAS autocall macro library and is also available free of charge on the web: http://support.sas.com/techsup/tnote/tnote_stat.html\#market . Experimental design and the \%MktEx macro are described in more detail in Kuhfeld (2003) starting on pages 39, 61, 81, 361, 479, and 546.

Other Data Analysis Methods. Other procedures that are useful for marketing research include the SAS/STAT procedures for regression, ANOVA, discriminant analysis, principal component analysis, factor analysis, categorical data analysis, covariance analysis (structural equation models), and the SAS/ETS procedures for econometrics, time series, and forcasting. Discrete choice data can be analyzed with multinomial logit models using the PHREG procedure. Discrete choice is described in more detail in Kuhfeld (2003) starting on page 81.

Conclusions

Marketing research helps you understand your customers and your competition. Correspondence analysis compactly displays survey data to aid in determining what kinds of consumers are buying your products. Multidimensional preference analysis and multidimensional scaling show product positioning, group preferences, and individual preferences. Plots from these methods may suggest how to reposition your product to appeal to a broader audience. They may also suggest new groups of customers to target. Preference mapping is used as an aid in understanding MDPREF and MDS results. PREFMAP displays product attributes in the same plot as the products. Conjoint analysis is used to investigate how consumers trade off product attributes when making a purchasing decision.

The insight gained from perceptual mapping and conjoint analysis can be a valuable asset in marketing decision making. These techniques can help you gain insight into your products, your customers, and your competition. They can give you the edge in gaining a competitive advantage.

Introducing the Market Research Analysis Application

Wayne E. Watson

Abstract

Market research focuses on assessing the preferences and choices of consumers and potential consumers. A new component of SAS/STAT software in Release 6.11 of the SAS System is an application written in SAS/AF that provides statistical and graphical techniques for market research data analysis. The application allows you to employ statistical methods such as conjoint analysis, discrete choice analysis, correspondence analysis, and multidimensional scaling through intuitive point-and-click actions.*

Conjoint Analysis

Conjoint analysis is used to evaluate consumer preference. If products are considered to be composed of attributes, conjoint analysis can be used to determine what attributes are important to product preference and what combinations of attribute levels are most preferred.

Usually, conjoint analysis is a main-effects analysis of variance of ordinally-scaled dependent variables. Preferences are used as dependent variables, and attributes are used as independent variables. Often, a monotone transformation is used with the dependent variables to fit a model with no interactions.

As an example, suppose you have four attributes that you think are related to automobile tire purchase. You want to know how important each attribute is to consumers' stated preferences for a potential tire purchase. The four attributes under investigation are

- brand name
- expected tread mileage
- purchase price
- installation cost

The attributes of brand name, tread mileage, and purchase price have three possible values and installation cost has two values. The values for each attribute are:

[^6]

Figure 1. Selecting a Data Set and Analysis

```
Brand: Michelin, Goodyear, Firestone
Tread Mileage: 40,000, 60,000, 80,000
Price: $45.00, $60.00, $75.00
Installation Cost: $0.00, $7.50
```

Seven respondents are asked to rank in order of preference 18 out of the possible 54 combinations. Although rankings are used in this example, preference ratings are frequently used in conjoint analysis.

Invoking the Application. With the data in the SAS data set, SASUSER.TIRES, you can invoke the Market Research application and perform a conjoint analysis. The application is invoked by issuing the "market" command on any command line.

Selecting a Data Set and Analysis. The first window displayed requires you to select a data set and an analysis. Because your data set is SASUSER.TIRES, select SASUSER as the library in the left-hand list box and TIRES as the data set in the right-hand list box. Then, select an analysis by clicking on the down arrow to the right of the analysis name field below the list boxes and select "Conjoint Analysis" from the displayed popup menu. See Figure 1.

View the data by pressing the View Data button and then selecting "Data values." The other selection under the View Data button,"Variable attributes," displays information about each variable.

Selecting Variables. To proceed with the analysis once you have selected a data set and an analysis, press the OK button at the bottom of the window.

The analysis requires preference and attribute variables. The preference variables are the ranks from the seven respondents and the attribute variables are the four factors. See Figure 2.

You can choose to perform a metric or a non-metric conjoint analysis; the metric analysis uses the ranks as they are, while the non-metric analysis performs a monotone transformation on the ranks. To set the measurement type for the preferences, click on the down arrow in the Preferences box at the top right of the window. Select "Metric (reflected)." "Reflected" is used because the lowest rank value, 1 , corresponds to the most preferred offering. If the highest preference value corresponded to the most
preferred offering, the "Metric" selection should be used instead.
To select preference variables, select RANK1, RANK2, ... RANK7 in the Variables list box on the left side of the window, and press the Preference button in the Variable Roles box.

Likewise, you must select a measurement type for the attribute variables you want to use. The default measurement type for attributes is Qualitative, which treats the variable as a set of dummy variables with the coefficients of the dummy variables summing to 0 . In this way, the utility coefficients ${ }^{\dagger}$ of each attribute sum to 0 .

Use this measurement type for all four attribute variables, BRAND, MILEAGE, CHARGES, and PRICE. After selecting these four variables in the Variables list box, press the Attribute button in the Variable Roles box. Alternatively, you could use the "Continuous" measurement type for MILEAGE, CHARGES, or PRICE because these attributes are quantitative in nature.

To delete one or more of the Preference or Attribute variables, either double-click on each one in the appropriate right-hand list box or select them in any of the three list boxes and press the Remove button.

To obtain help about the window, press the Help button at the bottom of the window or click on any of the border titles on the window, for example, "Variables," "Variable Roles," "Preferences."

Once the variables have been selected, press the OK button at the bottom of the window to perform the analysis. To change the analysis, return to the Variable Selection window by pressing the Variables button on the analysis main window.

Results. The first result is a plot of the relative importance of each attribute. Relative importance is a measure of importance of the contribution of each attribute to overall preference; it is calculated by dividing the range of utilities for each attribute by the sum of all ranges and multiplying by 100.

In the example, Tire Mileage is the most important attribute with an average relative importance of 49%. The box-and-whisker plot displays the first and third quartiles as the ends of the box, the maximum and minimum as the whiskers (if they fall outside the box), and the median as a vertical bar in the interior of each box. See Figure 3.

To display a selection of additional results, press the Results button on the window. The first selection, the Utilities Table window, displays the utility coefficients for each level of an attribute for all preferences (the dependent variables). The relative importance of each attribute is displayed separately for each preference variable. This table illustrates that BRAND is the most important attribute for RANK1, the first respondent, and Michelin is the most preferred brand, because it has the highest utility coefficient value. Thus, the first respondent preferred a 80,000 mile, $\$ 45$ Michelin with no installation charge.

After closing this window, you can view these results in graphical form by pressing the Results button again and selecting "Utilities plots." The plot of the Brand utilities indicates that one respondent clearly prefers Michelin while the other respondents only mildly prefer one brand over another.

To change the plot from the BRAND to the MILEAGE attribute, select MILEAGE in the list box at the right. All but one person prefer longer over shorter mileage tires, and that one prefers the 60,000 mile tire. You can examine plots for the PRICE and CHARGES attributes in the same way.

[^7]

Figure 3. Plot of Relative Importance of Attributes

Figure 4. Estimating Market Share

Estimating Market Share. You also can calculate the expected market share for each tire purchase alternative in the sample. To do so, press the Results button and select "Market Share Simulation." The entry in the table with the largest market share is the 80,000 mile, $\$ 45$ Firestone with no installation charge. It is expected to account for 42.9% of the market. The maximum utility simulation model, the default, was used to calculate the market share. You can choose from two other models: the logit model and the Bradley-Terry-Luce model. Click on the down arrow at the top of the window and select the desired model from the displayed list. See Figure 4.

Only 18 of the 54 possible tire purchase combinations were presented to the respondents. You may want to predict the expected market share of one or more of the combinations that were not present in the sample. To do so, press the Add Row button at the bottom of the window and fill in the observation in the top row of the table. Click on "-Select-" in each attribute column and select the desired level. If the observation that you create is a duplicate, a warning message is displayed. You can modify the contents of the Id column to contain a description of your own choice. After you have added some combinations, you can produce the expected market shares by pressing the Rerun button.

As an example an 80,000 mile, $\$ 45$ Michelin with no installation charges would be expected to have a 64.3% market share if it was the only combination added to the original sample. Adding combinations may change the estimated market share of the other combinations.

Discrete Choice Analysis

Conjoint analysis is used to examine the preferences of consumers. The rationale for the use of preferences is that they indicate what people will choose to buy. Often in market research, the choices that consumers actually make are the behavior of interest. In these instances, it is appropriate to analyze choices directly using discrete choice analysis.

In discrete choice analysis, the respondent is presented with several choices and selects one of them. As in conjoint analysis, the factors that define the choice possibilities are called attributes. Here, they are called choice attributes to distinguish them from other factors, like demographic variables, that may be of interest but do not contribute to the definition of the choices. Each set of possible choices is called a choice set.

Figure 5. Discrete Choice Analysis Variable Selection

This example has choice possibilities defined by two attributes, price and brand. Five choice alternatives are presented at a time to a respondent, from which one alternative is chosen. Eight of these choice sets are presented, each one with a different set of five combinations of price and brand.

To change to a different data set or analysis, select "File \rightarrow New dataset/analysis" on the main analysis window. Each time you change the data set or analysis or exit the application, you are asked if you want save the changes that you have made during the session. On the data set selection window, select the PRICE data set in the SASUSER library and then select "Discrete choice analysis." To continue, press the OK button.

With the other analyses in the application, you would be taken directly to the appropriate variable selection window. With discrete choice analysis, a supplementary window is displayed to help you determine if your data are in the appropriate form.

With discrete choice analysis, the structure of the data is important and must be in one of several layouts. After specifying if your data are contained in one or two data sets and whether a frequency variable is used, you can view the appropriate layout by pressing the Examine button. The most important requirement of the data layout is that all choice alternatives must be included, whether chosen or not.

If your data are not in the proper form, they must be rearranged before proceeding with the analysis. If your data are in the proper form, continue with the analysis by pressing the OK button. If not, press the Cancel button.

On the Variable Selection window that appears next, you must select several required variables: a response variable, some choice attribute variables, and a subject variable. Optionally, you can also choose a frequency variable and some non-choice attribute variables. If you select a frequency variable, a subject variable is not necessary.

For this example, select CHOOSE as the response variable. You also must indicate which value of the variable represents a choice. Click on the down arrow to the right of "Choice Value:" and select 1 from the list. In this example the value 1 indicates the chosen alternative and the value 0 indicates the non-chosen alternatives. See Figure 5.

Next, select PRICE and BRAND1, BRAND2, ..., BRAND4 as Choice attributes. BRAND is a nominal variable with five levels. It can be represented as four dummy-coded variables. \ddagger

Select FREQ as the frequency variable. The frequency variable contains the count of the number of times that a choice alternative was selected.

Because the data include more than one choice set, a Choice Set variable is needed; the choice set variable in this example is SET. After selecting the appropriate variables, press the OK button to perform the analysis.

On the analysis main window, a bar chart is displayed of the significances of each of the choice and non-choice attributes. The chart illustrates that PRICE, BRAND1, BRAND2, and BRAND4 are significant.

You can view other results by pressing the Results button and selecting "Statistics," "Choice probabilities," or "Residual plots" from the ensuing menu. Overall model fit statistics and parameter estimates for the attributes are available from the Statistics window. Probabilities for each choice alternative are available from the Choice Probabilities window. Plots of residual and predicted values are available from the Residual Plots window.

Correspondence Analysis

Categorical data are frequently encountered in the field of market research. Correspondence analysis is a technique that graphically displays relationships among the rows and columns in a contingency table. In the resulting plot there is a point for each row and each column of the table. Rows with similar patterns of counts have points that are close together, and columns with similar patterns of counts have points that are close together.

The CARS data set in the SASUSER library is used as an example (also described in the SAS/STAT User's Guide). The CARS data are a sample of individuals who were asked to provide information about themselves and their cars. The pertinent questions for the example are country of origin of their car and their family status.

Simple Correspondence Analysis. Simple correspondence analysis analyzes a contingency table made up of one or more column variables and one or more row variables. To select a data set on which to perform a correspondence analysis, select "File \rightarrow New dataset/analysis" on the main analysis window. First, select the CARS data set, then select "Correspondence analysis" as the analysis, and then press the OK button.

This example uses raw variables instead of an existing table. The desired type of analysis (simple correspondence analysis) and data layout (raw variables) are default selections on the Variable Selection window. Select ORIGIN, the country of origin of the car, as the column variable and MARITAL, family status, as the row variable to create the desired contingency table. See Figure 6.

[^8]

Figure 6. Simple Correspondence Analysis Variable Selection

Figure 7. Correspondence Analysis Plot

Plot. The plot displays the column points and row points. The first example in the SAS/STAT User's Guide provides an interpretation of the plot. The interpretation has two aspects: what each dimension represents and what the relationship of the points in the dimensional space represents. An interpretation of the vertical dimension is that it represents the country of origin of the cars, with most of the influence coming from whether the car is American or Japanese. The horizontal dimension appears to represent "Single with kids" versus all of the other values. See Figure 7.

Although the row and column points are spread throughout the plot, "married" and "single" appear to be slightly more similar to each other than any of the other points. Keep in mind that distances between row and column points cannot be compared, only distances among row points and distances among column points. However, by treating the country-of-origin points as lines drawn from the 0,0 point and extending off the graph, you can see that the "Married with kids" point is closest to the American car line and the "Single" point is closest to the Japanese car line.

Plot Controls. To enlarge the plot, click on the up arrow in the zoom control box. To return the plot to its zero zoom state, click on the [0] button. If the plot is zoomed, you can move the plot left and right and up and down using the scroll bars.

Results. You can view other results by pressing the Results button and selecting "Inertia table," "Statistics," or "Frequencies." The Inertia Table window lists the singular values and inertias for all possible dimensions in the analysis. The Statistics window displays tables of statistics that aid in the interpretations of the dimensions and the points: the row and column coordinates, the partial contributions to inertia, and the squared cosines. The Frequency Table window displays observed, expected, and deviation contingency tables and row and column profiles.

Multiple Correspondence Analysis. In a multiple correspondence analysis, only column variables are used. They are used to create a Burt table ${ }^{\S}$ which is then used in the analysis.

The same data set can be used to illustrate multiple correspondence analysis. Return to the Variables Selection window by pressing the Variables button on the main analysis window. See Figure 8. Perform the following steps:

1. Remove the current column and row variables either by double-clicking on them or by selecting them and pressing the Remove button.
2. Select "Multiple Correspondence Analysis" in the Type of Analysis box in the upper left of the window.
3. Select the column variables ORIGIN, TYPE, SIZE, HOME, SEX, INCOME, and MARITAL by clicking on the ORIGIN variable and dragging through the list to the MARITAL variable, then press the Column button.
4. Press the OK button to perform the analysis.

Figure 8. Multiple Correspondence Analysis Variable Selection

The distances between points of different variables can be interpreted in multiple correspondence analysis because they are all column points. However, the multiple correspondence analysis example has more dimensions (12) to interpret and examine than the single correspondence analysis example (2). The total number of dimensions can be examined in the inertia table, which is accessed from the Results button.

By default, a two-dimensional solution is computed. To request a higher dimensional solution, open the Variable Selection window, press the Options button, and select (or enter) the desired number of dimensions.

If you request a three-dimensional (or higher) solution, you can plot the dimensions two at a time by pressing the Plot button and selecting dimensions for the x axis and the y axis.

[^9]

Figure 9. MDPREF Analysis Variable Selection

Figure 10. MDPREF Plot

Multidimensional Preference Analysis

With conjoint analysis, respondents indicate their preferences for products that are composed of attributes determined by the experimenter. Sometimes, the data of interest may be preferences of existing products for which relevant attributes are not defined for the respondent. Multidimensional preference analysis (MDPREF) is used to analyze such data.

MDPREF is a principal component analysis of a data matrix whose columns correspond to people and whose rows correspond to objects, the transpose of the usual people by objects multivariate data matrix.

The CARPREF data set in the SASUSER library is used as an example (also described in the SAS/STAT User's Guide. It contains data about the preferences of 25 respondents for 17 cars. The preferences are on a scale of 0 to 9 with 0 meaning a very weak preference and 9 meaning a very strong preference. Select the data set and analysis as described in the preceding examples.

As in conjoint analysis, you can choose to perform a metric or non-metric analysis. Choose the measurement type by clicking the arrow in the upper right corner of the window and selecting the desired type. Other, less frequently used, types are available under the "Other" selection. The measurement type is used for all subsequently selected Subject variables. Infrequently, subject variables with different types may be used.

For the example, use the Metric measurement type. Select the preference ratings of each respondent, JUDGE1, JUDGE2, ..., JUDGE25, as Subject variables. Also, select MODEL as the Id variable. See Figure 9.

You also can set the number of dimensions for the analysis; the default is two. A scree plot of the eigenvalues is useful in determining an appropriate number of dimensions. To display the scree plot, press the Scree Plot button. The plot illustrates that the magnitude of the eigenvalues falls off for the first two dimensions; then the plot flattens out for the third and remaining dimensions. From this graph, two dimensions appear appropriate. After closing the Scree Plot window, press the OK button to perform the analysis. See Figure 10.

Figure 11. MDS Variable Selection

Results. The plot on the main analysis window contains points for the 17 car models and vectors for the 25 respondents. Interpretations of the two dimensions are 1) the vertical dimension separates foreign and domestic cars in the upper half and lower half, respectively, and 2) the horizontal dimension separates small cars and big cars in the left and right halves, respectively. Respondents prefer cars whose points are closest to their vector. Notice that there are a number of vectors in the upper right quadrant of the plot but there are no cars. This lack of available products to satisfy peoples' preferences indicates a possible niche to fill.

Other results are the "Initial Eigenvalue Plot," "Final Eigenvalue Plot," and "Configuration Table." The Initial Eigenvalue plot is the same as the scree plot on the Variable Selection window. The Final Eigenvalue plot is also a scree plot; it differs from the initial plot only if a measurement type other than Metric is used. The Configuration Table contains the coordinates for the car points.

Multidimensional Scaling

Multidimensional Scaling (MDS) takes subjects' judgments of either similarity or difference of pairs of items and produces a map of the perceived relationship among items.

For example, suppose you ask seven subjects to state their perceived similarity on a 1 to 7 scale for pairs of beverages, with 1 meaning very similar and 7 meaning very different. The beverages are milk, coffee, tea, soda, juice, bottled water, beer, and wine. Someone may state that their perceived similarity between coffee and tea is 3 , somewhat similar, or 7 , very different. There are 28 possible pairs of these eight beverages.

The data are ordered in an eight observation by eight variable matrix with one matrix (eight observations) for each subject. On the Data Set Selection window, select the BEVERAGE data set in the SASUSER library, then press the OK button. A message window informs you that MDS requires either similarity or distance data. Press the Continue button.

On the Variables Selection window, select the variables MILK, COFFEE, TEA, SODA, JUICE, BOTWATER, BEER, AND WINE as the objects. See Figure 11. It is crucial that the order of the objects is the same as their order in the rows of each matrix. In other words, from the above order, the upper left corner element in the matrix is MILK, MILK (which has a distance of zero) and the element to its

Figure 12. MDS Coordinates Plot
right is MILK, COFFEE.
Also, select BEVERAGE, the beverage names, as the ID variable and NAME, the subject identifiers, as the SUBJECT variable. Because the objects are ordinally-scaled, the ordinal measurement level, the default, is appropriate for this example.

If you think that your subjects may use different perceptual schemes for judging similarity, you can choose to perform an individual differences analysis. Press the Options button and select "Individual Differences Analysis." The data are distances, the default, because larger numbers represent more difference (less similarity). If the data were similarities, you would choose the appropriate selection on the Options window. To close the options window, press the OK button.

As in correspondence analysis and MDPREF analysis, you can set the number of dimensions for the solution. With MDS you have an extra capability; you can solve for several dimensional solutions in one analysis.

Choose a three-dimensional solution by entering a " 3 " in the input field to the right of the "From:" label or by clicking on the up arrow to its right until the number 3 appears in the input field. As with the other dimensional analyses, a scree plot may be useful in determining the appropriate number of dimensions. You can create the plot by pressing the Scree Plot button.

To continue with the analysis, press the OK button on the Variable Selection window.

Results. As with the correspondence analysis and MDPREF plots, interpreting the MDS plot has two parts: 1) finding a reasonable interpretation for each of the plot dimensions, and 2) finding a reasonable interpretation of the relationship of the points in the plot. See Figure 12.

The presence of bottled water, milk, and juice at the top of the plot and wine, beer, and coffee at the bottom of the plot might indicate a good for you/not so good for you interpretation for the vertical dimension, Dimension 1. The horizontal dimension, Dimension 2, does not have as clear an interpretation. Try to come up with your own interpretation that would have tea, coffee, and water on one side and juice, beer, and wine on the other.

Because you requested a three-dimensional solution, two other plots can be displayed: Dimensions 1 and 3 and Dimensions 2 and 3. To change which dimensions are plotted, press the Plot button and select the desired dimensions. Also, on this window you can choose to display the coefficients of the individual differences analysis instead of the coordinates. To do so, select "Coefficient" at the bottom of the window and press the OK button.

In an individual differences analysis, there is a common perceptual map for all subjects, but different subjects have different weights for each dimension. See Figure 13. SUBJ4 is found to be highest on the vertical axis and lowest on the horizontal axis. In other words, SUBJ4 weights whatever this dimension represents more than do the other subjects and it weights whatever dimension 2 represents less than the other subjects. If the good-for-you interpretation is appropriate for Dimension 1 , then it plays a larger role in SUBJ4's perceptual mapping of these beverages than it does for other subjects.

It is possible that SUBJ1, SUBJ2, SUBJ3, SUBJ6, and SUBJ7 may cluster together and SUBJ4 and SUBJ5 may be outliers. Additional subjects may sharpen this possible clustering or eliminate it. MDS is useful in market research for discovering possible perceptual perspectives used by consumers and for revealing possible market segments.

You can display other results by pressing the Results button. These results include Fit statistics, Configuration tables, Residual plots, and the Iteration history. The fit statistics are measures of how well the data fit the model. The Configuration tables contain the coordinates and, optionally, the individual difference coefficients that are used in the plots. The Residual plots allow you to assess the fit of the model graphically. The iteration history contains information about how many iterations were needed and how the criterion changed over the iterations.

Summary

Investigators in the field of market research are interested in how consumers make decisions when they choose to buy products. What attributes are important? Do all people make decisions in the same way? If not, how do they differ? What are the perceptual schemes that people use in their purchasing decisions?

The analyses described in this paper can be used with many different types of data to investigate these questions. The Market Research application makes these analyses easy to use, and it is available in Release 6.11 and subsequent releases with the SAS/STAT product.

Acknowledgements

I would like to thank Greg Goodwin, Warren Kuhfeld, Julie LaBarr, Donna Sawyer, and Maura Stokes for their thoughtful comments on this paper.

Efficient Experimental Design with Marketing Research Applications

Warren F. Kuhfeld Randall D. Tobias
Mark Garratt

Abstract

We suggest using D-efficient experimental designs for conjoint and discrete-choice studies, and discuss orthogonal arrays, nonorthogonal designs, relative efficiency, and nonorthogonal design algorithms. We construct designs for a choice study with asymmetry and interactions and for a conjoint study with blocks and aggregate interactions.*

Introduction

The design of experiments is a fundamental part of marketing research. Experimental designs are required in widely used techniques such as preference-based conjoint analysis and discrete-choice studies (e.g., Carmone and Green 1981; Elrod, Louviere, and Davey 1992; Green and Wind 1975; Huber, et al. 1993; Lazari and Anderson 1994; Louviere 1991; Louviere and Woodworth 1983; Wittink and Cattin 1989). Ideally, marketing researchers prefer orthogonal designs. When a linear model is fit with an orthogonal design, the parameter estimates are uncorrelated, which means each estimate is independent of the other terms in the model. More importantly, orthogonality usually implies that the coefficients will have minimum variance, though we discuss exceptions to this rule. For these reasons, orthogonal designs are usually quite good. However, for many practical problems, orthogonal designs are simply not available. In those situations, nonorthogonal designs must be used.

[^10]Orthogonal designs are available for only a relatively small number of very specific problems. They may not be available when some combinations of factor levels are infeasible, a nonstandard number of runs (factor level combinations or hypothetical products) is desired, or a nonstandard model is being used, such as a model with interaction or polynomial effects. Consider the problem of designing a discrete choice study in which there are alternative specific factors, different numbers of levels within each factor, and interactions within each alternative. Orthogonal designs are not readily available for this situation, particularly when the number of runs must be limited. When an orthogonal design is not available, an alternative must be chosen - the experiment can be modified to fit some known orthogonal design, which is undesirable for obvious reasons, or a known design can be modified to fit the experiment, which may be difficult and inefficient.

Our primary purpose is to explore a third alternative, the use of optimal (or nearly optimal) designs. Such designs are typically nonorthogonal; however they are efficient in the sense that the variances and covariances of the parameter estimates are minimized. Furthermore, they are always available, even for nonstandard situations. Finding these designs usually requires the aid of a computer, but we want to emphasize that we are not advocating a black-box approach to designing experiments. Computerized design algorithms do not supplant traditional design-creation skills. Our examples show that our best designs were usually found when we used our human design skills to guide the computerized search.

First, we will summarize our main points; next, we will review some fundamentals of the design of experiments; then we will discuss computer-generated designs, a discrete-choice example, and a conjoint analysis example.

Summary of Main Points. Our goal is to explain the benefits of using computer-generated designs in marketing research. Our main points follow:

1. The goodness of an experimental design (efficiency) can be quantified as a function of the variances and covariances of the parameter estimates. Efficiency increases as the variances decrease. Designs should not be thought of in terms of the dichotomy between orthogonal versus nonorthogonal but rather as varying along the continuous attribute of efficiency. Some orthogonal designs are less efficient than other (orthogonal and nonorthogonal) alternatives.
2. Orthogonality is not the primary goal in design creation. It is a secondary goal, associated with the primary goal of minimizing the variances of the parameter estimates. Degree of orthogonality is an important consideration, but other factors should not be ignored.
3. For complex, nonstandard situations, computerized searches provide the only practical method of design generation for all but the most sophisticated of human designers. These situations do not have to be avoided just because it is extremely difficult to generate a good design manually.
4. The best approach to design creation is to use the computer as a tool along with traditional design skills, not as a substitute for thinking about the problem.

Background and Assumptions. We present an overview of the theory of efficient experimental design, developed for the general linear model. This topic is well known to specialists in statistical experimentation, though it is not typically taught in design classes. Then we will suggest ways in which this theory can be applied to marketing research problems.

Certain assumptions must be made before applying ordinary general linear model theory to problems in marketing research. The usual goals in linear modeling are to estimate parameters and test hypotheses about those parameters. Typically, independence and normality are assumed. In conjoint analysis, each subject rates all products and separate ordinary-least-squares analyses are run for each subject. This is not a standard general linear model; in particular, observations are not independent and normality cannot be assumed. Discrete choice models, which are nonlinear, are even further removed from the general linear model.

Marketing researchers have always made the critical assumption that designs that are good for general linear models are also good for conjoint analysis and discrete choice. We also make this assumption. Specifically, we assume the following:

1. Market share estimates computed from a conjoint analysis model using a more efficient design will be better than estimates using a less efficient design. That is, more efficient designs mean better estimates of the part-worth utilities, which lead to better estimates of product utility and market share.
2. An efficient design for a linear model is a good design for the multinomial logit (MNL) model used in discrete choice studies.

Investigating these standard assumptions is beyond the scope of this article. However, they are supported by Carson and colleagues (1994), our experiences in consumer product goods, and limited simulation results. Much more research is needed on this topic, particularly in the area of discrete choice.

Design of Experiments

Orthogonal Experimental Designs. An experimental design is a plan for running an experiment. The factors of an experimental design are variables that have two or more fixed values, or levels. Experiments are performed to study the effects of the factor levels on the dependent variable. In a conjoint or discrete-choice study, the factors are the attributes of the hypothetical products or services, and the response is preference or choice.

A simple experimental design is the full-factorial design, which consists of all possible combinations of the levels of the factors. For example, with five factors, two at two levels and three at three levels (denoted $2^{2} 3^{3}$), there are 108 possible combinations. In a full-factorial design, all main effects, twoway interactions, and higher-order interactions are estimable and uncorrelated. The problem with a full-factorial design is that, for most practical situations, it is too cost-prohibitive and tedious to have subjects rate all possible combinations. For this reason, researchers often use fractional-factorial designs, which have fewer runs than full-factorial designs. The price of having fewer runs is that some effects become confounded. Two effects are confounded or aliased when they are not distinguishable from each other.

A special type of fractional-factorial design is the orthogonal array, in which all estimable effects are uncorrelated. Orthogonal arrays are categorized by their resolution. The resolution identifies which effects, possibly including interactions, are estimable. For example, for resolution III designs, all main effects are estimable free of each other, but some of them are confounded with two-factor interactions.

For resolution V designs, all main effects and two-factor interactions are estimable free of each other. Higher resolutions require larger designs. Orthogonal arrays come in specific numbers of runs (e.g., 16, $18,20,24,27,28$) for specific numbers of factors with specific numbers of levels.

Resolution III orthogonal arrays are frequently used in marketing research. The term "orthogonal array," as it is sometimes used in practice, is imprecise. It correctly refers to designs that are both orthogonal and balanced, and hence optimal. It is also imprecisely used to refer to designs that are orthogonal but not balanced, and hence potentially nonoptimal. A design is balanced when each level occurs equally often within each factor, which means the intercept is orthogonal to each effect. Imbalance is a generalized form of nonorthogonality, which increases the variances of the parameter estimates.

Design Efficiency. Efficiencies are measures of design goodness. Common measures of the efficiency of an $\left(N_{D} \times p\right)$ design matrix \mathbf{X} are based on the information matrix $\mathbf{X}^{\prime} \mathbf{X}$. The variance-covariance matrix of the vector of parameter estimates $\boldsymbol{\beta}$ in a least-squares analysis is proportional to $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$. An efficient design will have a "small" variance matrix, and the eigenvalues of $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$ provide measures of its "size." Two common efficiency measures are based on the idea of "average eigenvalue" or "average variance." A-efficiency is a function of the arithmetic mean of the eigenvalues, which is given by trace $\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right) / p$. D-efficiency is a function of the geometric mean of the eigenvalues, which is given by $\left|\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right|^{1 / p}$. A third common efficiency measure, G-efficiency, is based on σ_{M}, the maximum standard error for prediction over the candidate set. All three of these criteria are convex functions of the eigenvalues of $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$ and hence are usually highly correlated.

For all three criteria, if a balanced and orthogonal design exists, then it has optimum efficiency; conversely, the more efficient a design is, the more it tends toward balance and orthogonality. A design is balanced and orthogonal when $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$ is diagonal (for a suitably coded \mathbf{X}, see page 91). A design is orthogonal when the submatrix of $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$, excluding the row and column for the intercept, is diagonal; there may be off-diagonal nonzeros for the intercept. A design is balanced when all off-diagonal elements in the intercept row and column are zero.

These measures of efficiency can be scaled to range from 0 to 100 (for a suitably coded \mathbf{X}):

$$
\begin{aligned}
& A \text {-efficiency }=100 \times \frac{1}{N_{D} \operatorname{trace}\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right) / p} \\
& D \text {-efficiency }=100 \times \frac{1}{N_{D}\left|\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right|^{1 / p}} \\
& G \text {-efficiency }=100 \times \frac{\sqrt{p / N_{D}}}{\sigma_{M}}
\end{aligned}
$$

These efficiencies measure the goodness of the design relative to hypothetical orthogonal designs that may be far from possible, so they are not useful as absolute measures of design efficiency. Instead, they should be used relatively, to compare one design with another for the same situation. Efficiencies that are not near 100 may be perfectly satisfactory.

Figure 1 shows an optimal design in four runs for a simple example with two factors, using intervalmeasure scales for both. There are three candidate levels for each factor. The full-factorial design is shown by the nine asterisks, with circles around the optimal four design points. As this example shows,

Figure 1
Candidate Set and Optimal Design
Two 3-Level Factors

* - Candidate Point
* - Optimal Design Point

Table 1
Full-Factorial Design

Information Matrix

	Int	X1	X2	X3	-	X4	-	X5	-
Int	108	0	0	0	0	0	0	0	0
X1	0	108	0	0	0	0	0	0	0
X2	0	0	108	0	0	0	0	0	0
X3	0	0	0	108	0	0	0	0	0
-	0	0	0	0	108	0	0	0	0
X4	0	0	0	0	0	108	0	0	0
-	0	0	0	0	0	0	108	0	0
X5	0	0	0	0	0	0	0	108	0
-	0	0	0	0	0	0	0	0	108

$100.0000 \quad D$-efficiency
$100.0000 \quad A$-efficiency
$100.0000 \quad G$-efficiency
efficiency tends to emphasize the corners of the design space. Interestingly, nine different sets of four points form orthogonal designs - every set of four that forms a rectangle or square. Only one of these orthogonal designs is optimal, the one in which the points are spread out as far as possible.

Computer-Generated Design Algorithms. When a suitable orthogonal design does not exist, computergenerated nonorthogonal designs can be used instead. Various algorithms exist for selecting a good set of design points from a set of candidate points. The candidate points consist of all of the factor-level combinations that can potentially be included in the design - for example the nine points in Figure 1. The number of runs, N_{D}, is chosen by the researcher. Unlike orthogonal arrays, N_{D} can be any number as long as $N_{D} \geq p .^{\dagger}$ The algorithm searches the candidate points for a set of N_{D} design points that is optimal in terms of a given efficiency criterion.

It is almost never possible to list all N_{D}-run designs and choose the most efficient or optimal design, because run time is exponential in the number of candidates. For example, with $2^{2} 3^{3}$ in 18 runs, there are $108!/(18!(108-18)!)=1.39 \times 10^{20}$ possible designs. Instead, nonexhaustive search algorithms are used to generate a small number of designs, and the most efficient one is chosen. The algorithms select points for possible inclusion or deletion, then compute rank-one or rank-two updates of some efficiency criterion. The points that most increase efficiency are added to the design. These algorithms invariably find efficient designs, but they may fail to find the optimal design, even for the given criterion. For this reason, we prefer to use terms like information-efficient and D-efficiency over the more common optimal and D-optimal.

There are many algorithms for generating information-efficient designs. We will begin by describing some of the simpler approaches and then proceed to the more complicated (and more reliable) algo-

[^11]rithms. Dykstra's (1971) sequential search method starts with an empty design and adds candidate points so that the chosen efficiency criterion is maximized at each step. This algorithm is fast, but it is not very reliable in finding a globally optimal design. Also, it always finds the same design (due to a lack of randomness).
The Mitchell and Miller (1970) simple exchange algorithm is a slower but more reliable method. It improves the initial design by adding a candidate point and then deleting one of the design points, stopping when the chosen criterion ceases to improve. The DETMAX algorithm of Mitchell (1974) generalizes the simple exchange method. Instead of following each addition of a point by a deletion, the algorithm makes excursions in which the size of the design may vary. These three algorithms add and delete points one at a time.

The next two algorithms add and delete points simultaneously, and for this reason, are usually more reliable for finding the truly optimal design; but because each step involves a search over all possible pairs of candidate and design points, they generally run much more slowly (by an order of magnitude). The Fedorov (1972) algorithm simultaneously adds one candidate point and deletes one design point. Cook and Nachtsheim (1980) define a modified Fedorov algorithm that finds the best candidate point to switch with each design point. The resulting procedure is generally as efficient as the simple Fedorov algorithm in finding the optimal design, but it is up to twice as fast. We extensively use one more algorithm, the coordinate exchange algorithm of Meyer and Nachtsheim (1995). This algorithm does not use a candidate set. Instead it refines an initial design by exchanging each level with every other possible level, keeping those exchanges that increase efficiency. In effect, this method uses a virtual candidate set that consists of all possible runs, even when the full-factorial candidate set is too large to generate and store.

Choice of Criterion and Algorithm. Typically, the choice of efficiency criterion is less important than the choice between manual design creation and computerized search. All of the informationefficient designs presented in this article were generated optimizing D-efficiency because it is faster to optimize than A-efficiency and because it is the standard approach. It is also possible to optimize A-efficiency, though the algorithms generally run much more slowly because the rank-one updates are more complicated with A-efficiency. G-efficiency is an interesting ancillary statistic; however, our experience suggests that attempts to maximize G-efficiency with standard algorithms do not work very well.

The candidate set search algorithms, ordered from the fastest and least reliable to the slowest and most reliable, are: sequential, simple exchange, DETMAX, and modified Fedorov. We always use the modified Fedorov and coordinate exchange algorithms even for extremely large problems; we never even try the other algorithms. For small problems in which the full factorial is no more than a few thousand runs, modified Fedorov tends to work best. For larger problems, coordinate exchange tends to be better. Our latest software, the \%MktEx macro, tries a few iterations with both methods, then picks the best method for that problem and continues on with more iterations using just the chosen method. See Kuhfeld (2003) page 546 and all of the examples starting on page 81.

Nonlinear Models. The experimental design problem is relatively simple for linear models and much more complicated for nonlinear models. The usual goal when creating a design is to minimize some function of the variance matrix of the parameter estimates, such as the determinant. For linear models, the variance matrix is proportional to $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$, and so the design optimality problem is well-posed. However, for nonlinear models, such as the multinomial logit model used with discrete-choice data, the variance matrix depends on the true values of the parameters themselves. (See pages 61, 481, and

303 for more on efficient choice designs based on assumptions about the parameters.) Thus in general, there may not exist a design for a discrete-choice experiment that is always optimal. However, Carson and colleagues (1994) and our experience suggest that D-efficient designs work well for discrete-choice models.

Lazari and Anderson (1994) provide a catalog of designs for discrete-choice models, which are good for certain specific problems. For those specific situations, they may be as good as or better than computer-generated designs. However, for many real problems, cataloged designs cannot be used without modification, and modification can reduce efficiency. We carry their work one step further by discussing a general computerized approach to design generation.

Design Comparisons

Comparing Orthogonal Designs. All orthogonal designs are not perfectly or even equally efficient. In this section, we compare designs for $2^{2} 3^{3}$. Table 1 gives the information matrix, $\mathbf{X}^{\prime} \mathbf{X}$, for a fullfactorial design using an orthogonal coding. The matrix is a diagonal matrix with the number of runs on the diagonal. The three efficiency criteria are printed after the information matrix. Because this is a full-factorial design, all three criteria show that the design is 100% efficient. The variance matrix (not shown) is $(1 / 108) \mathbf{I}=0.0093 \mathbf{I}$.

Table 2 shows the information matrix, efficiencies, and variance matrix for a classical 18-run orthogonal design for $2^{2} 3^{3}$, Chakravarti's (1956) L_{18}, for comparison with information-efficient designs with 18 runs. (The SAS ADX menu system was used to generate the design. Tables A1 and A2 contain the factor levels and the orthogonal coding used in generating Table 2.) Note that although the factors are all orthogonal to each other, X 1 is not balanced. Because of this, the main effect of X 1 is estimated with a higher variance (0.063) than X2 (0.056).

The precision of the estimates of the parameters critically depends on the efficiency of the experimental design. The parameter estimates in a general linear model are always unbiased (in fact, best linear unbiased [BLUE]) no matter what design is chosen. However, all designs are not equally efficient. In fact, all orthogonal designs are not equally efficient, even when they have the same factors and the same number of runs. Efficiency criteria can be used to help choose among orthogonal designs. For example, the orthogonal design in Tables 3 and A3 (from the Green and Wind 1975 carpet cleaner example) for $2^{2} 3^{3}$ is less D-efficient than the Chakravarti $L_{18}(97.4166 / 98.6998=0.9870)$. The Green and Wind design can be created from a 3^{5} balanced orthogonal array by collapsing two of the threelevel factors into two-level factors. In contrast, the Chakravarti design is created from a $2^{1} 3^{4}$ balanced orthogonal array by collapsing only one of the three-level factors into a two-level factor. The extra imbalance makes the Green and Wind design less efficient. (Note that the off-diagonal 2 in the Green and Wind information matrix does not imply that X1 and X2 are correlated. It is an artifact of the coding scheme. The off-diagonal 0 in the variance matrix shows that X1 and X2 are uncorrelated.)

Orthogonal Versus Nonorthogonal Designs. Orthogonal designs are not always more efficient than nonorthogonal designs. Tables 4 and A4 show the results for an information-efficient, main-effects-only design in 18 runs. The OPTEX procedure of SAS software was used to generate the design, using the modified Fedorov algorithm. The information-efficient design is slightly better than the classical L_{18}, in terms of the three efficiency criteria. In particular, the ratio of the D-efficiencies for the classical and information-efficient designs are $99.8621 / 98.6998=1.0118$. In contrast to the L_{18}, this design is

Table 2
Orthogonal Design Information Matrix

	Int	X 1	X 2	X 3	-	X 4	-	X 5	-
Int	18	6	0	0	0	0	0	0	0
X1	6	18	0	0	0	0	0	0	0
X 2	0	0	18	0	0	0	0	0	0
X 3	0	0	0	18	0	0	0	0	0
-	0	0	0	0	18	0	0	0	0
X 4	0	0	0	0	0	18	0	0	0
-	0	0	0	0	0	0	18	0	0
X 5	0	0	0	0	0	0	0	18	0
-	0	0	0	0	0	0	0	0	18

$$
\begin{array}{ll}
98.6998 & D \text {-efficiency } \\
97.2973 & A \text {-efficiency }
\end{array}
$$

$94.8683 \quad G$-efficiency

Variance Matrix									
	Int	X1	X2	X3	-	X4	-	X5	-
Int	63	-21	0	0	0	0	0	0	0
X1	-21	63	0	0	0	0	0	0	0
X2	0	0	56	0	0	0	0	0	0
X3	0	0	0	56	0	0	0	0	0
-	0	0	0	0	56	0	0	0	0
X4	0	0	0	0	0	56	0	0	0
-	0	0	0	0	0	0	56	0	0
X5	0	0	0	0	0	0	0	56	0
-	0	0	0	0	0	0	0	0	56

Note: multiply variance matrix values by 0.001 .

Table 3
Green \& Wind Orthogonal Design Information Matrix

	Int	X 1	X 2	X 3	-	X 4	-	X 5	-
Int	18	-6	-6	0	0	0	0	0	0
X 1	-6	18	2	0	0	0	0	0	0
X 2	-6	2	18	0	0	0	0	0	0
X 3	0	0	0	18	0	0	0	0	0
-	0	0	0	0	18	0	0	0	0
X 4	0	0	0	0	0	18	0	0	0
-	0	0	0	0	0	0	18	0	0
X	0	0	0	0	0	0	0	18	0
-	0	0	0	0	0	0	0	0	18

Variance Matrix

	Int	X 1	X 2	X 3	-	X 4	-	X 5	-
Int	69	21	21	0	0	0	0	0	0
X 1	21	63	0	0	0	0	0	0	0
X 2	21	0	63	0	0	0	0	0	0
X 3	0	0	0	56	0	0	0	0	0
-	0	0	0	0	56	0	0	0	0
X 4	0	0	0	0	0	56	0	0	0
-	0	0	0	0	0	0	56	0	0
X 5	0	0	0	0	0	0	0	56	0
-	0	0	0	0	0	0	0	0	56
Notes: multiply variance matrix values by 0.001									

Notes: multiply variance matrix values by 0.001 .
balanced in all the factors, but X1 and X2 are slightly correlated, shown by the 2's off the diagonal. There is no completely orthogonal (that is, both balanced and orthogonal) $2^{2} 3^{3}$ design in 18 runs. ${ }^{\ddagger}$ The nonorthogonality in Table 4 has a much smaller effect on the variances of X1 and X2 (1.2\%) than the lack of balance in the orthogonal design in Table 2 has on the variance of X2 (12.5\%). In optimizing efficiency, the search algorithms effectively optimize both balance and orthogonality. In contrast, in some orthogonal designs, balance and efficiency may be sacrificed to preserve orthogonality.

This example shows that a nonorthogonal design may be more efficient than an unbalanced orthogonal design. We have seen this phenomenon with other orthogonal designs and in other situations as well. Preserving orthogonality at all costs can lead to decreased efficiency. Orthogonality was extremely important in the days before general linear model software became widely available. Today, it is more important to consider efficiency when choosing a design. These comparisons are interesting because they illustrate in a simple example how lack of orthogonality and imbalance affect efficiency. Nonorthogonal designs will never be more efficient than balanced orthogonal designs, when they exist. However, nonorthogonal designs may well be more efficient than unbalanced orthogonal designs. Although this point is interesting and important, what is most important is that good nonorthogonal designs exist

[^12]Table 4
Information-Efficient Orthogonal Design
Information Matrix

	Int	X 1	X 2	X 3	-	X 4	-	X 5	-
Int	18	0	0	0	0	0	0	0	0
X 1	0	18	2	0	0	0	0	0	0
X 2	0	2	18	0	0	0	0	0	0
X 3	0	0	0	18	0	0	0	0	0
-	0	0	0	0	18	0	0	0	0
X 4	0	0	0	0	0	18	0	0	0
-	0	0	0	0	0	0	18	0	0
X 5	0	0	0	0	0	0	0	18	0
-	0	0	0	0	0	0	0	0	18

$99.8621 \quad D$-efficiency
$99.7230 \quad A$-efficiency
$98.6394 \quad G$-efficiency
Variance Matrix

	Int	X 1	X 2	X 3	-	X 4	-	X 5	-
Int	56	0	0	0	0	0	0	0	0
X1	0	56	-6	0	0	0	0	0	0
X 2	0	-6	56	0	0	0	0	0	0
X 3	0	0	0	56	0	0	0	0	0
-	0	0	0	0	56	0	0	0	0
X 4	0	0	0	0	0	56	0	0	0
-	0	0	0	0	0	0	56	0	0
X 5	0	0	0	0	0	0	0	56	0
-	0	0	0	0	0	0	0	0	56

Notes: multiply variance matrix values by 0.001 .
The diagonal entries for X1 and X2 are slightly larger at 0.0563 than the other diagonal entries of 0.0556 .

Table 5
Unrealistic Combinations Excluded Information Matrix

	Int	X1	X2	X3	-	X4	-	X5	-
Int	18	0	0	0	0	0	0	0	0
X1	0	18	2	0	0	0	0	0	0
X2	0	2	18	0	0	0	0	0	0
X3	0	0	0	18	0	0	0	0	0
-	0	0	0	0	18	0	0	0	0
X4	0	0	0	0	0	18	0	-6	5
-	0	0	0	0	0	0	18	5	0
X5	0	0	0	0	0	-6	5	18	0
-	0	0	0	0	0	5	0	0	18

$$
\begin{array}{ll}
96.4182 & D \text {-efficiency } \\
92.3190 & A \text {-efficiency } \\
91.0765 & G \text {-efficiency }
\end{array}
$$

Variance Matrix

	Int	X1	X2	X3	-	X4	-	X5	-
Int	56	0	0	0	0	0	0	0	0
X1	0	56	-6	0	0	0	0	0	0
X2	0	-6	56	0	0	0	0	0	0
X3	0	0	0	56	0	0	0	0	0
-	0	0	0	0	56	0	0	0	0
X4	0	0	0	0	0	69	-7	25	-20
-	0	0	0	0	0	-7	61	-20	2
X5	0	0	0	0	0	25	-20	69	-7
-	0	0	0	0	0	-20	2	-7	61

Notes: multiply variance matrix values by 0.001 .
in many situations in which no orthogonal designs exist.

Design Considerations

Codings and Efficiency. The specific design matrix coding does not affect the relative D-efficiency of competing designs. Rank-preserving linear transformations are immaterial, whether they are from full-rank indicator variables to effects coding or to an orthogonal coding such as the one shown in Table A2. Any full-rank coding is equivalent to any other. The absolute D-efficiency values will change, but the ratio of two D-efficiencies for competing designs is constant. Similarly, scale for quantitative factors does not affect relative efficiency. The proof is simple. If design \mathbf{X}_{1} is recoded to $\mathbf{X} \mathbf{A}$, then $\left|\left(\mathbf{X}_{1} \mathbf{A}\right)^{\prime}\left(\mathbf{X}_{1} \mathbf{A}\right)\right|=\left|\mathbf{A}^{\prime} \mathbf{X}_{1}^{\prime} \mathbf{X}_{1} \mathbf{A}\right|=\left|\mathbf{A} \mathbf{A}^{\prime}\right|\left|\mathbf{X}_{1}^{\prime} \mathbf{X}_{1}\right|$. The relative efficiency of design \mathbf{X}_{1} compared to \mathbf{X}_{2} is the same as $\mathbf{X}_{1} \mathbf{A}$ compared to $\mathbf{X}_{2} \mathbf{A}$, since the $\left|\mathbf{A A}^{\prime}\right|$'s terms in efficiency ratios will cancel. We prefer the orthogonal coding because it yields "nicer" information matrices with the number of runs on the
diagonal and efficiency values scaled so that 100 means perfect efficiency.

Quantitative Factors. The factors in an experimental design are usually qualitative (nominal), but quantitative factors such as price are also important. With quantitative factors, the choice of levels depends on the function of the original variable that is modeled. To illustrate, consider a pricing study in which price ranges from $\$ 0.99$ to $\$ 1.99$. If a linear function of price is modeled, only two levels of price should be used - the end points ($\$ 0.99$ and $\$ 1.99$). Using prices that are closer together is inefficient; the variances of the estimated coefficients will be larger. The efficiency of a given design is affected by the coding of quantitative factors, even though the relative efficiency of competing designs is unaffected by coding. Consider treating the second factor of the Chakravarti $L_{18}, 2^{2} 3^{3}$ as linear. It is nearly three times more D-efficient to use $\$ 0.99$ and $\$ 1.99$ as levels instead of $\$ 1.49$ and $\$ 1.50$ ($58.6652 / 21.0832=2.7826$). To visualize this, imagine supporting a yard stick (line) on your two index fingers (with two points). The effect on the slope of the yard stick of small vertical changes in finger locations is much greater when your fingers are closer together than when they are near the ends.

Of course there are other considerations besides the numerical measure of efficiency. It would not make sense to use prices of $\$ 0.01$ and $\$ 1,000,000$ just because that is more efficient than using $\$ 0.99$ and $\$ 1.99$. The model is almost certainly not linear over this range. To maximize efficiency, the range of experimentation for quantitative factors should be as large as possible, given that the model is plausible.

The number of levels also affects efficiency. Because two points define a line, it is inefficient to use more than two points to model a linear function. When a quadratic function is used (x and x^{2} are included in the model), three points are needed - the two extremes and the midpoint. Similarly, four points are needed for a cubic function. More levels are needed when the functional form is unknown. Extra levels allow for the examination of complicated nonlinear functions, with a cost of decreased efficiency for the simpler functions. When the function is assumed to be linear, experimental points should not be spread throughout the range of experimentation. See Kuhfeld and Garratt (1992) for a discussion of nonlinear functions of quantitative factors in conjoint analysis. See Kuhfeld (2003) page 643.

Most of the discussion outside this section has concerned qualitative (nominal) factors, even if that was not always explicitly stated. Quantitative factors complicate general design characterizations. For example, we previously stated that "if a balanced and orthogonal design exists, then it has optimum efficiency." This statement must be qualified to be absolutely correct. The design would not be optimal if, for example, a three-level factor were treated as quantitative and linear.

Nonstandard Algorithms and Criteria. Other researchers have proposed other algorithms and criteria. Steckel, DeSarbo, and Mahajan (SDM) (1991) proposed using computer-generated experimental designs for conjoint analysis to exclude unacceptable combinations from the design. They considered a nonstandard measure of design goodness based on the determinant of the (m-factor $\times m$-factor) correlation matrix $(|\mathbf{R}|)$ instead of the customary determinant of the (p-parameter $\times p$-parameter) variance matrix $\left(\left|\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right|\right)$. The SDM approach represents each factor by a single column rather than as a set of coded indicator variables. Designs generated using nonstandard criteria will not generally be efficient in terms of standard criteria like A-efficiency and D-efficiency, so the parameter estimates will have larger variances. To illustrate graphically, refer to Figure 1. The criterion $|\mathbf{R}|$ cannot distinguish between any of the nine different four-point designs, constructed from this candidate set, that form a square or a rectangle. All are orthogonal; only one is optimal.

We generated a D-efficient design for SDM's example, treating the variables as all quantitative (as they did). The $|\mathbf{R}|$ for the SDM design is 0.9932 , whereas the $|\mathbf{R}|$ for the information-efficient design is 0.9498 . The SDM approach works quite well in maximizing $|\mathbf{R}|$; hence the SDM design is close to orthogonal. However, efficiency is not always maximized when orthogonality is maximized. The SDM design is approximately 75% as D-efficient as a design generated with standard criteria and algorithms (70.1182/93.3361 $=0.7512$).

Choosing a Design. Computerized search algorithms generate many designs, from which the researcher must choose one. Often, several designs are tied or nearly tied for the best D, A, and G information efficiencies. A design should be chosen after examining the design matrix, its information matrix, its variance matrix, factor correlations, and levels frequencies. It is important to look at the results and not just routinely choose the design from the top of the list.

For studies involving human subjects, achieving at least nearly-balanced designs is an important consideration. Consider for example a two-level factor in an 18-run design in which one level occurs 12 times and the other level occurs 6 times versus a design in which each level occurs 9 times. Subjects who see one level more often than the other may try to read something into the study and adjust their responses in some way. Alternatively, subjects who see one level most often may respond differently than those who see the second level most often. These are not concerns with nearly balanced designs. One design selection strategy is to choose the most balanced design from the top few.

Many other strategies can be used. Perhaps correlation and imprecision are tolerable in some variables but not in others. Perhaps imbalance is tolerable, but the correlations between the factors should be minimal. Goals will no doubt change from experiment to experiment. Choosing a suitable design can be part art and part science. Efficiency should always be considered when choosing between alternative designs, even manually created designs, but it is not the only consideration.*

Adding Observations or Variables. These techniques can be extended to augment an existing design. A design with r runs can be created by augmenting m specified combinations (established brands or existing combinations) with $r-m$ combinations chosen by the algorithm. Alternatively, combinations that must be used for certain variables can be specified, and then the algorithm picks the levels for the other variables (Cook and Nachtsheim 1989). This can be used to ensure that some factors are balanced or uncorrelated; another application is blocking factors. Using design algorithms, we are able to establish numbers of runs and blocking patterns that fit into practical fielding schedules.

Designs with Interactions. There is a growing interest in using both main effects and interactions in discrete-choice models, because interaction and cross-effect terms may improve aggregate models (Elrod, Louviere, and Davey 1992). The current standard for choice models is to have all main-effects estimable both within and between alternatives. It is often necessary to estimate interactions within alternatives, such as in modeling separate price elasticities for product forms, sizes or packages. For certain classes of designs, in which a brand appears in only a subset of runs, it is often necessary to have estimable main-effects, own-brand interactions, and cross-effects in the submatrix of the design in which that brand is present. One way to ensure estimability is to include in the model interactions between the alternative-specific variables of interest and the indicator variables that control for presence or absence of the brand in the choice set. Orthogonal designs that allow for estimation of interactions are usually very large, whereas efficient nonorthogonal designs can be generated for any linear model, including models with interactions, and for any (reasonable) number of runs.

[^13]Unrealistic Combinations. It is sometimes useful to exclude certain combinations from the candidate set. SDM (1991) have also considered this problem. Consider a discrete-choice model for several brands and their line extensions. It may not make sense to have a choice set in which the line extension is present and the "flagship" brand absent. Of course, as we eliminate combinations, we may introduce unavoidable correlation between the parameter estimates. In Tables 5 and A5, the twenty combinations where ($\mathrm{X} 1=1$ and $\mathrm{X} 2=1$ and $\mathrm{X} 3=1$) or ($\mathrm{X} 4=1$ and $\mathrm{X} 5=1$) were excluded and an 18 -run design was generated with the modified Fedorov algorithm. With these restrictions, all three efficiency criteria dropped, for example $96.4182 / 99.8621=0.9655$. This shows that the design with excluded combinations is almost 97% as D-efficient as the best (unrestricted) design. The information matrix shows that X 1 and X 2 are correlated, as are X 4 and X 5 . This is the price paid for obtaining a design with only realistic combinations.

In the "Quantitative Factors" section, we stated "Because two points define a line, it is inefficient to use more than two points to model a linear function." When unrealistic combinations are excluded, this statement may no longer be true. For example, if minimum price with maximum size is excluded, an efficient design may involve the median price and size.

Choosing the Number of Runs. Deciding on a number of runs for the design is a complicated process; it requires balancing statistical concerns of estimability and precision with practical concerns like time and subject fatigue. Optimal design algorithms can generate designs for any number of runs greater than or equal to the number of parameters. The variances of the least-squares estimates of the part-worth utilities will be roughly inversely proportional to both the D-efficiency and the number of runs. In particular, for a given number of runs, a D-efficient design will give more accurate estimates than would be obtained with a less efficient design. A more precise value for the number of choices depends on the ratio of the inherent variability in subject ratings to the absolute size of utility that is considered important. Subject concerns probably outweigh the statistical concerns, and the best course is to provide as many products as are practical for the subjects to evaluate. In any case, the use of information-efficient designs provides more flexibility than manual methods.

Asymmetry in the Number of Levels of Variables. In many practical applications of discretechoice modeling, there is asymmetry in the number of factor levels, and interaction and polynomial parameters must be estimated. One common method for generating choice model designs is to create a resolution III orthogonal array and modify it. The starting point is a $q^{\Sigma M_{j}}$ design, where q represents a fixed number of levels across all attributes and M_{j} represents the number of attributes for brand j. For example, in the "Consumer Food Product" example in a subsequent section, with five brands with $1,3,1,2$, and 1 attributes and with each attribute having at most four levels, the starting point is a 4^{8} orthogonal array. Availability cross-effect designs are created by letting one of the M_{j} variables function as an indicator for presence/absence of each brand or by allowing one level of a common variable (price) to operate as the indicator. These methods are fairly straightforward to implement in designs in which the factor levels are all the same, but they become quite difficult to set up when there are different numbers of levels for some factors or in which specific interactions must be estimable.

Asymmetry in the number of levels of factors may be handled either by using the "coding down" approach (Addelman 1962b) or by expansion. In the coding down approach, designs are created using factors that have numbers of levels equal to the largest number required in the design. Factors that have fewer levels are created by recoding. For example, a five-level factor $\{1,2,3,4,5\}$ can be recoded into a three-level factor by duplicating levels $\{1,1,2,2,3\}$. The variables will still be orthogonal because the indicator variables for the recoding are in a subspace of the original space. However, recoding introduces imbalance and inefficiency. The second method is to expand a factor at k-levels
into several variables at some fraction of k-levels. For example, a four-level variable can be expanded into three orthogonal two-level variables. In many cases, both methods must be used to achieve the required design.

These approaches are difficult for a simple main-effect design of resolution III and extremely difficult when interactions between asymmetric factors must be considered. In practical applications, asymmetry is the norm. Consider for example the form of an analgesic product. One brand may have caplet and tablet varieties, another may have tablet, liquid, and chewable forms. In a discrete-choice model, these two brand/forms must be modeled as asymmetric alternative-specific factors. If we furthermore anticipated that the direct price elasticity might vary, depending on the form, we would need to estimate the interaction of a quantitative price variable with the nominal-level form variable.

Computerized search methods are simpler to use by an order of magnitude. They provide asymmetric designs that are usually nearly balanced, as well as providing easy specification for interactions, polynomials and continuous by class effects.

Strategies for Many Variables. Consider generating a 3^{15} design in 36 runs. There are $14,348,907$ combinations in the full-factorial design, which is too many to use even for a candidate set. For problems like this, the coordinate exchange algorithm (Meyer and Nachtsheim 1995)] works well. The \%MktEx macro which uses coordinate exchange with a partial orthogonal array initialization easily finds design over 98.9%-efficient. Even designs with over 100 variables can be created this way.

Examples

Choice of Consumer Food Products. Consider the problem of using a discrete choice model to study the effect of introducing a retail food product. This may be useful, for example, to refine a marketing plan or to optimize a product prior to test market. A typical brand team will have several concerns such as knowing the potential market share for the product, examining the source of volume, and providing guidance for pricing and promotions. The brand team may also want to know what brand attributes have competitive clout and want to identify competitive attributes to which they are vulnerable.

To develop this further, assume our client wishes to introduce a line extension in the category of frozen entrees. The client has one nationally branded competitor, a regional competitor in each of three regions, and a profusion of private label products at the grocery chain level. The product comes in two different forms: stove-top or microwaveable. The client believes that the private labels are very likely to mimic this line extension and to sell it at a lower price. The client suspects that this strategy on the part of private labels may work for the stove-top version but not for the microwaveable, in which they have the edge on perceived quality. They also want to test the effect of a shelf-talker that will draw attention to their product.

This problem may be set up as a discrete choice model in which a respondent's choice among brands, given choice set C_{a} of available brands, will correspond to the brand with the highest utility. For each brand i, the utility U_{i} is the sum of a systematic component V_{i} and a random component e_{i}. The probability of choosing brand i from choice set C_{a} is therefore:

$$
P\left(i \mid C_{a}\right)=P\left(U_{i}>\max \left(U_{j}\right)\right)=P\left(V_{i}+e_{i}>\max \left(V_{j}+e_{j}\right)\right) \quad \forall(j \neq i) \in C_{a}
$$

Table 6
Factors and Levels

Alternative	Factor	Levels	Brand	Description
1	X1	4	Client	3 prices + absent
2	X2	4	Client Line Extension	3 prices + absent microwave/stove-top shelf-talker yes/no
	X3	2		2 prices + absent
3	X4	2		2 prices + absent
	X5	3	Regional	microwave/stove-top
4	X6	3	Private Label	2 prices + absent

Assuming that the e_{i} follow an extreme value type I distribution, the conditional probabilities $P\left(i \mid C_{a}\right)$ can be found using the MNL formulation of McFadden (1974)

$$
P\left(i \mid C_{a}\right)=\exp \left(V_{i}\right) / \sum_{j \in C_{a}} \exp \left(V_{j}\right)
$$

One of the consequences of the MNL formulation is the property of independence of irrelevant alternatives (IIA). Under the assumption of IIA, all cross-effects are assumed to be equal, so that if a brand gains in utility, it draws share from all other brands in proportion to their current shares. Departures from IIA exist when certain subsets of brands are in more direct competition and tend to draw a disproportionate amount of share from each other than from other members in the category. One way to capture departures from IIA is to use the mother logit formulation of McFadden (1974). In these models, the utility for brand i is a function of both the attributes of brand i and the attributes of other brands. The effect of one brand's attributes on another is termed a cross-effect. In the case of designs in which only subsets C_{a} of the full shelf set C appear, the effect of the presence or absence of one brand on the utility of another is termed an availability cross-effect.

In the frozen entree example, there are five alternatives: the client, the client's line extension, a national branded competitor, a regional brand and a private label brand. Several regional and private labels can be tested in each market, then aggregated for the final model. Note that the line extension is treated as a separate alternative rather than as a "level" of the client brand. This enables us to model the source of volume for the new entry and to quantify any cannibalization that occurs. Each brand is shown at either two or three price points. Additional price points are included so that quadratic models of price elasticity can be tested. The indicator for the presence or absence of any brand in the shelf set is coded using one level of the price variable. The layout of factors and levels is given in Table 6.

In addition to intercepts and main effects, we also require that all two-way interactions within alternatives be estimable: $\mathrm{X} 2{ }^{*} \mathrm{X} 3, \mathrm{X} 2 * \mathrm{X} 4, \mathrm{X} 3 * \mathrm{X} 4$ for the line extension and $\mathrm{X} 6^{*} \mathrm{X} 7$ for private labels. This will enable us to test for different price elasticities by form (stove-top versus microwaveable) and to
see if the promotion works better combined with a low price or with different forms. Using a linear model for X1-X8, the total number of parameters including the intercept, all main effects, and two-way interactions with brand is 25 . This assumes that price is treated as qualitative. The actual number of parameters in the choice model is larger than this because of the inclusion of cross-effects. Using indicator variables to code availability, the systematic component of utility for brand i can be expressed as:

$$
V_{i}=a_{i}+\sum_{k}\left(b_{i k} \times x_{i k}\right)+\sum_{j \neq i} z_{j}\left(d_{i j}+\sum_{l}\left(g_{i j l} \times x_{j l}\right)\right)
$$

where
$a_{i}=$ intercept for brand i
$b_{i k}=$ effect of attribute k for brand i, where $k=1, . ., K_{i}$
$x_{i k}=$ level of attribute k for brand i
$d_{i j}=$ availability cross-effect of brand j on brand i
$z_{j}=$ availability code $= \begin{cases}1 & \text { if } j \in C_{a}, \\ 0 & \text { otherwise }\end{cases}$
$g_{i j l}=$ cross-effect of attribute l for brand j on brand i, where $l=1, . ., L_{j}$
$x_{j l}=$ level of attribute l for brand j.

The $x_{i k}$ and $x_{j l}$ might be expanded to include interaction and polynomial terms. In an availability cross-effects design, each brand is present in only a fraction of choice sets. The size of this fraction or subdesign is a function of the number of levels of the alternative-specific variable that is used to code availability (usually price). For example, if price has three valid levels and a fourth "zero" level to indicate absence, then the brand will appear in only three out of four runs. Following Lazari and Anderson (1994), the size of each subdesign determines how many model equations can be written for each brand in the discrete choice model. If X_{i} is the subdesign matrix corresponding to V_{i}, then each X_{i} must be full rank to ensure that the choice set design provides estimates for all parameters.

To create the design, a full candidate set is generated consisting of 3456 runs. It is then reduced to 2776 runs that contain between two and four brands so that the respondent is never required to compare more than four brands at a time. In the algorithm model specification, we designate all variables as classification variables and require that all main effects and two-way interactions within brands be estimable. The number of runs to use follows from a calculation of the number of parameters that we wish to estimate in the various submatrices \mathbf{X}_{i} of \mathbf{X}. Assuming that there is a category "None" used as a reference cell, the numbers of parameters required for various alternatives are shown in the Table 7 along with the size of submatrices (rounded down) for various numbers of runs. Parameters for quadratic price models are given in parentheses. Note that the effect of private label being in a microwaveable or stove-top form (stove/micro cross-effect) is an explicit parameter under the client line extension.

The number of runs chosen was $\mathrm{N}=26$. This number provides adequate degrees of freedom for the linear price model and will also allow estimation of direct quadratic price effects. To estimate quadratic cross-effects for price would require 32 runs at the very least. Although the technique of using two-way interactions between nominal level variables will usually guarantee that all direct and cross-effects are estimable, it is sometimes necessary and a good practice to check the ranks of the submatrices for more complex models (Lazari and Anderson 1994). Creating designs for cross effects can be difficult, even with the aid of a computer.

Table 7
Parameters

Effect	Client	Client Line Extension	Regional	Private Label	Competitor
intercept		1	1	1	1
availability cross-effects	4	4	4	4	4
direct price effect	$1(2)$	$1(2)$	1	1	1
price cross-effects	$4(8)$	$4(8)$	4	4	4
stove versus microwave	-	1	-	1	-
stove/micro cross-effects	-	1	-	-	-
shelf-talker	-	1	-	-	-
price*stove/microwave	-	$1(2)$	-	1	-
price*shelf-talker	-	$1(2)$	-	-	-
stove/micro*shelf-talker	-	1	-	-	-
Total	$10(15)$	$16(23)$	10	12	10
Subdesign size			14	14	14
22 runs	16	16	17	17	17
26 runs	19	19	21	21	21
32 runs	24	24			

It took approximately 4.5 minutes to generate a design. The final (unrandomized) design in 26 runs is in table A6. ${ }^{\dagger}$ The coded choice sets are presented in Table A7 and the level frequencies are presented in Table A8. Note that the runs have been ordered by the presence/absence of the shelf-talker. This ordering is done because it is unrealistic to think that once the respondent's attention has been drawn in by the promotion, it can just be "undrawn." The two blocks that result may be shown to two groups of people or to the same people sequentially. It would be extremely difficult and time consuming to generate a design for this problem without a computerized algorithm.

Conjoint Analysis with Aggregate Interactions. This example illustrates creating a design for a conjoint analysis study. The goal is to create a 3^{6} design in 90 runs. The design consists of five blocks of 18 runs each, so each subject will only have to rate 18 products. Within each block, main-effects must be estimable. In the aggregate, all main-effects and two-way interactions must be estimable. (The utilities from the main-effects models will be used to cluster subjects, then in the aggregate analysis, clusters of subjects will be pooled across blocks and the blocking factor ignored.) Our goal is to create a design that is simultaneously efficient in six ways. Each of the five blocks should be an efficient design for a first-order (main-effects) model, and the aggregate design should be efficient for the second-order (main-effects and two-way interactions) model. The main-effects models for the five blocks have $5(1+6(3-1))=65$ parameters. In addition, there are $(6 \times 5 / 2)(3-1)(3-1)=60$ parameters for interactions in the aggregate model. There are more parameters than runs, but not all

[^14]parameters will be simultaneously estimated.
One approach to this problem is the Bayesian regression method of DuMouchell and Jones (1994). Instead of optimizing $\left|\mathbf{X}^{\prime} \mathbf{X}\right|$, we optimized $\left|\mathbf{X}^{\prime} \mathbf{X}+\mathbf{P}\right|$, where \mathbf{P} is a diagonal matrix of prior precisions. This is analogous to ridge regression, in which a diagonal matrix is added to a rank-deficient $\mathbf{X}^{\prime} \mathbf{X}$ to create a full-rank problem. We specified a model with a blocking variable, main effects for the six factors, block-effect interactions for the six factors, and all two-way interactions. We constructed \mathbf{P} to contain zeros for the blocking variable, main effects, and block-effect interactions, and 45 s (the number of runs divided by 2) for the two-way interactions. Then we used the modified Fedorov algorithm to search for good designs.

With an appropriate coding for \mathbf{X}, the value of the prior precision for a parameter roughly reflects the number of runs worth of prior information available for that parameter. The larger the prior precision for a parameter, the less information about that parameter is in the final design. Specifying a nonzero prior precision for a parameter reduces the contribution of that parameter to the overall efficiency. For this problem, we wanted maximal efficiency for the within-subject main-effects models, so we gave a nonzero prior precision to the aggregated two-way interactions.

Our best design had a D-efficiency for the second-order model of 63.9281 (with a D-efficiency for the aggregate main-effects model of 99.4338) and D-efficiencies for the main-effects models within each block of $100.0000,100.0000,100.0000,99.0981$, and 98.0854 . The design is completely balanced within all blocks. We could have specified other values in \mathbf{P} and gotten better efficiency for the aggregate design but less efficiency for the blocks. Choice of \mathbf{P} depends in part on the primary goals of the experiment. It may require some simulation work to determine a good choice of \mathbf{P}.

All of the examples in this article so far have been straight-forward applications of computerized design methodology. A set of factors, levels, and estimable effects was specified, and the computer looked for an efficient design for that specification. Simple problems, such as those discussed previously, require only a few minutes of computer time. This problem was much more difficult, so we let a work station generate designs for about 72 hours. (We could have found less efficient but still acceptable designs in much less time.) We were asking the computer to find a good design out of over 9.6×10^{116} possibilities. This is like looking for a needle in a haystack, when the haystack is the size of the entire known universe. With such problems, we may do better if we use our intuition to give the computer "hints," forcing certain structure into the design. To illustrate, we tried this problem again, this time using a different approach.

We used the modified Fedorov algorithm to generate main-effects only 3^{6} designs in 18 runs. We stopped when we had ten designs all with 100% efficiency. We then wrote an ad hoc program that randomly selected five of the ten designs, randomly permuted columns within each block, and randomly permuted levels within each block. These operations do not affect the first-order efficiencies but do affect the overall efficiency for the aggregate design. When an operation increased efficiency, the new design was kept. We iterated over the entire design 20 times. We let the program run for about 16 hours, which generated 98 designs, and we found our best design in three hours. Our best design had a D-efficiency for the second-order model of 68.0565 (versus 63.9281 previously), and all first-order efficiencies of 100 .

Many other variations on this approach could be tried. For example, columns and blocks could be chosen at random, instead of systematically. We performed excursions of up to eight permutations before we reverted to the previous design. This number could be varied. It seemed that permuting the levels helped more than permuting the columns, though this was not thoroughly investigated. Whatever is done, it is important to consider efficiency. For example, just randomly permuting levels can create very inefficient designs.

For this particular problem, the ad hoc algorithm generated better designs than the Bayesian method, and it required less computer time. In fact, 91 out of the 98 ad hoc designs were better than the best Bayesian design. However, the ad hoc method required much more programmer time. It is possible to manually create a design for this situation, but it would be extremely difficult and time consuming to find an efficient design without a computerized algorithm for all but the most sophisticated of human designers. The best designs were found when used both our human design skills and a computerized search. We have frequently found this to be the case.

Conclusions

Computer-generated experimental designs can provide both better and more general designs for discretechoice and preference-based conjoint studies. Classical designs, obtained from books or computerized tables, can be good options when they exist, but they are not the only option. The time-consuming and potentially error-prone process of finding and manually modifying an existing design can be avoided. When the design is nonstandard and there are restrictions, a computer can generate a design, and it can be done quickly. In most situations, a good design can be generated in a few minutes or hours, though for certain difficult problems more time may be necessary. Furthermore, when the circumstances of the project change, a new design can again be generated quickly.

We do not argue that computerized searches for D-efficient designs are uniformly superior to manually generated designs. The human designer, using intuition, experience, and heuristics, can recognize structure that an optimization algorithm cannot. On the other hand, the computerized search usually does a good job, it is easy to use, and it can create a design faster than manual methods, especially for the nonexpert. Computerized search methods and the use of efficiency criteria can benefit expert designers as well. For example, the expert can manually generate a design and then use the computer to evaluate and perhaps improve its efficiency.

In nonstandard situations, simultaneous balance and orthogonality may be unobtainable. Often, the best that can be hoped for is optimal efficiency. Computerized algorithms help by searching for the most efficient designs from a potentially very large set of possible designs. Computerized search algorithms for D-efficient designs do not supplant traditional design-creation skills. Rather, they provide helpful tools for finding good, efficient experimental designs.

Table A1
Chakravarti's L_{18}, Factor Levels

X1	X2	X3	X4	X5
-1	-1	-1	-1	-1
-1	-1	0	0	1
-1	-1	1	1	0
-1	1	-1	1	0
-1	1	0	-1	-1
-1	1	1	0	1
1	-1	-1	0	0
1	-1	-1	1	1
1	-1	0	-1	0
1	-1	0	1	-1
1	-1	1	-1	1
1	-1	1	0	-1
1	1	-1	-1	1
1	1	-1	0	-1
1	1	0	0	0
1	1	0	1	1
1	1	1	-1	0
1	1	1	1	-1

Table A2
Chakravarti's L_{18}, Orthogonal Coding

X 1	X 2	X 3	-	X 4	-	X 5	-
-1	-1	-1.225	-0.707	-1.225	-0.707	-1.225	-0.707
-1	-1	0.000	1.414	0.000	1.414	1.225	-0.707
-1	-1	1.225	-0.707	1.225	-0.707	0.000	1.414
-1	1	-1.225	-0.707	1.225	-0.707	0.000	1.414
-1	1	0.000	1.414	-1.225	-0.707	-1.225	-0.707
-1	1	1.225	-0.707	0.000	1.414	1.225	-0.707
1	-1	-1.225	-0.707	0.000	1.414	0.000	1.414
1	-1	-1.225	-0.707	1.225	-0.707	1.225	-0.707
1	-1	0.000	1.414	-1.225	-0.707	0.000	1.414
1	-1	0.000	1.414	1.225	-0.707	-1.225	-0.707
1	-1	1.225	-0.707	-1.225	-0.707	1.225	-0.707
1	-1	1.225	-0.707	0.000	1.414	-1.225	-0.707
1	1	-1.225	-0.707	-1.225	-0.707	1.225	-0.707
1	1	-1.225	-0.707	0.000	1.414	-1.225	-0.707
1	1	0.000	1.414	0.000	1.414	0.000	1.414
1	1	0.000	1.414	1.225	-0.707	1.225	-0.707
1	1	1.225	-0.707	-1.225	-0.707	0.000	1.414
1	1	1.225	-0.707	1.225	-0.707	-1.225	-0.707

Table A3
Green \& Wind Orthogonal Design

Example

X 1	X 2	X 3	X 4	X 5
-1	-1	-1	-1	-1
-1	-1	-1	1	0
-1	-1	0	-1	-1
-1	-1	0	0	1
-1	-1	0	1	-1
-1	-1	1	-1	0
-1	-1	1	0	1
-1	-1	1	1	0
-1	1	-1	1	1
-1	1	-1	-1	1
-1	1	0	0	0
-1	1	1	0	-1
1	-1	-1	0	-1
1	-1	-1	0	0
1	-1	0	1	1
1	-1	1	-1	1
1	1	1	1	-1
1	1	0	-1	0

Table A4
Information-Efficient
Design,
Factor Levels

X1	X2	X3	X4	X5
-1	-1	-1	0	-1
-1	-1	0	-1	0
-1	-1	0	1	-1
-1	-1	1	0	1
-1	-1	1	1	1
-1	1	-1	-1	0
-1	1	-1	0	-1
-1	1	0	-1	1
-1	1	1	1	0
1	-1	-1	-1	1
1	-1	-1	1	0
1	-1	0	0	0
1	-1	1	-1	-1
1	1	-1	1	1
1	1	0	0	1
1	1	0	1	-1
1	1	1	-1	-1
1	1	1	0	0

Table A5
Information-Efficient Design, Unrealistic Combinations Excluded

X 1	X 2	X 3	X 4	X 5
-1	-1	-1	1	0
-1	-1	-1	-1	1
-1	-1	-1	0	-1
-1	-1	0	-1	1
-1	-1	0	0	0
-1	1	1	1	0
-1	1	1	-1	-1
-1	1	1	0	1
-1	1	0	1	-1
1	-1	1	1	-1
1	-1	1	-1	0
1	-1	1	0	1
1	-1	0	1	-1
1	1	-1	1	0
1	1	-1	-1	-1
1	1	-1	0	1
1	1	0	-1	1
1	1	0	0	0

Table A6
Consumer Food Product (Raw) Design

X 1	X 2	X 3	X 4	X 5	X 6	X 7	X 8
1	1	2	1	1	2	1	3
1	2	2	1	2	3	1	2
1	4	1	1	1	3	1	3
2	2	1	1	3	2	1	1
2	3	2	1	2	2	2	3
2	4	2	1	3	3	2	2
3	1	1	1	3	2	2	2
3	3	2	1	3	1	2	1
3	4	2	1	2	1	1	1
4	1	1	1	2	3	2	1
4	1	2	1	3	3	1	1
4	2	2	1	1	2	2	3
4	3	1	1	1	1	1	2
1	3	1	2	3	2	2	1
1	3	2	2	3	1	1	3
1	4	2	2	1	1	2	1
2	1	1	2	1	3	1	1
2	2	2	2	3	2	1	1
2	3	1	2	2	1	2	3
2	4	1	2	3	1	1	2
3	1	2	2	2	3	2	2
3	2	1	2	1	3	2	3
3	4	2	2	2	3	1	3
4	1	1	2	3	2	1	3
4	2	1	2	2	1	2	2
4	3	2	2	1	2	1	2

Table A7
Consumer Food Product Choice Set

Block 1: Shelf-Talker Absent For Client Line Extension					
Choice Set	Client Brand	Client Line Extension	Regional Brand	Private Label	National
1	$\$ 1.29$	$\$ 1.39 /$ stove	$\$ 1.99$	$\$ 2.29 /$ micro	N / A
2	$\$ 1.29$	$\$ 1.89 /$ stove	$\$ 2.49$	$\mathrm{~N} / \mathrm{A}$	$\$ 2.39$
3	$\$ 1.29$	$\mathrm{~N} / \mathrm{A}$	$\$ 1.99$	$\mathrm{~N} / \mathrm{A}$	N / A
4	$\$ 1.69$	$\$ 1.89 /$ micro	N / A	$\$ 2.29 /$ micro	$\$ 1.99$
5	$\$ 1.69$	$\$ 2.39 /$ stove	$\$ 2.49$	$\$ 2.29 /$ stove	N / A
6	$\$ 1.69$	$\mathrm{~N} / \mathrm{A}$	N / A	N / A	$\$ 2.39$
7	$\$ 2.09$	$\$ 1.39 /$ micro	N / A	$\$ 2.29 /$ stove	$\$ 2.39$
8	$\$ 2.09$	$\$ 2.39 /$ stove	N / A	$\$ 1.49 /$ stove	$\$ 1.99$
9	$\$ 2.09$	$\mathrm{~N} / \mathrm{A}$	$\$ 2.49$	$\$ 1.49 /$ micro	$\$ 1.99$
10	$\mathrm{~N} / \mathrm{A}$	$\$ 1.39 /$ micro	$\$ 2.49$	$\mathrm{~N} / \mathrm{A}$	$\$ 1.99$
11	$\mathrm{~N} / \mathrm{A}$	$\$ 1.39 /$ stove	N / A	N / A	$\$ 1.99$
12	$\mathrm{~N} / \mathrm{A}$	$\$ 1.89 /$ stove	$\$ 1.99$	$\$ 2.29 /$ stove	N / A
13	$\mathrm{~N} / \mathrm{A}$	$\$ 2.39 /$ micro	$\$ 1.99$	$\$ 1.49 /$ micro	$\$ 2.39$

Block 2: Shelf-Talker Present For Client Line Extension

Choice	Client	Client Line	Regional	Private	National
Set	Brand	Extension	Brand	Label	Competitor
14	\$1.29	\$2.39/micro	N/A	\$2.29/stove	\$1.99
15	\$1.29	\$2.39/stove	N/A	\$1.49/micro	N/A
16	\$1.29	N/A	\$1.99	\$1.49/stove	\$1.99
17	\$1.69	\$1.39/micro	\$1.99	N/A	\$1.99
18	\$1.69	\$1.89/stove	N/A	\$2.29/micro	\$1.99
19	\$1.69	\$2.39/micro	\$2.49	\$1.49/stove	N/A
20	\$1.69	N/A	N/A	\$1.49/micro	\$2.39
21	\$2.09	\$1.39/stove	\$2.49	N/A	\$2.39
22	\$2.09	\$1.89/micro	\$1.99	N/A	N/A
23	\$2.09	N/A	\$2.49	N/A	N/A
24	N/A	\$1.39/micro	N/A	\$2.29/micro	N/A
25	N/A	\$1.89/micro	\$2.49	\$1.49/stove	\$2.39
26	N/A	\$2.39/stove	\$1.99	\$2.29/micro	\$2.39

Table A8
Consumer Food Product Design Level Frequencies

Level	X1	X 2	X 3	X 4	X 5	X 6	X 7	X 8
1	6	7	12	13	8	8	14	9
2	7	6	14	13	8	9	12	8
3	6	7			10	9		9
4	7	6						

Table A9
Consumer Food Product Design Creation Code

```
*--------------------------------------------------------------*
*--------------------------------------------------------------
%macro bad;
    bad = (x1 < 4) + (x2 < 4) + (x5 < 3) + (x6 < 3) + (x8< 3);
    bad = abs(bad - 3) * ((bad < 2) | (bad > 4));
    %mend;
%mktex( 4 4 2 2 3 3 2 3, n=26, interact=x2*x3 x2*x4 x3*x4 x6*x7,
    restrictions=bad, outr=sasuser.choicdes )
*-------------------------------------------------------------*
proc format;
    value yn 1 = 'No' 2 = 'Talker';
    value micro 1 = 'Micro' 2 = 'Stove';
    run;
data key;
    missing N;
    input x1-x8;
    format x1 x2 x5 x6 x8 dollar5.2
            x4 yn. x3 x7 micro.;
    label x1 = 'Client Brand'
            x2 = 'Client Line Extension'
            x3 = 'Client Micro/Stove'
            x4 = 'Shelf Talker'
            x5 = 'Regional Brand'
            x6 = 'Private Label'
            x7 = 'Private Micro/Stove'
            x8 = 'National Competitor';
    datalines;
1.29 1.39 1 1 1.99 1.49 1 1.99
1.69 1.89 2 2 2.49 2.29 2 2.39
2.09 2.39 . . N N . N
N N
;
%mktlab(data=sasuser.choicdes, key=key)
proc sort out=sasuser.finchdes; by x4; run;
proc print label; id x4; by x4; run;
```


A General Method for Constructing Efficient Choice Designs

Klaus Zwerina Joel Huber Warren F. Kuhfeld

Abstract

Researchers have traditionally built choice designs using extensions of concepts from the general linear design literature. We show that a computerized search strategy can generate efficient choice designs with standard personal computers. This approach holds three important advantages over previous design strategies. First, it allows the incorporation of anticipated model parameters, thereby increasing design efficiency and considerably reducing the number of required choices. Second, complex choice designs can be easily generated, allowing researchers to conduct choice experiments that more closely mirror actual market conditions. Finally, researchers can explore model and design modifications and examine trade-offs between a design's statistical benefits and its operational and behavioral costs.*

Introduction

Discrete choice experiments are becoming increasingly popular in marketing, economics, and transportation. These experiments enable researchers to model choice in an explicit competitive context, thus realistically emulating market decisions. A choice design consists of choice sets composed of several alternatives, each defined as combinations of different attribute levels. A good choice design is efficient, meaning that the parameters of the choice model are estimated with maximum precision.

A number of methods have been suggested for building choice designs (Anderson and Wiley 1992, Bunch, Louviere, and Anderson 1996, Krieger and Green 1991, Kuhfeld 2003 (page 81), Lazari and Anderson 1994, Louviere and Woodworth 1983). Most of the methods use extensions of standard linear experimental designs (Addelman 1962b, Green 1974). However, the use of linear designs in choice experiments may be nonoptimal due to two well-known differences between linear and choice

[^15]models. First, probabilistic choice models are nonlinear in the parameters, implying that the statistical efficiency of a choice design depends on an (unknown) parameter vector. This property implies the need to bring anticipated parameter values in choice designs. Second, choice design efficiency depends both on the creation of appropriate profiles and properly placing them into several choice sets. For example, in a linear design, the order of the 16 profiles in a conjoint exercise does not affect its formal efficiency, whereas the efficiency of the same 16 profiles broken into four choice sets depends critically on the grouping. Despite its limitations, linear design theory has been used to produce satisfactory choice designs for many years, drawing on readily available tables and processes. Such carefully selected linear designs are reasonable, general-purpose choice designs, but are generally not optimal in a statistical sense.

We present a general strategy for the computerized construction of efficient choice designs. This contribution can be viewed as an extension of the work of Kuhfeld, Tobias, and Garratt (1994) and of Huber and Zwerina (1996). Kuhfeld et al. recommended using a search algorithm to find efficient linear designs. Huber and Zwerina show how to modify choice designs using anticipated model parameters in order to improve design efficiency. We adapt the optimization procedure outlined in Kuhfeld et al. to the principles of choice design efficiency described by Huber and Zwerina. Our approach holds several important advantages over previous choice design strategies. It (1) optimizes the "correct" criterion of minimizing estimation error rather than following linear design principles, (2) it can generate choice designs that accommodate any anticipated parameter vector, (3) it can accommodate virtually any level of model complexity, and finally (4) it can be built using widely available software. To illustrate, we include a SAS/IML program that generates relatively simple choice designs. This program can be easily generalized to handle far more complex problems.

The chapter begins with a review of criteria for efficient choice designs and illustrates how they can be built with a computer. Then, beginning with simple designs, we illustrate how the algorithm works and how our linear design intuition must be changed when coping with choice designs. Next, we generate more complex choice designs and show how to evaluate the impact on efficiency of different design and model modifications. We conclude with a discussion of the proposed choice design approach and directions for future research.

Criteria For Choice Design Efficiency

Measure Of Choice Design Efficiency. First, we derive a measure of efficiency in choice designs from the well-known multinomial logit model (McFadden 1974). This model assumes that consumers make choices among alternatives that maximize their perceived utility, u, given by

$$
\begin{equation*}
u=\mathbf{x}_{i} \boldsymbol{\beta}+e \tag{1}
\end{equation*}
$$

where \mathbf{x}_{i} is a row vector of attributes characterizing alternative $i, \boldsymbol{\beta}$ is a column vector of K weights associated with these attributes, and e is an error term that captures unobserved variations in utility. Suppose that there are N choice sets, C_{n}, indexed by $n=1,2, \ldots, N$, where each choice set is characterized by a set of alternatives $C_{n}=\left\{x_{1 n}, K, x_{J_{n} n}\right\}$. If the errors, e, are independently and identically Gumbel distributed, then it can be shown that the probability of choosing an alternative i from a choice set C_{n} is

$$
\begin{equation*}
P_{i n}\left(\mathbf{X}_{\mathbf{n}}, \boldsymbol{\beta}\right)=\frac{e^{\mathbf{x}_{i n} \boldsymbol{\beta}}}{\sum_{j=1}^{J_{n}} e^{\mathbf{x}_{j n} \boldsymbol{\beta}}} \tag{2}
\end{equation*}
$$

where $\mathbf{X}_{\mathbf{n}}$ is a matrix that consists of J_{n} row vectors, each describing the characteristics of the alternatives, $\mathbf{x}_{j n}$. The vertical concatenation of the $\mathbf{X}_{\mathbf{n}}$ matrices is called a choice design matrix \mathbf{X}.

The task of the analyst is to find a parameter estimate for $\boldsymbol{\beta}$ in Equation (2) that maximizes the likelihood given the data. Under very general conditions, the maximum likelihood estimator is consistent and asymptotically normal with covariance matrix

$$
\begin{gather*}
\boldsymbol{\Sigma}=\left(\mathbf{Z}^{\prime} \mathbf{P} \mathbf{Z}\right)^{-1}=\left[\sum_{n=1}^{N} \sum_{j=1}^{J_{N}} \mathbf{z}_{j n}^{\prime} P_{j n} \mathbf{z}_{j n}\right]^{-1} \tag{3}\\
\text { where } \quad \mathbf{z}_{j n}=\mathbf{x}_{j n}-\sum_{i=1}^{J_{n}} \mathbf{x}_{i n} P_{i n} .
\end{gather*}
$$

Equation (3) reveals some important properties of (nonlinear) choice models. In linear models, centering occurs across all profiles whereas in choice models, centering occurs within choice sets. This shows that in choice designs both the profile selection and the assignment of profiles to choice sets affects the covariance matrix. Moreover, in linear models, the covariance matrix does not depend on the true parameter vector, whereas in choice models the probabilities, $P_{j n}$, are functions of $\boldsymbol{\beta}$ and hence the covariance matrix. Assuming $\boldsymbol{\beta}=\mathbf{0}$ simplifies the design problem, however Huber and Zwerina (1996) recently demonstrated that this assumption may be costly. They showed that incorrectly assuming that $\boldsymbol{\beta}=\mathbf{0}$ may require from 10% to 50% more respondents than those built from reasonably anticipated parameters.

The goal in choice designs is to define a group of choice sets, given the anticipated $\boldsymbol{\beta}$, that minimizes the "size" of the covariance matrix, $\boldsymbol{\Sigma}$, defined in Equation (3). There are various summary measures of error size that can be derived from the covariance matrix (see, e.g., Raktoe, Hedayat, and Federer 1981). Perhaps the most intuitive summary measure is the average variance around the estimated parameters of a model. This measure is referred to in the literature as A-efficiency or its inversely related counterpart,

$$
\begin{equation*}
A-\text { error }=\operatorname{trace}(\boldsymbol{\Sigma}) / K \tag{4}
\end{equation*}
$$

where K is the number of parameters. Two problems with this measure limit its suitability as an overall measure of design efficiency. First, relative A-error is not invariant under (nonsingular) recodings of the design matrix, i.e., design efficiency depends on the type of coding. Second, it is computationally expensive to update. A related measure,

$$
\begin{equation*}
D-\text { error }=|\boldsymbol{\Sigma}|^{1 / K} \tag{5}
\end{equation*}
$$

is based on the determinant as opposed to the trace of the covariance matrix. D-error is computationally efficient to update, and the ratios of D-errors are invariant under different codings of the design matrix. Since A-error is the arithmetic mean and D-error is the geometric mean of the eigenvalues of $\boldsymbol{\Sigma}$, they
are generally highly correlated. D-error thereby provides a reasonable way to find designs that are "good" on alternative criteria. For example, if A-error is the ultimate criterion, we can first minimize D-error and then select the design with minimum A-error rather than minimizing A-error directly. For these reasons, D-error (or its inverse, D-efficiency or D-optimality) is the most common criterion for evaluating linear designs and we advocate it as a criterion for choice designs.

Next, we discuss four principles of choice design efficiency defined by Huber and Zwerina (1996). Choice designs that satisfy these principles are optimal, however, these principles are only satisfied for a few special cases and under quite restrictive assumptions. The principles of orthogonality and balance that figured so prominently in linear designs remain important in understanding what makes a good choice design, but they will be less useful in generating one.

Four Principles Of Efficient Choice Designs. Huber and Zwerina (1996) identify four principles which when jointly satisfied indicate that a design has minimal D-error. These principles are orthogonality, level balance, minimal overlap, and utility balance. Orthogonality is satisfied when the levels of each attribute vary independently of one another. Level balance is satisfied when the levels of each attribute appear with equal frequency. Minimal overlap is satisfied when the alternatives within each choice set have nonoverlapping attribute levels. Utility balance is satisfied when the utilities of alternatives within choice sets are the same, i.e., the design will be more efficient as the expected probabilities within a choice set C_{n} among J_{n} alternatives approach $1 / J_{n}$.

These principles are useful in understanding what makes a choice design efficient, and improving any principle, holding the others constant, improves efficiency. However, for most combinations of attributes, levels, alternatives, and assumed parameter vectors, it is impossible to create a design that satisfies these principles. The proposed approach does not build choice designs from these formal principles, but instead uses a computer to directly minimize D-error. As a result, these principles may only be approximately satisfied in our designs, but they will generally be more efficient than those built directly from the principles.

A General Method For Efficient Choice Designs

Figure 1 provides a flowchart of the proposed design approach. The critical aspect of this approach involves an adaptation of Cook and Nachtsheim's (1980) modification of the Fedorov (1972) algorithm that has successfully been used to generate efficient linear designs (e.g., Cook and Nachtsheim 1980, Kuhfeld et al. 1994). We will first describe the proposed choice design approach conceptually and then define the details in a context of a particular search.

The process begins by building a candidate set, which is a list of potential alternatives. A random selection of these alternatives is the starting design. The algorithm alters the starting design by exchanging its alternatives with the candidate alternatives. The algorithm finds the best exchange (if one exists) for the first alternative in the starting design. The first iteration is completed once the algorithm has sequentially found the best exchanges for all of the alternatives in the starting design. After that, the process moves back to the first alternative and continues until no substantial efficiency improvement is possible. To avoid poor local optima, the whole process can be restarted with different random starting designs and the most efficient design is selected. For example, if there are 300 alternatives in the candidate set and 50 alternatives in the choice design, then each iteration requires testing 15,000 possible exchanges, which is a reasonable problem on today's desktop computers and workstations. While there is no guarantee that it will converge to an optimal design, our experience
with relatively small problems suggests that the algorithm works very well.
To illustrate the process we first generate choice designs for simple models that reveal the characteristics of efficient choice designs. In examining these simple designs, our focus is on the benefits and the insights that derive from using this approach. Then, we apply the approach to more complex design problems, such as alternative-specific designs and designs with constant alternatives. As we illustrate more complex designs, we will focus on the use of the approach, per se. We provide illustrative computer code in the appendix.

Choice Design Applications

Simple Designs

Generic Models. The simplest choice models involve alternatives described by generic attributes. The utility functions for these models consist of attribute parameters that are the same for all alternatives, for example, a common price slope across all alternatives. Generic designs are appealing because they are simple and analogous to main-effects conjoint experiments. Bunch et al. (1996) evaluate ways to generate generic choice designs and show that shifted or cyclic designs generally have superior efficiency compared with other strategies for generating main effects designs. These shifted designs use an orthogonal fractional factorial to provide the "seed" alternatives for each choice set. Subsequent alternatives within a choice set are cyclically generated. The attribute levels of the new alternatives add one to the level of the previous alternative until it is at its highest level, at which point the assignment re-cycles to the lowest level.

For certain families of plans and assuming that all coefficients are zero, these shifted designs satisfy all four principles, and thus are optimal. ${ }^{\dagger}$ For example, consider a choice experiment with three attributes, each at three levels, defining three alternatives in each of nine choice sets. The left-hand panel of Table 1 shows a plan using the Bunch et al. (1996) method.

In this special case, all four efficiency principles are perfectly satisfied. Level balance is satisfied since each level occurs in precisely $1 / 3$ of the cases, and orthogonality can be confirmed by noting the all pairs of attribute levels occur in precisely $1 / 9$ of the attributes (Addelman 1962b). There is perfect minimal overlap since each level occurs exactly once in each choice set, and finally, utility balance is trivially satisfied with the assumption that $\boldsymbol{\beta}=\mathbf{0}$. More formally, it is useful to examine the covariance matrix of the (effects-coded) parameters, reported in the first panel of Table 2. The equal variances across attributes and the zero covariances across attributes both indicate optimality.

A simple design such as this could have been built from our algorithm, although using a standard orthogonal array and cyclic permutations ensured optimality. Our next example, encompassing a model with just one interaction term, illustrates the case when a computerized search is very useful in finding a statistically efficient design.

[^16]Figure 1
Flowchart of Algorithm for Constructing Efficient Choice Designs

FLOWCHART OF ALGORITHM FOR CONSTRUCTING EFFICIENT CHOICE DESIGNS

USE EXCHANGE ALGORITHM TO OPTIMIZE DESIGN EFFICIENCY

- Generate a random starting choice design.
- Go to the first alternative of the choice design.

Replace altemative from the choice design with alternative from the candidate sets that minimizes D-error (for each exchange use update formulas to re-evaluate determinant of corresponding covariance matrix).

- Go to next alternative in the choice design.
- Repeat the previous two steps for all alternatives in the design.
- Continue internal iterations or until converged.

REPEAT ALGORITHM WITH A NEW RANDOM STARTING DESIGN

- Store best design among external iterations (restarts).
- Generate a new random choice design.
- Continue external iterations.

Table 1
Main Effects and A \times B-Interaction Effects Choice Design

$\boldsymbol{\beta}_{0}$-Efficient Main-Effects Design$\left(\boldsymbol{\beta}_{0}=00000000\right)$					$\boldsymbol{\beta}_{0}$-EfficientInteraction-Effects$\left(\boldsymbol{\beta}_{0}=0000000000\right)$				$\boldsymbol{\beta}_{1}$-EfficientInteraction-Effects$\left(\boldsymbol{\beta}_{1}=-10-10-10000\right)$			
Set	Alt	A	B	C	A	B	C	$\mathrm{p}\left(\boldsymbol{\beta}_{1}\right)$	A	B	C	$\mathrm{p}\left(\boldsymbol{\beta}_{1}\right)$
1	I	1	1	1	2	3	2	. 495	2	1	3	. 422
	II	2	2	2	2	2	3	. 495	1	3	2	. 422
	III	3	3	3	1	1	1	. 009	3	1	1	. 155
2	I	1	2	2	3	1	1	. 155	3	2	2	. 422
	II	2	3	3	2	2	2	. 422	2	1	3	. 155
	III	3	1	1	1	2	3	. 422	3	3	1	. 422
3	I	1	3	3	1	1	2	. 042	2	2	3	. 155
	II	2	1	1	1	3	1	. 114	3	3	2	. 422
	III	3	2	2	3	1	3	. 844	2	3	3	. 422
4	I	2	1	3	2	1	2	. 018	2	1	2	. 422
	II	3	2	1	3	3	3	. 965	1	1	3	. 422
	III	1	3	2	2	2	1	. 018	1	2	1	. 155
5	I	2	2	1	1	3	3	. 245	3	1	2	. 422
	II	3	3	2	3	3	2	. 665	1	1	3	. 155
	III	1	1	3	2	3	1	. 090	3	2	1	. 422
6	I	2	3	2	2	1	3	. 468	1	3	3	. 422
	II	3	1	3	1	2	1	. 063	2	3	2	. 422
	III	1	2	1	1	3	2	. 468	3	2		. 155
7	I	3	1	2	3	2	3	. 665	1	2	1	. 212
	II	1	2	3	3	3	1	. 245	2	2	1	. 576
	III	2	3	1	3	1	2	. 090	1	1	2	. 212
8	I	3	2	3	1	2	2	. 042	1	2	3	. 576
	II	1	3	1	2	3	3	. 844	1	3	1	. 212
	III	2	1	2	3	2	1	. 114	3	1	1	. 212
9	I	3	3	1	1	1	3	. 114	2	2	2	. 212
	II	1	1	2	2	1	1	. 042	3	1	3	. 576
	III	2	2	3	3	2	2	. 844	2	3	1	. 212
$D-\operatorname{error}\left(\boldsymbol{\beta}_{0}\right)=.192$							avem	$=.690$				$=.474$
						D-er	or $(\boldsymbol{\beta}$. 306		D-er	ror	. 365
							or $\left(\beta_{1}\right.$			D-er	ror	

Estimating an $A \times B$ Interaction. For the previous example with nine choice sets, let us assume that the researcher is confident that there are no $\mathrm{A} \times \mathrm{C}$ or $\mathrm{B} \times \mathrm{C}$ interactions, but the $\mathrm{A} \times \mathrm{B}$ interaction must be estimated. The middle panel of Table 1 shows the best design we were able to find which includes this one interaction. Note that in this design, the principle of minimal overlap on attributes A and B is violated, in that attribute levels are frequently repeated within a set. In general, interactions require overlap of attribute levels to produce the contrasts necessary to estimate the effects.

The covariance matrix of this design, depicted in the lower half of Table 2, highlights the effects of incorporating the $\mathrm{A} \times \mathrm{B}$ interaction. Violating minimal overlap permits the estimation of the $\mathrm{A} \times \mathrm{B}$

Table 2
Covariance Matrix of Main Effects and $\mathrm{A} \times \mathrm{B}$-Interaction Effects Choice Design

interaction by sacrificing efficiency on the main effects of attribute A and B, reflected in higher variances of the main effects estimates (a1, a2, b1, and b2). The D-error of the main effect estimates increases by 24%, from . 192 to . 239 , and the covariances across attributes A and B are no longer zero. Note also that the errors around attribute C are unchanged - they are unaffected by the $\mathrm{A} \times \mathrm{B}$ interaction, indicating that the algorithm was able to find a design that allowed the $A \times B$ interaction to be uncorrelated with C.

There are several important lessons from this simple example. First, it illustrates that a design that is "perfect" for one model may be far from optimal for a slightly different model. Adding one interaction strongly altered the covariance matrix, so efficient designs generally violate the formal principles. Second, the example shows that estimating new interactions is not without cost; being able to estimate one interaction increased by 24% the error on the main effects. Finally, the trade-off of efficiency with estimability demonstrates one of the primary benefits of this approach-it allows the analyst to understand the efficiency implications of changes in the design structure and/or model specification. This use of the approach will be illustrated again in the context of more complex choice designs.

The Impact Of Non-Zero Betas. The preceding discussion has assumed that the true parameters are zero. This assumption is justified when there is very little information about the model parameters; however, typically the analyst has some information on the relative importance of attributes or the relative value of their levels (Huber and Zwerina 1996). To show the potential gain that can come from nonzero parameters, assume that the anticipated partworths of the main effects for the three level attributes discussed previously are not $0,0,0$, but $-1,0,1$, while the $\mathrm{A} \times \mathrm{B}$-interaction effect continues to have zero parameters. ${ }^{\ddagger}$ Calling the new parameter vector $\boldsymbol{\beta}_{1}$ to distinguish it from the zero parameter vector, $\boldsymbol{\beta}_{0}$, the third panel of Table 1 displays the efficient design using these parameters. This new design has a D-error $\left(\boldsymbol{\beta}_{1}\right)$ of 0.399 . However, if instead we had used the design in the center panel, its error given $\boldsymbol{\beta}_{1}$ is true would have been .630, implying that 37% (1-.399/.630) fewer respondents are needed for the "utility balanced" over the "utility neutral" design.

Comparing the last two panels in Table 1 reveals how the algorithm used the anticipated nonzero parameters to produce a more efficient design. As an index of utility balance, we calculated the average of the maximum within-choice-set choice probabilities (avemaxp). The smaller this index the harder is the average choice task and the greater is "utility balance." We can see, by using $\boldsymbol{\beta}_{1}$, the new design is more utility balanced than the previous design, which results in an average maximum probability of .474 compared with one of .690 . We also see that the increase in utility balance sacrifices somewhat the three formal principles, reflected in an increase of D-error $\left(\boldsymbol{\beta}_{0}\right)$ from .306 to .365 . The new design does not have perfect orthogonality, level balance, utility balance, or minimal overlap, but it is more efficient than any design that is perfect on any of those criteria.

More Complex Choice Designs. The proposed algorithm is very general and can be applied to virtually any level of design complexity. We will use it next to generate an alternative-specific choice design, which has a separate set of parameters for each alternative. Suppose, the researcher is interested in simulating the market behavior of three brands, Coke, Pepsi, and RC Cola, with the attribute combinations shown in Table 3.

This kind of choice experiment, which we call a market emulation study, is quite different from the generic choice design presented previously. In a market emulation study, emphasis is on predicting the impact of brand, flavor, and container decisions in the context of a realistic market place offering. What this kind of study gains in realism, it loses in the interpretability of its results. For example, since each brand only occurs at specific prices, it is much harder to disentangle the independent effects of brand and price. These designs are, however, useful in assessing the managerially critical question of the impact of, say, a 60 cent drop in the price of Coke's 16 ounce case in a realistic competitive configuration.

Since we assume that the impact of price depends on the brand to which it is attached, it is important that the impact of price be estimable within each brand. ${ }^{\S}$ Further, let us assume that the reaction to price additionally depends on the number of ounces, so that it is necessary to estimate the brand \times price \times container interaction. Using standard ANOVA-coding, these assumptions require four main effects (brand, flavor, container, and price for $8 d f$), four two-way interactions (brand \times price, brand \times flavor, brand \times container, and price \times container for $16 d f$), and one three-way interaction (brand \times price \times container for $8 d f$), resulting in a total of 32 parameters. ${ }^{\text {. }}$

[^17]Table 3
Attributes/Levels for an Alternative-Specific Choice Experiment

Attributes	Alternative-Specific Levels		
	$\$ 5.69$	$\$ 5.39$	$\$ 4.49$
	$\$ 6.89$	$\$ 5.99$	$\$ 5.39$
	$\$ 7.49$	$\$ 6.59$	$\$ 5.99$
Container	12 oz cans	12 oz cans	12 oz cans
	10 oz bottle	10 oz bottle	16 oz bottle
Flavor	16 oz bottle	18 oz bottle	22 oz bottle
	Regular	Regular	Regular
	Cherry Coke	Pepsi Lite	Cherry
	Diet Coke	Diet Pepsi	Diet

Suppose we want to precisely estimate these effects with a choice design consisting of 27 choice sets each composed of three alternatives.* The candidate set of alternatives comprises the $3^{4}=81$ possible alternatives, and the initial design is a random selection from these. The algorithm exchanges alternatives between the candidate set and the starting design until the efficiency gain becomes negligible. In the example with 27 choice sets and 32 parameters, D-error is .167 . This statistic provides a baseline for evaluating other related designs, which we will generate in the following section.

Evaluating Design Modifications. The proposed approach can be used to evaluate design modifications. Typically, efficiency is meaningful within a relatively narrow family of designs, limited to a particular attribute structure, model specification, and number of alternatives per choice set. For many applications, optimizing a design within such a narrow design family is too restrictive. Most analysts are not tightly bound to a particular number of alternatives per choice set or even particular attributes, but are interested in exploring the impact of changes in these specifications on the precision of the parameter estimates. We will demonstrate how comparing designs across design families allows a reasoned trade-off of design structure against estimation precision.
Consider the following questions an analyst might ask concerning the alternative-specific choice design just presented.

1. How much does efficiency increase if 54 choice sets are used instead of two replications of 27 choice sets?
2. What is the efficiency loss if each of the brands (Coke, Pepsi, RC) must be present in a choice set?
3. What is the gain in efficiency if a fourth alternative is added to each choice set?
4. What happens to efficiency if this fourth alternative is constant (e.g., "keep on shopping")?
[^18]Table 4
Impact of Design Modifications on D-Error

Design Modification	D-error	Efficiency per Choice Set	Comments
Cets sets, 3 alternatives per set.	.167	100%	Original design.
Double the number of sets.	.079	106%	Limited benefit from doubling the number of sets.
Require each alternative to contain one of each brand.	.175	95%	Shows minor cost of constraining a design.
Add a fourth alternative.	.144	116%	Diminishing returns from adding ad- ditional alternatives.
Fourth alternative is con-	.195	86%	Design is less efficient because con- stant alternative is chosen 25% of the time.

The first question assesses the benefit of building a design with 54 choice sets rather than using the original 27 choice sets twice. As Table 4 shows, specifying twice as many choice sets produces a D error of .079 compared with $.084(=.167 / 2)$ for two independent runs of the 27 choice set design. This relatively small 6% benefit in efficiency indicates that the original 27 choice set design, while highly fractionated, appears to have suffered little due to this fact.

The second question evaluates the impact of constraints on the choice sets that respondents face. The original design often paired the same brand against itself within a choice set. For example, a choice set with Coke in a 12 oz bottle for $\$ 5.69$ per case might include Coke in a 16 oz bottle for $\$ 7.49$ per case. For managerial reasons it might be desirable to have each brand (Coke, Pepsi, RC) represented in every set of three alternatives. To examine the cost of this constraint, Coke is assigned to the first alternative, Pepsi to the second alternative, and RC to the third alternative within each of the 27 choice sets. With this constraint, the D-error is .175 . This relatively moderate decrease in efficiency of 5% should be acceptable if there are managerially-based reasons to constrain the choice sets.

The third question investigates the benefits of adding a fourth alternative to each choice set. This change increases by 25% the number of alternatives, although the marginal effect of an additional alternative should not be as great. With this modification, D-error becomes . 144 , producing a 16% efficiency gain over three alternatives per choice set. The decision whether to include a fourth alternative now pits the analyst's appraisal of the trade-off between the value of this 16% efficiency gain and the cost in respondent time and reliability.

What happens if this fourth alternative is common and constrained to be constant in all choice sets? With a constant alternative, respondents are not forced to make a choice among undesirable alternatives. Moreover, a constant alternative permits an estimate of demand volume rather than just market shares (Carson et al. 1994). A constant alternative can take many forms, ranging from the respondent's "current brand," to an indication that "none are acceptable," or simply "keep on shopping." While constant alternatives are often added to choice sets, little is known about the efficiency implications
of this practice. To create designs with a constant alternative, this alternative must be added to the candidate set. Also, a model with a constant alternative has one more parameter. Comparing a design with a constant alternative to one without, it is necessary to calculate D-error with respect to the original 32 parameters using the corresponding submatrix of $\boldsymbol{\Sigma}$.

Adding a constant alternative to the original design increases the D-error of the original 32 parameters by 17% and is nearly 35% worse than allowing the fourth alternative to be variable. Some part of this loss in efficiency is due to the one additional degree of freedom from the constant alternative. A larger part is due to the efficiency lost when respondents are assumed to select the constant alternative. Every time it is chosen, one obtains less information about the values of the other parameters. In this case, the assumption that $\boldsymbol{\beta}=\mathbf{0}$ is not benign, as it assumes the constant alternative, along with all others in the four-option choice sets, will be chosen 25% of the time. We can reduce the efficiency cost to the other parameters by using a smaller $\boldsymbol{\beta}$ for the constant alternative, reflecting the assumption that it will be chosen less often.

In summary, the analysis suggests that adding a constant alternative to a three-alternative choice set can degrade the precision of estimates around the original parameters. Two caveats are important. First, this result will not always occur. We have found some highly fractionated designs where a constant alternative adds to the resolution of the original design. Second, there are studies where a major goal is the estimation of the constant alternative; in that case "oversampling" the constant ensures that its coefficient will be known with greater precision.

An important lesson across these four examples is that one cannot rely on heuristics to guide design strategies, ignoring statistical efficiency. It is generally necessary to test specific design strategies, given anticipated model parameters, to find a good choice design.

Evaluating Model Modifications. The proposed approach can be used to assess modifications of the model specification. This allows one, for example, to estimate the cost of "assumption insurance," i.e., building a design that is robust to false assumptions. Often we assume that factors are independent; for example, that the utility of price does not depend on brand or container. In many instances this assumption would be better termed a "presumption" in that if it is wrong, the estimates are biased, but there is no way to know given the design. Assessing the cost of assumption insurance involves four steps:

1. Find the best design for the unrestricted model (possibly including interactions).
2. Find the best design for the restricted model.
3. Evaluate D-error for that unrestricted design under the restricted model.
4. Evaluate D-error for the best design for the restricted model.

The cost of assumption insurance is the percent difference between steps 3 and 4, reflecting the loss of efficiency of the core parameters for the two designs. We illustrate how to assess this cost for a design that permits the price term to interact with brand and container versus one that assumes they are independent. To simplify the example, we take the same case as before, but assume that price is a linear rather than a categorical variable. ${ }^{\dagger}$

[^19]The first step involves finding an efficient design with all price interactions with brand and brand \times container estimable. This unrestricted model has $7 d f$ for main effects (two for brand, two for container, two for flavor, and one for price), $12 d f$ for two-way interactions (brand \times price, brand \times flavor, brand \times container, container \times price), and $4 d f$ for the three-way interaction (brand \times container \times price). An efficient design for this unrestricted model has a D-error of .148 . If this design is used for a restricted model in which price does not interact ($7 d f$ for main effects and $8 d f$ for two-way interactions) then D-error drops to .118 . The critical question is how much better still can one do by searching for the best design in the 15 -parameter restricted model. The best design we find has a D-error of .110. Thus, assumption insurance in this case imposes a $6 \%(1-.110 / .118)$ efficiency loss, a reasonable cost given that prices will often interact with brands and containers.

To summarize, the search routine allows estimates of the cost in efficiency of various design modifications and even changes in the model specification. Again, the important lesson is not the generalizations from the results of these particular examples, but rather an understanding of how these and similar questions can be answered in the context of any research study.

How Good Are These Designs? The preceding discussion has shown that our adaptation of the modified Fedorov algorithm can find estimable choice designs and answer a variety of useful questions. We still need to discuss the question, how close to optimal are these designs? The search is nonexhaustive, and there is no guarantee that the solutions are optimal or even nearly so. For some designs, such as the alternative-specific one shown previously, we can never be completely certain that the search process does not consistently find poor local optima. However, one can achieve some confidence from the pattern of results based on different random restarts; similar efficiencies emerging from different random starts indicate robustness of the resultant designs. An even stronger test is to assess efficiencies of the search process in cases where an optimal solution is known. While this cannot be done generally, we can test the absolute efficiency of certain symmetric designs, where the optimal design can be built using formal methods. We illustrated this kind of design in the three attribute, three level, three alternative, nine choice set $\left(3^{3} / 3 / 9\right)$ design discussed earlier, and found that the search routine was not able to find a better design. Now, we ask how good are our generated designs relative to three optimal designs: the design mentioned previously and two corresponding, but bigger designs $-4^{4} / 4 / 16$ and a $5^{5} / 5 / 25$ generic design.
For these types of designs we apply the proposed algorithm and compare our designs with the analytically generated ones. For each design, we used ten different random starts and three internal iterations. Figure 2 displays the impact of efficiency on different starting points and different numbers of internal iterations.

Figure 2 reveals important properties of the proposed algorithm. After the first iteration, the algorithm finds a choice design with about 90% relative efficiency, after a few more iterations, relative efficiencies approach $95 \%-99 \%$. Further, this property appears to be independent of any initial starting design the process converges just as quickly from a random start as from a rational one. These encouraging properties suggest important advantages for the practical use of the approach. First, in contrast to Huber and Zwerina (1996), the process does not require a rational starting design (which may be difficult to build). Second, since the process yields very efficient designs after only one or two iterations, most practical problems involving even large choice designs can be accommodated.

Figure 2
Convergence Pattern From Different Random Starts CONVERGENCE PATTERN FROM DIFFERENT RANDOM STARTS

Conclusions

We propose an adaptation of the modified Fedorov algorithm to construct statistically efficient choice designs with standard personal computers. The algorithm generates efficient designs quickly and is appropriate for all but the largest choice designs. The approach is illustrated with a SAS/IML program. SAS has the advantage of a general model statement that facilitates the building of choice designs with different model specifications. The cost of using SAS/IML software, however, is that the algorithm generally runs slower than a program developed in, for example, PASCAL or C.

There are three major advantages of using a computer to construct choice designs rather than deriving them from formal principles. First, computers are the only way we know to build designs that allow one to incorporate anticipated model parameters. Since the incorporation of this information can increase efficiency by 10% to 50% (see Huber and Zwerina 1996), this benefit alone justifies the use of computer search routines to find efficient choice designs.

The second advantage is that one is less restricted in design selection. Symmetric designs may not reflect the typically asymmetric characteristics of the real market. The adaptability of computerized searches is particularly important in choice studies that simulate consumer choice in a real market (Carson et al. 1994). Moreover, the process we propose allows the analyst to generate choice designs that account for any set of interactions, or alternative-specific effects of interest and critical tests of these assumptions. We illustrated a market emulation design that permits brand to interact with price, container, and flavor and can test the three-way interaction of brand by container by price. This pattern of alternative-specific effects would be very hard to build with standard designs, but it is easy to do with the computerized search routine by simply setting the model statement. The process can handle even more complex models, such as availability and attribute cross effects models (Lazari and Anderson 1994).

Finally, the ability to assess expected errors in parameters permits the researcher to examine the impact of different modifications in a given design, such as adding more choice sets or dropping a level from a factor. Most valuable, perhaps, is the ability to easily test designs for robustness. We provide one example of assumption insurance, but others are straightforward to generate. What happens to the efficiency of a design if there are interactions, but they are not included in the model statement? What kind of model will do a good job given a linear representation of price, but will also permit a test of curvature? What happens to the efficiency of the design if one's estimate of $\boldsymbol{\beta}$ is wrong?

There are several areas in which future research is needed. The first of these involves studies of the search process per se. We chose the modified Fedorov algorithm because it is robust and runs fast enough on today's desktop computers. As computing power increases, more exhaustive searches should be evaluated. For extremely large problems, faster and less reliable algorithms may be appropriate. Furthermore, while the approach builds efficient choice designs for multinomial logit models, efficiency issues with respect to other models, for example, nested logit and probit models, have yet to be explored.

A second area in which research would be fruitful involves the behavioral impact of different choice designs. The evaluations of our designs all implicitly assumed that the error level is constant regardless of the design. Many choice experiments use relatively small set sizes and few attributes reflecting an implicit recognition that "better" information comes from making the choice less complex. However, from a statistical perspective it is easy to show that smaller set sizes reduce statistical efficiency. In one example, we demonstrated that increasing the number of alternatives per choice set from three to four can increase efficiency by 16%. This gain depends on the assumption that respondent's error levels do not change. If they do increase, then that 16% percent gain might be lessened or even reversed. Thus, there is a need for a series of studies measuring respondents' error levels to tasks at different levels of complexity. Also, it is important to measure the degree of correspondence between the experimental tasks and the actual market behavior, choice experiments are intended to simulate. Such information is critical for correct trade-offs between design efficiency, measured here, and survey effectiveness, measured in the marketplace.

The purpose of this article is to demonstrate the important advantages of a flexible computerized search in generating efficient choice designs. The proposed adaptation of the modified Fedorov algorithm solves many of the practical problems involved in building choice designs, thus enabling more researchers to conduct choice experiments. Nevertheless, we want to emphasize that it does not preclude traditional design skills; they remain critical in determining the model specification and in assessing the choice designs produced by the computerized search.

Appendix

SAS/IML Code for the Proposed Choice Design Algorithm

The SAS code shows a simple implementation of the algorithm. In this example, the program finds a design with 27 choice sets and three alternatives per set. There are four attributes (brand, price, container, and flavor) each with three levels. A design is requested in which all main effects, the two-way interactions between brand and the other attributes, the two-way interaction between container and price, and the brand by price by container three-way interaction are estimable. Here, the parameters are assumed to be zero, but could be easily changed by setting other values.
A computer that evaluated all possible $\left(81^{81} / 3!27!=5 \times 9 \times 10^{125}\right)$ designs would take numerous billion years. Instead, we use the modified Fedorov algorithm, which uses the following heuristic: find the best exchange for each design point given all of the other candidate points. With 81 candidate alternatives, 27 choice sets, 3 alternatives per set, (say) 3 internal iterations, and 2 random starts, $81 \times 27 \times 3 \times 3 \times 2=39,366$ exchanges must be evaluated. The algorithm tries to maximize $\left|\mathbf{X}^{\prime} \mathbf{X}\right|$ rather than minimizing $\left|\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right|$ (note that $\left.\left|\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right|=\left|\mathbf{X}^{\prime} \mathbf{X}\right|^{-1}\right)$. Each exchange requires then the evaluation of a matrix determinant, $\left|\mathbf{X}^{\prime} \mathbf{X}\right|$. Fortunately, we do not have to evaluate this determinant from scratch for each exchange since $\left|\mathbf{X}^{\prime} \mathbf{X}+\mathbf{x}^{\prime} \mathbf{x}\right|=\left|\mathbf{X}^{\prime} \mathbf{X}\right|\left|I+\mathbf{x}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{x}^{\prime}\right|$ (Mardia et al. 1979). Each exchange evaluates a quadratic form, and in this example with three alternatives per choice set, the determinant of a 3×3 matrix. It should also be noted that this algorithm can handle a rankdeficient covariance matrix by operating on $\left|\mathbf{X}^{\prime} \mathbf{X}+I \epsilon\right|$, where ϵ is a small number. This eliminates zero determinants so that less-than-full-rank codings and singular starting designs are not a problem. With these short cuts, one iteration required about 30 seconds on an ordinary 486 PC , implying that the algorithm is reasonable for many marketing contexts.

This appendix is provided simply to show the algorithm for those who might wish to implement or better understand it. If you want to use the algorithm, use the \%ChoicEff autocall SAS macro documented in Kuhfeld (2003) starting on pages 479 and 481 . See page 303 for an example. The \%ChoicEff is much larger and more full-featured than the code shown in this appendix.

```
/*--------------------------------Initial Set Up---------------------------------------*/
%let beta = 0 0 0 0 0 0 0 /* 8 main effects */
    00000000 /* brand x price, brand x container,*/
    0 0 0 /* brand x flavor, */
    0 0 0 /* price x container interactions */
    0 0 0 0 0 0 0; /* brand x price x container */
%let nalts = 3; /* Number of alternatives */
%let nsets = 27; /* Number of choice sets */
proc plan ordered; /* Create candidate alternatives */
    factors brand=3 price=3 contain=3 flavor=3 / noprint;
    output out=candidat;
    run;
proc transreg design data=candidat; /* Code the candidate alternatives */
model class(brand price contain flavor brand*price brand*contain
            brand*flavor contain*price brand*contain*price / effects);
    output out=tmp_cand;
    run;
proc contents p data=tmp_cand(keep=&_trgind); run;
/*------------------------Begin Efficient Design Search----------------------------------
proc iml; file log;
    use tmp_cand(keep=&_trgind); /* Identify candidate set for input */
    read all into cand; /* Read candidate set into IML */
    utils = exp(cand * {&beta}'); /* exp(alternative utilities) */
    np = 1 ncol(cand); /* Exponent applied to determinant */
    imat = i(&nalts); /* Identity matrix */
    nobs = &nsets # &nalts; /* Total n of alts in choice design */
    ncands = nrow(cand); /* Number of candidates */
    fuzz = i(ncol(cand)) # 1e-8; /* X'X ridge factor, avoid singular */
    start center(x, exputil); /* Probability centering subroutine */
        do i = 1 to nrow(x) / &nalts; /* Do for each choice set */
            k = (i-1)#&nalts+1 : i#&nalts; /* Choice set index vector */
            p = exputil[k,]; p = p / sum(p); /* Probability of choice */
            z = x[k,]; /* Get choice set */
            x[k,] = (z - j(&nalts,1,1) * /* Center choice set, absorb p's */
                        p` * z) # sqrt(p);
            end;
        finish;
```

 /*---------------Create Designs With Different Random Starts------------------*/
 do desnum = 1 to 2; \(/ *\) Number of designs to create */
 indvec \(=\) ceil(ncands * \(/ *\) Random index vector (indvec) */
 uniform(j(1, nobs, 0))); /* into candidates */
 des \(\quad\) cand[indvec,]; \(/ *\) Initial random design */
    ```
run center(des, utils[indvec,]); /* Probability center */
currdet = det(des' * des); /* Initial determinants, eff's */
maxdet = currdet; oldeff = currdet ## np; fineff = oldeff;
if fineff <= O then err = .; else err = 1 / fineff;
put /// +8 'Design Iteration D-Efficiency D-Error' /
    +8 '---------------------------------------------------
put +6 desnum 6. 0 10. +6 fineff best12. +2 err best12.;
/*--------------------------Internal Iterations------------------------------*/
do iter = 1 to 8 until(converge); /* Iterate until convergence */
    /*---------Consider Replacing Each Alternative in the Design----------*/
    do desi = 1 to nobs; /* Process each alt in design */
        ind = ceil(desi / &nalts); /* Choice set number */
        ind = (ind - 1) # &nalts + 1 /* Choice set index vector */
                : ind # &nalts;
    besttry = des[ind,]; /* Store current choice set */
    des[ind,] = 0; /* Remove current choice set */
    do i = 0 to 100 until(d ## np > 1e-8);
        xpx = des'*des + i#i*fuzz; /* X`X, ridged if necessary */
        d = det(xpx); /* Determinant, if 0 then X'X will */
        end; /* be ridged to make it nonsingular */
    xpxinv = inv(xpx); /* Inverse (all but current set) */
    indcan = indvec[,ind]; /* Indvec for this choice set */
    alt = mod(desi-1, &nalts) + 1;/* Alternative number */
    /*-----------------Loop Over All of the Candidates------------------*/
    do candi = 1 to ncands; /* Consider each candidate */
        indcan[,alt] = candi; /* Update indvec for this candidate */
        tryit = cand[indcan,]; /* Candidate choice set */
        run center(tryit, /* Probability center */
            utils[indcan,]);
        currdet = d * /* Update determinant */
                det(imat + tryit * xpxinv * tryit`);
            /*------------Store Results When Efficiency Improves------------*/
            if currdet > maxdet then do;
                maxdet = currdet;/* Best determinant so far */
                indvec[,desi] = candi; /* Indvec of best design so far */
                besttry = tryit; /* Best choice set so far */
            end;
        end;
    des[ind,] = besttry; /* Update design with new choice set*/
    end;
    /*----------Evaluate Efficiency/Convergence, Report Results-----------*/
    neweff = maxdet ## np; /* Newest efficiency */
    converge = ((neweff - oldeff) / /* Less than 1/2 percent */
```

```
            max(oldeff,1e-8) < 0.005); /* improvement means convergence */
        oldeff = neweff; /* Store for use in next iteration */
        fineff = det(des' * des) ## np; /* Efficiency at end of iteration */
        if fineff <= 0 then err = .; else err = 1 / fineff;
        put +12 iter 10. +6 fineff best12. +2 err best12.;
        end;
    /*----Store Efficiency, Index of Efficient Design, Covariance Matrix----*/
    final = final // (shape(desnum || fineff, nobs, 2) || indvec`);
    cov = cov // (shape(desnum || fineff, ncol(des), 2) ||
        sweep(des' * des, 1 : ncol(des)));
    end;
    /*----------------------Write Results to SAS Data Sets-------------------------*/
create cov var({design effic &_trgind}); append from cov;
create results var({design effic index }); append from final;
quit;
/*-------------Store Actual Design Points, Using Indices from IML---------------*/
data results; set results; i=index; n=_n_; set candidat point=i; run;
proc sort; by descending effic n; run; /* Put most eff design first */
proc print; run; /* Print designs, best to worst */
```


Discrete Choice

Warren F. Kuhfeld

Abstract

Discrete choice modeling is a popular technique in marketing research, transportation, and other areas, used for understanding people's stated choice among alternatives. We will discuss designing a choice experiment, preparing the questionnaire, inputting and processing the data, performing the analysis, and interpreting the results.*

Introduction

This chapter shows you how to use the multinomial logit model (McFadden, 1974; Manski and McFadden, 1981; Louviere and Woodworth, 1983) to investigate consumer's stated choices. The multinomial logit model is an alternative to full-profile conjoint analysis and is extremely popular in marketing research (Louviere, 1991; Carson et. al., 1994). Discrete choice, using the multinomial logit model, is sometimes referred to as "choice-based conjoint." However, discrete choice uses a different model from full-profile conjoint analysis. Discrete choice applies a nonlinear model to aggregate choice data, whereas full-profile conjoint analysis applies a linear model to individual-level rating or ranking data.

Several examples are discussed. ${ }^{\dagger}$

- The candy example (page 96) is a first, very simple example that discusses the multinomial logit model, the input data, analysis, results, and computing probability of choice.
- The fabric softener example (page 108) is a small, somewhat more realistic example that discusses designing the choice experiment, randomization, generating the questionnaire, entering and processing the data, analysis, results, probability of choice, and custom questionnaires.
- The first vacation example (page 134) is a larger, symmetric example that discusses designing the choice experiment, blocks, randomization, generating the questionnaire, entering and processing the data, coding, and alternative-specific effects.
- The second vacation example (page 178) is a larger, asymmetric example that discusses designing the choice experiment, blocks, blocking an existing design, interactions, generating the questionnaire, generating artificial data, reading, processing, and analyzing the data, aggregating the data to save time and memory.

[^20]- The brand choice example (page 205) is a small example that discusses the processing of aggregate data, the mother logit model, and the likelihood function.
- The food product example (page 228) is a medium sized example that discusses asymmetry, coding, checking the design to ensure that all effects are estimable, availability cross effects, interactions, overnight design searches, modeling subject attributes, and designs when balance is of primary importance.
- The drug allocation example (page 284) is a small example that discusses data processing for studies where respondents potentially make multiple choices.
- The chair example (page 303) is a purely generic-attributes study, and it uses the \%ChoicEff macro to create experimental designs.
- The last example sections (page 323) contain miscellaneous examples including improving an existing design, augmenting a design with some choice sets are fixed in advance, and partial profiles. Also see page 566 for an example of a choice design with a complicated set of restrictions.

This chapter relies heavily on a number of macros and procedures.

- We use the \%MktRuns autocall macro to suggest design sizes. See page 600 for documentation.
- We use the \%MktEx autocall macro to generate most of our experimental designs. See page 546 for documentation.
- We use the \%MktEval autocall macro to evaluate our designs. See page 542 for documentation.
- We use the \%ChoicEff autocall macro to generate certain specialized choice designs. See page 481 for documentation.
- We use the autocall macros $\% \mathrm{MktRoll}, \% \mathrm{MktMerge}$, and $\% \mathrm{MktAllo}$ to prepare the data and design for analysis. See pages 595, 588, and 512 for documentation.
- We use PROC TRANSREG to do all of our design coding.
- We use the \%PhChoice autocall macro to customize our printed output. This macro uses PROC TEMPLATE and ODS (Output Delivery System) to customize the output from PROC PHREG, which fits the multinomial logit model. See page 606 for documentation.
- The \%MktBal macro can be used to make perfectly balanced designs. See page 515 for documentation.
- The \%MktBlock macro can be used to block a linear or choice design. See page 518 for documentation.
- The \%MktDups macro can be used to search for duplicate runs or choice sets. See page 534 for documentation.
- The \%MktLab macro can be used to assign different variable names, labels and levels to experimental designs and to add an intercept. See page 577 for documentation.
- The \%MktOrth macro can be used to list orthogonal experimental designs that the \%MktEx macro can produce. See page 590 for documentation.

All of these macros are distributed with SAS 9.1 as autocall macros (see page 479 for more information on autocall macros). If you are running SAS 9 or any earlier version of SAS, get the latest macros from the web or by writing Warren.Kuhfeld@sas.com. This chapter and the macros are available from the Technical Support web site at http://support.sas.com/techsup/tnote/tnote_stat.html\#market .

Preliminaries

This section defines some design terms that we will use later and shows how to customize the multinomial logit output listing.

Experimental Design Terminology

An experimental design is a plan for running an experiment. The factors of an experimental design are the columns or variables that have two or more fixed values, or levels. The rows of a design are called runs and correspond to product profiles in a full-profile conjoint study or choice sets in a discrete choice study. Experiments are performed to study the effects of the factor levels on the dependent or response variable. In a discrete-choice study, the factors are the attributes of the hypothetical products or services, and the response is choice. For example, the following table contains an experimental design in 8 runs with three factors, Brand 1 price, Brand 2 price, and Brand 3 price. Each factor has two levels, $\$ 1.99$ and $\$ 2.99$.

| Linear Design | | |
| :---: | :---: | :---: |
| For a Choice Model | | |
| Brand 1 Brand 2 Brand3
 Price Price Price
 1.99 1.99 1.99
 1.99 1.99 2.99
 1.99 2.99 1.99
 1.99 2.99 2.99
 2.99 1.99 1.99
 2.99 1.99 2.99
 2.99 2.99 1.99
 2.99 2.99 2.99 | | |

This is an example of a full-factorial design. It consists of all possible combinations of the levels of the factors ($2^{3}=2 \times 2 \times 2=8$ runs). Full-factorial designs allow you to estimate both main effects and interactions. A main effect is a simple effect, such as a price or brand effect. In a main-effects model, for example, the brand effect is the same at the different prices and the price effect is the same for the different brands. Interactions involve two or more factors, such as a brand by price interaction. In a model with interactions, for example, brand preference is different at the different prices and the price effect is different for the different brands. In Figure 1, there is a main effect for price, and utility increases by one when price goes from $\$ 2.99$ to $\$ 1.99$ for all brands. Similarly, the change in utility from Brand 1 to Brand 2 to Brand 3 does not depend on price. In contrast, in there are interactions in Figure 2, so the price effect is different depending on brand, and the brand effect is different depending on price.

In a full-factorial design, all main effects, all two-way interactions, and all higher-order interactions are estimable and uncorrelated. The problem with a full-factorial design is that, for most practical situations, it is too cost-prohibitive and tedious to have subjects consider all possible combinations. For example, with five factors, two at four levels and three at five levels (denoted $4^{2} 5^{3}$), there are $4 \times 4 \times 5 \times 5 \times 5=2000$ combinations in the full-factorial design. For this reason, researchers often use fractional-factorial designs, which have fewer runs than full-factorial designs. The price of having fewer runs is that some effects become confounded. Two effects are confounded or aliased when they

Main-Effects Model

Figure 1

Main Effects and Interactions

are not distinguishable from each other. This means that lower-order effects such as main effects or two-way interactions may be aliased with higher order interactions in most of our designs. We estimate lower-order effects by assuming that higher-order effects are zero or negligible. See page 246 for an example of aliasing.

An orthogonal array is an experimental design in which all estimable effects are uncorrelated. Orthogonal arrays are categorized by their resolution. The resolution identifies which effects, possibly including interactions, are estimable. For example, for resolution III designs, all main effects are estimable free of each other, but some of them are confounded with two-factor interactions. For resolution V designs, all main effects and two-factor interactions are estimable free of each other. More generally, if resolution (r) is odd, then effects of order $e=(r-1) / 2$ or less are estimable free of each other. However, at least some of the effects of order e are confounded with interactions of order $e+1$. If r is even, then effects of order $e=(r-2) / 2$ are estimable free of each other and are also free of interactions of order $e+1$. Higher resolutions require larger designs. Orthogonal arrays come in specific numbers of runs (such as $16,18,20,24,27,28, \ldots)$ for specific numbers of factors with specific numbers of levels. Resolution III orthogonal arrays are frequently used in marketing research.

When each level occurs equally often within each factor the design is said to be balanced. When every pair of levels occurs equally often across all pairs of factor, the design is said to be orthogonal. Another way in which a design can be orthogonal is when the frequencies for level pairs are proportional instead of equal. For example, with 2 two-level factors, an orthogonal design could have pair frequencies proportional to $2,4,4,8$. Such a design will not be balanced - one level will occur twice as often as the other.

An orthogonal array is both balanced and orthogonal, and hence 100% efficient and optimal. Efficiency, which is explained in the next section, is a measure of the goodness of the experimental design. The term "orthogonal array," as it is sometimes used in practice, is imprecise. It is correctly used to refer to designs that are both orthogonal and balanced, and hence optimal. The term is sometimes also used to refer to designs that are orthogonal but not balanced, and hence not 100% efficient and sometimes not even optimal. Imbalance is a generalized form of nonorthogonality. In a design that is not balanced,
the intercept is not orthogonal to the unbalanced factors. Imbalance increases the variances of the parameter estimates and decreases efficiency.

Experimental Design Efficiency

The goodness or efficiency of an experimental design can be quantified. Common measures of the efficiency of an $\left(N_{D} \times p\right)$ design matrix \mathbf{X} are based on the information matrix $\mathbf{X}^{\prime} \mathbf{X}$. The variancecovariance matrix of the vector of parameter estimates $\hat{\boldsymbol{\beta}}$ in a least-squares analysis is proportional to $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$. An efficient design will have a "small" variance matrix, and the eigenvalues of $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$ provide measures of its "size." The two most prominent efficiency measures are based on quantifying the idea of matrix size by averaging (in various ways) the eigenvalues or variances. A-efficiency is a function of the arithmetic mean of the eigenvalues, which is also the arithmetic mean of the variances and is given by trace $\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right) / p$. (The trace is the sum of the diagonal elements of a matrix, which is the sum of the eigenvalues.) D-efficiency is a function of the geometric mean of the eigenvalues, which is given by $\left|\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right|^{1 / p}$. (The determinant, $\left|\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right|$, is the product of the eigenvalues of $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$.) A third common efficiency measure, G-efficiency is based on σ_{M}, the maximum standard error for prediction over the candidate set. All three of these criteria are convex functions of the eigenvalues of $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$ and hence are usually highly correlated.

For all three criteria, if a balanced and orthogonal design exists, then it has optimum efficiency; conversely, the more efficient a design is, the more it tends toward balance and orthogonality. A design is balanced and orthogonal when $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$ is diagonal, $\frac{1}{N_{D}} \mathbf{I}$, for a suitably coded \mathbf{X}. A design is orthogonal when the submatrix of $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$, excluding the row and column for the intercept, is diagonal; there may be off-diagonal nonzeros for the intercept. A design is balanced when all off-diagonal elements in the intercept row and column are zero.

These measures of efficiency can be scaled to range from 0 to 100 (see page 91 for the orthogonal coding of \mathbf{X} that must be used with these formulas):

$$
\begin{aligned}
& A \text {-efficiency }=100 \times \frac{1}{N_{D} \operatorname{trace}\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right) / p} \\
& D \text {-efficiency }=100 \times \frac{1}{N_{D}\left|\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right|^{1 / p}} \\
& G \text {-efficiency }=100 \times \frac{\sqrt{p / N_{D}}}{\sigma_{M}}
\end{aligned}
$$

These efficiencies measure the goodness of the design relative to hypothetical orthogonal designs that may not exist, so they are not useful as absolute measures of design efficiency. Instead, they should be used relatively, to compare one design to another for the same situation. Designs with efficiencies that are not near 100 may be perfectly satisfactory. Throughout this book, we will use the \%MktEx macro to find good, efficient experimental designs.

Conjoint, Linear, and Choice Designs

Consider a simple example of three brands each at two prices. We could use linear model theory to create a design for a full-profile conjoint study. The full-profile conjoint design has two factors, one for brand and one for price. For the same brands and prices, we could instead use linear model theory to create a linear design from which we could construct a choice design to use in a discrete choice study. The conjoint and linear designs are shown next.

| Full-Profile
 Conjoint Design | |
| :---: | :---: |
| Brand | Price |
| 1 | 1.99 |
| 1 | 2.99 |
| 2 | 1.99 |
| 2 | 2.99 |
| 3 | 1.99 |
| 3 | 2.99 |

Linear Design
Used to Make a Choice Design

| Brand 1 | Brand 2 | Brand3 |
| :---: | :---: | :---: |
| Price | Price | Price |
| 1.99 | 1.99 | 1.99 |
| 1.99 | 2.99 | 2.99 |
| 2.99 | 1.99 | 2.99 |
| 2.99 | 2.99 | 1.99 |

The linear design for a pricing study with three brands has three factors (Brand 1 Price, Brand 2 Price, and Brand 3 Price) and one row for each choice set. More generally, the linear design has one factor for each attribute of each alternative (or brand), and brand is not a factor in the linear design. Each brand is a "bin" into which its factors are collected. Before we fit the choice model, we will construct a choice design from the linear design and code the choice design. See the three following tables.

The linear design has one row per choice set. The choice design has three rows for each choice set. The linear design and the choice design contain different arrangements of the exact same information. In the linear design, brand is a bin into which its factors are collected (in this case one factor per brand). In the choice design, brand and price are both factors, because the design has been rearranged from one row per choice set to one row per alternative per choice set. For this problem, with only one attribute per brand, the first row of the choice design matrix corresponds to the first value in the linear design matrix, Brand 1 at $\$ 1.99$. The second row of the choice design matrix corresponds to the second value in the linear design matrix, Brand 2 at $\$ 1.99$. The third row of the choice design matrix corresponds to the third value in the linear design matrix, Brand 3 at $\$ 1.99$, and so on.

A design is coded by replacing each factor with one more columns of indicator variables (which are often referred to as "dummy variables") or other codings. In this example, a brand factor is replaced by the three binary variables. We will go through how to construct and code linear and choice designs many times in the examples using a number of different codings. For now, just notice that the conjoint design is different from the linear design, which is different from the choice design. They aren't even the same size! Also note that we cannot use linear efficiency criteria to directly construct the choice design bypassing the linear design step. Usually, we will use the \%MktEx macro to make a linear design, the $\% \mathrm{MktRoll}$ macro to convert it into a choice design, and the TRANSREG procedure to code the choice design.

Efficiency of a Choice Design

All of the efficiency theory discussed so far concerned linear models. In linear models, the parameter estimates $\hat{\boldsymbol{\beta}}$ have variances proportional to $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$. In contrast, the variances of the parameter estimates in the discrete choice multinomial logit model are given by
$V(\hat{\beta})=-\left[\frac{\partial^{2} \ell(\beta)}{\partial \beta^{2}}\right]^{-1}=\left[\sum_{k=1}^{n} N\left[\frac{\sum_{j=1}^{m} \exp \left(x_{j}^{\prime} \beta\right) x_{j} x_{j}^{\prime}}{\sum_{j=1}^{m} \exp \left(x_{j}^{\prime} \beta\right)}-\frac{\left(\sum_{j=1}^{m} \exp \left(x_{j}^{\prime} \beta\right) x_{j}\right)\left(\sum_{j=1}^{m} \exp \left(x_{j}^{\prime} \beta\right) x_{j}\right)^{\prime}}{\left(\Sigma_{j=1}^{m} \exp \left(x_{j}^{\prime} \beta\right)\right)^{2}}\right]\right]^{-1}$
where

$$
\ell(\beta)=\Pi_{k=1}^{n} \frac{\exp \left(\left(\sum_{j=1}^{m} f_{j} x_{j}^{\prime}\right) \beta\right)}{\left(\sum_{j=1}^{m} \exp \left(x_{j}^{\prime} \beta\right)\right)^{N}}
$$

$$
\begin{aligned}
& m-\text { brands } \\
& n-\text { choice sets } \\
& N-\text { people }
\end{aligned}
$$

In the choice model, ideally we would like to pick x's that make this variance matrix "small." Unfortunately, we cannot do this unless we know $\boldsymbol{\beta}$, and if we knew $\boldsymbol{\beta}$, we would not need to do the experiment. However, in the chair example on pages 303-322, we will see how to make an efficient choice design when we are willing to make assumptions about $\boldsymbol{\beta}$.

Because we do not know $\boldsymbol{\beta}$, we will often create experimental designs for choice models using efficiency criteria for linear models. We make a good design for a linear model by picking \mathbf{x} 's that minimize functions of $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$ then convert our linear design into a choice design. Certain assumptions must be made before applying ordinary general-linear-model theory to problems in marketing research. The usual goal in linear modeling is to estimate parameters and test hypotheses about those parameters. Typically, independence and normality are assumed. In full-profile conjoint analysis, each subject rates all products and separate ordinary-least-squares analyses are run for each subject. This is not a standard general linear model; in particular, observations are not independent and normality cannot be assumed. Discrete choice models, which are nonlinear, are even more removed from the general linear model.

Marketing researchers have always made the critical assumption that designs that are good for general linear models are also good designs for conjoint analysis and discrete choice models. We also make this assumption. We will assume that an efficient design for a linear model is a good design for the multinomial logit model used in discrete choice studies. We assume that if we create the linear design (one row per choice set and all of the attributes of all of the alternatives comprise that row), and if we strive for linear-model efficiency (near balance and orthogonality), then we will have a good design for measuring the utility of each alternative and the contributions of the factors to that utility. When we construct choice designs in this way, our designs will have two nice properties. 1) Each attribute level will occur equally often (or at least nearly equally often) for each attribute of each alternative across all choice sets. 2) Each attribute will be independent of every other attribute (or at least nearly independent), both those in the current alternative and those in all of the other alternatives. The design techniques discussed in this book, based on the assumption that linear design efficiency is a good surrogate for choice design goodness, have been used quite successfully in the field for many years.

In most of the examples, we will use the \%MktEx macro to create a good linear design, from which we will construct our choice design. This seems to be a good safe strategy. It is a good strategy because it gives designs where all attributes, both within and between alternatives, are orthogonal or at least nearly so. It is safe in the sense that you have enough choice sets and collect the right information so that very complex models, including models with alternative-specific effects, availability effects, and cross effects, can be fit. However, it is good to remember that when you run the $\% \mathrm{MktEx}$ macro and you get an efficiency value, it corresponds to the linear design, not the choice design. It is a surrogate for the criterion of interest, the efficiency of the choice design, which is unknowable unless you know the parameters.

Canonical Correlations

We will use canonical correlations to evaluate nonorthogonal designs and the extent to which factors are correlated or not independent. To illustrate, consider a design with four three-level factors in 9 runs shown next along with its coding.

| Linear Design | | | | Coded Linear Design | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | x1 | | | x2 | | | x3 | | | x4 | | |
| x1 | x 2 | x3 | x4 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 |
| 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 |
| 1 | 2 | 3 | 3 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
| 1 | 3 | 2 | 2 | 1 | 0 | 0 | | 0 | 1 | | 1 | 0 | | | 0 |
| 2 | 1 | 2 | 3 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
| 2 | 2 | 1 | 2 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
| 2 | 3 | 3 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | | 0 | 0 |
| 3 | 1 | 3 | 2 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
| 3 | 2 | 2 | 1 | | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
| 3 | 3 | 1 | 3 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |

Each three-level factor can be coded with three columns that contains a one in the first column when the factor level is 1 and zeros in columns 2 and 3 , or a one in the second column when the factor level is 2 and zeros in columns 1 and 3 , or a one in the third column when the factor level is 3 and zeros in columns 1 and 2. Furthermore, a factor can be recoded by applying a coefficient vector $\boldsymbol{\alpha}^{\prime}=\left(\alpha_{1} \alpha_{2} \alpha_{3}\right)$ or $\boldsymbol{\beta}^{\prime}=\left(\beta_{1} \beta_{2} \beta_{3}\right)$ to a coded factor to create a single column. In other words, the original coding of (123) can be replaced with arbitrary ($\alpha_{1} \alpha_{2} \alpha_{3}$) or ($\beta_{1} \beta_{2} \beta_{3}$) If two factors are orthogonal, then for all choices of $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$, the simple correlation between recoded columns is zero. A canonical correlation shows the maximum correlation between two recoded factors that can be obtained with the optimal $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$. This design, 3^{4} in 9 runs is orthogonal so for all pairs of factors and all choices of $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$, the simple correlations between recoded factors will be zero. The canonical correlation between a factor and itself is 1.0 .

For nonorthogonal designs and designs with interactions, the canonical-correlation matrix is not a substitute for looking at the variance matrix discussed on pages 146, 191, and 556. It just provides a quick and more-compact picture of the correlations between the factors. The variance matrix is sensitive to the actual model specified and the actual coding. The canonical-correlation matrix just tells you if there is some correlation between the main effects. A matrix of canonical correlations provides a useful picture of the orthogonality or lack of orthogonality in a design. For example, this canonical-correlation matrix from the vacation example, page 144, shown next shows that a design with 16 factors that is mostly orthogonal, but x13-x15 are not orthogonal to each other. However, with $r^{2}=0.25^{2}=0.0625$, these factors are nearly independent.

| | x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | x9 | x10 | x11 | x12 | x13 | x14 | x 15 | x16 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| x1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| x2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| x3 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| x4 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| x5 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| x6 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| x7 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| x8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| x9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| x10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| x11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| x12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| x13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0.25 | 0.25 | 0 |
| x14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.25 | 1 | 0.25 | 0 |
| x 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.25 | 0.25 | 1 | 0 |
| x16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |

Coding, Efficiency, Balance, and Orthogonality

We mentioned on page 86 that we use a special orthogonal coding of \mathbf{X} when computing design efficiency. This section shows that coding and other codings. Even if you gloss over the mathematical details, this section is informative, because it provides insights into coding and the meaning of 100% efficiency and less than 100% efficiency designs.

Here are nonorthogonal less than-full-rank binary or indicator codings for two-level through five-level factors. We will use these codings in many places throughout the examples.

| Two-Level | | |
| :--- | :--- | :--- |
| a | 1 | 0 |
| b | 0 | 1 |

Three-Level

| a | 1 | 0 | 0 |
| :---: | :---: | :---: | :---: |
| b | 0 | 1 | 0 |
| c | 0 | 0 | 1 |

| Four-Level | | | |
| :---: | :---: | :---: | :---: |
| a | 1 | 0 | 0 |
| 0 | | | |
| b | 0 | 1 | 0 |
| c | 0 | 0 | 1 |
| 0 | | | |
| d | 0 | 0 | 0 |
| 1 | | | |

| Five-Level | | | | |
| :---: | :---: | :---: | :---: | :---: |
| a | 1 | 0 | 0 | 0 |
| b | 0 | 1 | 0 | 0 |
| c | 0 | 0 | 1 | 0 |
| 0 | | | | |
| d | 0 | 0 | 0 | 1 |
| e | 0 | | | |
| e | 0 | 0 | 0 | 0 |
| 1 | | | | |

Here are nonorthogonal full-rank binary or indicator codings for two-level through five-level factors. We will use these codings in many places throughout the examples.

| Two-Level |
| :--- |
| a 1
 b 0 |

Three-Level

| a | 1 | 0 |
| :--- | :--- | :--- |
| b | 0 | 1 |
| c | 0 | 0 |

| Four-Level | | | |
| :--- | :--- | :--- | :--- |
| a | 1 | 0 | 0 |
| b | 0 | 1 | 0 |
| c | 0 | 0 | 1 |
| d | 0 | 0 | 0 |

Here are nonorthogonal effects codings for two-level ${ }^{\ddagger}$ through five-level factors. We will use these codings in many places throughout the examples.

| Two-Level | |
| :--- | ---: |
| a | 1 |
| b | -1 |

| Three-Level | | |
| :---: | ---: | ---: |
| a | 1 | 0 |
| b | 0 | 1 |
| c | -1 | -1 |

| Four-Level | | | |
| :---: | ---: | ---: | ---: |
| a | 1 | 0 | 0 |
| b | 0 | 1 | 0 |
| c | 0 | 0 | 1 |
| d | -1 | -1 | -1 |

| Five-Level | | | | |
| :---: | :---: | ---: | ---: | ---: |
| a | 1 | 0 | 0 | 0 |
| b | 0 | 1 | 0 | 0 |
| c | 0 | 0 | 1 | 0 |
| d | 0 | 0 | 0 | 1 |
| e | -1 | -1 | -1 | -1 |

Here are the orthogonal codings for two-level through five-level factors that the software uses internally for design evaluation.

| Two-Level | |
| :--- | ---: |
| a | 1.00 |
| b | -1.00 |

| Three-Level | | |
| :---: | :---: | :---: |
| a | 1.22 | -0.71 |
| b | 0 | 1.41 |
| c | -1.22 | -0.71 |

| Four-Level | | | |
| ---: | ---: | ---: | ---: |
| a | 1.41 | -0.82 | -0.58 |
| b | 0 | 1.63 | -0.58 |
| c | 0 | 0 | 1.73 |
| d | -1.41 | -0.82 | -0.58 |

| Five-Level | | | | |
| :--- | ---: | ---: | ---: | ---: |
| a | 1.58 | -0.91 | -0.65 | -0.50 |
| b | 0 | 1.83 | -0.65 | -0.50 |
| c | 0 | 0 | 1.94 | -0.50 |
| d | 0 | 0 | 0 | 2.00 |
| e | -1.58 | -0.91 | -0.65 | -0.50 |

Notice that the sum of squares for the orthogonal coding of the two-level factor is 2 ; for all of the columns of the three-level factor, the sums of squares are 3 ; for the four-level factor, the sums of squares are all 4 ; and for the five-level factor, the sums of squares are all 5 . Also notice that each column within a factor is orthogonal to all of the other columns - the sum of cross products is zero. For example, in the last two columns of the five-level factor, $-0.65 \times-0.5+-0.65 \times-0.5+1.94 \times-.05+0 \times 2+-0.65 \times-0.5=0$. Finally notice that the codings for each level form a contrast - the $i t h$ level versus all of the preceding levels and the last level.

Recall that our measures of design efficiency are scaled to range from 0 to 100.

$$
\begin{aligned}
A \text {-efficiency } & =100 \times \frac{1}{N_{D} \operatorname{trace}\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right) / p} \\
D \text {-efficiency } & =100 \times \frac{1}{N_{D}\left|\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right|^{1 / p}}
\end{aligned}
$$

When computing D-efficiency or A-efficiency, we code \mathbf{X} so that when the design is orthogonal and balanced, $\mathbf{X}^{\prime} \mathbf{X}=N_{D} \mathbf{I}$ where \mathbf{I} is a $p \times p$ identity matrix. When our design is orthogonal and balanced, $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}=\frac{1}{N_{D}} \mathbf{I}$, and trace $\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right) / p=\left|\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right|^{1 / p}=1 / N_{D}$. In this case, the two denominator terms cancel and efficiency is 100%. As the average variance increases, efficiency decreases.

This example shows the coding of a 2×6 full-factorial design in 12 runs using a coding function that requires that the factors levels are consecutive positive integers beginning with one and ending with m for an m-level factor. Note that the IML operator \# performs ordinary (scalar) multiplication, and \#\# performs exponentiation.

[^21]```
proc iml; /* orthogonal coding, levels must be 1, 2, ..., m */
 reset fuzz;
 start orthogcode(x);
 levels \(=\max (\mathrm{x})\);
 xstar \(=\) shape \((x, \text { levels }-1, \operatorname{nrow}(x))^{\prime} ;\)
 \(j=\) shape (1 : (levels - 1), nrow \((x)\), levels - 1);
 \(r=\operatorname{sqrt}(l e v e l s\) \# (x / (x + 1))) \# (j = xstar) -
 sqrt(levels / (j \# (j + 1))) \# (j > xstar | xstar = levels);
 return(r);
 finish;
 design \(=(1: 2)^{\prime} @ j(6,1,1)| |\{1,1\} @(1: 6)^{\prime} ;\)
 \(\mathrm{x}=\mathrm{j}(12,1,1)| | \operatorname{orthogcode(design[,1])}| | \operatorname{orthogcode(design[,2]);~}\)
 print design[format=1.] , ' \(x\) [format=5.2 colname=\{'Int' 'Two' 'Six'\}];
 \(x p x=x^{\prime} * x ; \quad\) print \(x p x[f o r m a t=b e s t 5\).
 inv \(=\operatorname{inv}(x p x) ; \quad\) print inv[format=best5.];
 d_eff \(=100 /(\operatorname{nrow}(x)\) \# det(inv) \#\# (1 / ncol(inv)));
 a_eff \(=100 /(n r o w(x)\) \# trace(inv) / ncol(inv));
 print 'D-efficiency =' d_eff[format=6.2]
 , A-efficiency =' a_eff[format=6.2];
```

X							
DESIGN	Int	Two	Six				
11	1.00	1.00	1.73	-1.00	-0.71	-0. 55	-0.45
12	1.00	1.00	0.00	2.00	-0.71	-0.55	-0.45
13	1.00	1.00	0.00	0.00	2.12	-0.55	-0.45
14	1.00	1.00	0.00	0.00	0.00	2.19	-0.45
15	1.00	1.00	0.00	0.00	0.00	0.00	2.24
16	1.00	1.00	-1.73	-1.00	-0.71	-0.55	-0.45
21	1.00	-1.00	1.73	-1.00	-0.71	-0.55	-0.45
22	1.00	-1.00	0.00	2.00	-0.71	-0.55	-0.45
23	1.00	-1.00	0.00	0.00	2.12	-0.55	-0.45
24	1.00	-1.00	0.00	0.00	0.00	2.19	-0.45
25	1.00	-1.00	0.00	0.00	0.00	0.00	2.24
26	1.00	-1.00	-1.73	-1.00	-0.71	-0.55	-0.45

XPX

12	0	0	0	0	0	0
0	12	0	0	0	0	0
0	0	12	0	0	0	0
0	0	0	12	0	0	0
0	0	0	0	12	0	0
0	0	0	0	0	12	0
0	0	0	0	0	0	12


0.083	0	0	0	0	0	0
0	0.083	0	0	0	0	0
0	0	0.083	0	0	0	0
0	0	0	0.083	0	0	0
0	0	0	0	0.083	0	0
0	0	0	0	0	0.083	0
0	0	0	0	0	0	0.083
		D_EFF				
D-efficiency	$=100.00$	A-efficiency $=100.00$				

With this orthogonal and balanced design, $\mathbf{X}^{\prime} \mathbf{X}=N_{D} \mathbf{I}=12 \mathbf{I}$, which means $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}=\frac{1}{N_{D}} \mathbf{I}=\frac{1}{12} \mathbf{I}$, and $D$-efficiency $=100 \%$.

With a nonorthogonal design, for example with the first 10 rows of the $2 \times 6$ full-factorial design, $D$-efficiency and $A$-efficiency are less than $100 \%$.

```
design = design[1:10,];
x = j(10, 1, 1) || orthogcode(design[,1]) || orthogcode(design[,2]);
inv = inv(x' * x);
d_eff = 100 / (nrow(x) # det(inv) ## (1 / ncol(inv)));
a_eff = 100 / (nrow(x) # trace(inv) / ncol(inv));
print 'D-efficiency =' d_eff[format=6.2]
 , A-efficiency =' a_eff[format=6.2];
quit;
```

D_EFF
D-efficiency $=$
$92.90 \quad$ A-efficiency $=84.00$

In this case, $\left|\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right|^{1 / p}$ and trace $\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right) / p$ are multiplied in the denominator of the efficiency formulas by $\frac{1}{N_{D}}=\frac{1}{10}$. If an orthogonal and balanced design were available for this problem, then $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$ would equal $\frac{1}{N_{D}} \mathbf{I}=\frac{1}{10} \mathbf{I}$. Since an orthogonal and balanced design is not possible ( 6 does not divide 10), both $D$-efficiency and $A$-efficiency will be less than $100 \%$, even with the optimal design. A main-effects, orthogonal and balanced design, with a variance matrix equal to $\frac{1}{N_{D}} \mathbf{I}$, is the standard by which $100 \%$ efficiency is gauged, even when we know such a design cannot exist. The standard is the average variance for the maximally efficient potentially hypothetical design, which is knowable, not the average variance for the optimal design, which for many practical problems we have no way of knowing.

For our purposes in this book, we will only consider experimental design with at least as many runs as parameters. A saturated or tight design has as many runs as there are parameters. The number of parameters in a main-effects model is 1 (for the intercept) plus the sum of the numbers of levels of all of the factors, minus the number of factors. Equivalently, since there are $m-1$ parameters in an $m$-level factor, the number of parameters is $1+\sum_{j=1}^{k}\left(m_{j}-1\right)$ for $k$ factors, each with $m_{j}$ levels.

If a main-effects design is orthogonal and balanced, then the design must be at least as large as the saturated design and the number of runs must be divisible by the number of levels of all the factors and by the products of the number of levels of all pairs of factors. For example, a $2 \times 2 \times 3 \times 3 \times 3$ design cannot be orthogonal and balanced unless the number of runs is divisible by 2 (twice because there are two 2 's), 3 (three times because there are three 3 's), $2 \times 2=4$ (once, because there is one pair of 2 's), $2 \times 3=6$ (six times, two 2's times three 3 's), and $3 \times 3=9$ (three times, three pairs of 3 's). If the design is orthogonal and balanced, then all of the divisions will work without a remainder. However, all of the divisions working is a necessary but not sufficient condition for the existence of an orthogonal and balanced design. For example, 45 is divisible by 3 and $3 \times 3=9$, but an orthogonal and balanced saturated design $3^{22}$ ( 22 three-level factors) in 45 runs does not exist.

## Customizing the Multinomial Logit Output

The multinomial logit model for discrete choice experiments is fit using the SAS/STAT procedure PHREG (proportional hazards regression), with the ties=breslow option. The likelihood function of the multinomial logit model has the same form as a survival analysis model fit by PROC PHREG. The output from PROC PHREG is primarily designed for survival analysis studies. Before we fit the multinomial logit model with PROC PHREG, we can customize the output to make it more appropriate for choice experiments. We will use the autocall macro \%PhChoice macro. See page 479 for information on autocall macros. You can run the following macro to customize PROC PHREG output.

```
%phchoice(on)
```

The macro uses PROC TEMPLATE and ODS (Output Delivery System) to customize the output from PROC PHREG. Running this code edits the templates and stores copies in sasuser. These changes will remain in effect until you delete them, so typically, you only have to run this macro once. Note that these changes assume that each effect in the choice model has a variable label associated with it, so there is no need to print variable names. If you are coding with PROC TRANSREG, this will usually be the case. To return to the default output from PROC PHREG, run the following macro.

```
%phchoice(off)
```

See page 606 for more information on the \%PhChoice macro.

## Candy Example

We begin with a very simple example. In this example, we will discuss the multinomial logit model, data input and processing, analysis, results, interpretation, and probability of choice. In this example, each of ten subjects was presented with eight different chocolate candies and asked to choose one. The eight candies consist of the $2^{3}$ combinations of dark or milk chocolate, soft or chewy center, and nuts or no nuts. Each subject saw all eight candies and made one choice. Experimental choice data such as these are typically analyzed with a multinomial logit model.

## The Multinomial Logit Model

The multinomial logit model assumes that the probability that an individual will choose one of the $m$ alternatives, $c_{i}$, from choice set $C$ is

$$
p\left(c_{i} \mid C\right)=\frac{\exp \left(U\left(c_{i}\right)\right)}{\sum_{j=1}^{m} \exp \left(U\left(c_{j}\right)\right)}=\frac{\exp \left(\mathbf{x}_{i} \boldsymbol{\beta}\right)}{\sum_{j=1}^{m} \exp \left(\mathbf{x}_{j} \boldsymbol{\beta}\right)}
$$

where $\mathbf{x}_{i}$ is a vector of alternative attributes and $\boldsymbol{\beta}$ is a vector of unknown parameters. $U\left(c_{i}\right)=\mathbf{x}_{i} \boldsymbol{\beta}$ is the utility for alternative $c_{i}$, which is a linear function of the attributes. The probability that an individual will choose one of the $m$ alternatives, $c_{i}$, from choice set $C$ is the exponential of the utility of the alternative divided by the sum of all of the exponentiated utilities.

There are $m=8$ attribute vectors in this example, one for each alternative. Let $\mathbf{x}=($ Dark $/$ Milk, Soft/Chewy, Nuts/No Nuts) where Dark/Milk $=(1=$ Dark, $0=$ Milk $)$, Soft/Chewy $=(1=$ Soft, $0=$ Chewy $)$, Nuts/No Nuts $=(1=$ Nuts, $0=$ No Nuts $)$. The eight attribute vectors are

$$
\begin{aligned}
& \mathbf{x}_{1}=\left(\begin{array}{lll}
0 & 0 & 0
\end{array}\right) \quad \text { (Milk, Chewy, No Nuts) } \\
& \mathbf{x}_{2}=\left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right) \quad \text { (Milk, Chewy, Nuts ) } \\
& \mathbf{x}_{3}=\left(\begin{array}{lll}
0 & 1 & 0
\end{array}\right) \quad \text { (Milk, Soft, No Nuts) } \\
& \mathbf{x}_{4}=\left(\begin{array}{lll}
0 & 1 & 1
\end{array}\right) \quad \text { (Milk, Soft, Nuts ) } \\
& \mathrm{x}_{5}=\left(\begin{array}{ll}
1 & 0
\end{array} 0\right) \quad \text { (Dark, Chewy, No Nuts) } \\
& \mathrm{x}_{6}=\left(\begin{array}{lll}
1 & 0 & 1
\end{array}\right) \quad \text { (Dark, Chewy, Nuts ) } \\
& \mathrm{x}_{7}=\left(\begin{array}{lll}
1 & 1 & 0
\end{array}\right) \quad \text { (Dark, Soft, No Nuts) } \\
& \mathbf{x}_{8}=\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right) \quad \text { (Dark, Soft, Nuts ) }
\end{aligned}
$$

Say, hypothetically that $\boldsymbol{\beta}^{\prime}=\left(\begin{array}{lll}4 & -2 & 1\end{array}\right)$. That is, the part-worth utility for dark chocolate is 4 , the part-worth utility for soft center is -2 , and the part-worth utility for nuts is 1 . The utility for each of the combinations, $\mathbf{x}_{i} \boldsymbol{\beta}$, would be as follows.

U(Milk, Chewy, No Nuts)	$=0 \times 4+0 \times-2+0 \times 1=0$
U(Milk, Chewy, Nuts )	$=0 \times 4+0 \times-2+1 \times 1=$
U(Milk, Soft, No Nuts)	$=0 \times 4+1 \times-2+0 \times 1=$
U(Milk, Soft, Nuts )	$=0 \times 4+2$
U(Dark, Chewy, No Nuts)	$=1 \times 4+1 \times-2+1 \times 1=$
U(Dark, Chewy, Nuts )	$=1 \times 4+0 \times-2+0 \times 1$
U(Dark, Soft, No Nuts)	$=1 \times 4+1 \times-2+0 \times 1=4$
U(Dark, Soft, Nuts )	$=1 \times 4+1 \times-2+1 \times 1=$

The denominator of the probability formula, $\sum_{j=1}^{m} \exp \left(\mathbf{x}_{j} \boldsymbol{\beta}\right)$, is $\exp (0)+\exp (1)+\exp (-2)+\exp (-1)+$ $\exp (4)+\exp (5)+\exp (2)+\exp (3)=234.707$. The probability that each alternative is chosen, $\exp \left(\mathbf{x}_{i} \boldsymbol{\beta}\right) / \sum_{j=1}^{m} \exp \left(\mathbf{x}_{j} \boldsymbol{\beta}\right)$, is

p(Milk, Chewy, No Nuts)	$=\exp (0) / 234.707=0.004$
p(Milk, Chewy, Nuts )	$=\exp (1) / 234.707=0.012$
p(Milk, Soft, No Nuts)	$=\exp (-2) / 234.707=0.001$
p(Milk, Soft, Nuts )	$=\exp (-1) / 234.707=0.002$
$p($ Dark, Chewy, No Nuts)	$=\exp (4) / 234.707=0.233$
p(Dark, Chewy, Nuts )	$=\exp (5) / 234.707=0.632$
p(Dark, Soft, No Nuts)	$=\exp (2) / 234.707=0.031$
p(Dark, Soft, Nuts )	$=\exp (3) / 234.707=0.086$

Note that even combinations with a negative or zero utility have a nonzero probability of choice. Also note that adding a constant to the utilities will not change the probability of choice, however multiplying by a constant will.

Probability of choice is a nonlinear and increasing function of utility. The following plot shows the relationship between utility and probability of choice for this hypothetical situation.

```
data x;
 do u = -2 to 5 by 0.1;
 p = exp(u) / 234.707;
 output;
 end;
 run;
proc gplot;
 title h=1 'Probability of Choice as a Function of Utility';
 plot p * u;
 symbol1 i=join;
 run; quit;
```

Probability of Choice as a Function of Utility


This plot shows the function $\exp (-2)$ to $\exp (5)$, scaled into the range zero to one, the range of probability values. For the small negative utilities, the probability of choice is essentially zero. As utility increases beyond two, the function starts rapidly increasing.
In this example, the chosen alternatives are $\mathbf{x}_{5}, \mathbf{x}_{6}, \mathbf{x}_{7}, \mathbf{x}_{5}, \mathbf{x}_{2}, \mathbf{x}_{6}, \mathbf{x}_{2}, \mathbf{x}_{6}, \mathbf{x}_{6}, \mathbf{x}_{6}$. Alternative $\mathbf{x}_{2}$ was chosen 2 times, $\mathbf{x}_{5}$ was chosen 2 times, $\mathbf{x}_{6}$ was chosen 5 times, and $\mathbf{x}_{7}$ was chosen 1 time. The choice model likelihood for these data is the product of ten terms, one for each choice set for each subject. Each term consists of the probability that the chosen alternative is chosen. For each choice set, the utilities for all of the alternatives enter into the denominator, and the utility for the chosen alternative enters into the numerator. The choice model likelihood for these data is

$$
\begin{aligned}
\mathcal{L}_{C}= & \frac{\exp \left(\mathbf{x}_{5} \boldsymbol{\beta}\right)}{\left[\sum_{j=1}^{8} \exp \left(\mathbf{x}_{j} \boldsymbol{\beta}\right)\right]} \times \frac{\exp \left(\mathbf{x}_{6} \boldsymbol{\beta}\right)}{\left[\sum_{j=1}^{8} \exp \left(\mathbf{x}_{j} \boldsymbol{\beta}\right)\right]} \times \frac{\exp \left(\mathbf{x}_{7} \boldsymbol{\beta}\right)}{\left[\sum_{j=1}^{8} \exp \left(\mathbf{x}_{j} \boldsymbol{\beta}\right)\right]} \times \frac{\exp \left(\mathbf{x}_{5} \boldsymbol{\beta}\right)}{\left[\sum_{j=1}^{8} \exp \left(\mathbf{x}_{j} \boldsymbol{\beta}\right)\right]} \times \\
& \frac{\exp \left(\mathbf{x}_{2} \boldsymbol{\beta}\right)}{\left[\sum_{j=1}^{8} \exp \left(\mathbf{x}_{j} \boldsymbol{\beta}\right)\right]} \times \frac{\exp \left(\mathbf{x}_{6} \boldsymbol{\beta}\right)}{\left[\sum_{j=1}^{8} \exp \left(\mathbf{x}_{j} \boldsymbol{\beta}\right)\right]} \times \frac{\exp \left(\mathbf{x}_{2} \boldsymbol{\beta}\right)}{\left[\sum_{j=1}^{8} \exp \left(\mathbf{x}_{j} \boldsymbol{\beta}\right)\right]} \times \frac{\exp \left(\mathbf{x}_{6} \boldsymbol{\beta}\right)}{\left[\sum_{j=1}^{8} \exp \left(\mathbf{x}_{j} \boldsymbol{\beta}\right)\right]} \times \\
& \frac{\exp \left(\mathbf{x}_{6} \boldsymbol{\beta}\right)}{\left[\sum_{j=1}^{8} \exp \left(\mathbf{x}_{j} \boldsymbol{\beta}\right)\right]} \times \frac{\exp \left(\mathbf{x}_{6} \boldsymbol{\beta}\right)}{\left[\sum_{j=1}^{8} \exp \left(\mathbf{x}_{j} \boldsymbol{\beta}\right)\right]} \\
= & \frac{\exp \left(\left(2 \mathbf{x}_{2}+2 \mathbf{x}_{5}+5 \mathbf{x}_{6}+\mathbf{x}_{7}\right) \boldsymbol{\beta}\right)}{\left[\sum_{j=1}^{8} \exp \left(\mathbf{x}_{j} \boldsymbol{\beta}\right)\right]^{10}}
\end{aligned}
$$

## The Input Data

The data set consists of one observation for each alternative of each choice set for each subject. (A typical choice study has more than one choice set per person. This first example only has one choice set to help keep it simple.) All of the chosen and unchosen alternatives must appear in the data set. The data set must contain variables that identify the subject, the choice set, which alternative was chosen, and the set of alternatives from which it was chosen. In this example, the data set contains $10 \times 1 \times 8=80$ observations: 10 subjects each saw 1 choice set with 8 alternatives.

Typically, two variables are used to identify the choice sets, subject ID and choice set within subject. In this simple case where each subject only made one choice, the choice set variable is not necessary. However, we use it here to illustrate the general case. The variable Subj is the subject number, and Set identifies the choice set within subject. The chosen alternative is indicated by $c=1$, which means first choice. All second and subsequent choices are unobserved, so the unchosen alternatives are indicated by $c=2$, which means that all we know is that they would have been chosen after the first choice. Both the chosen and unchosen alternatives must appear in the input data set since both are needed to construct the likelihood function. The $\mathrm{c}=2$ observations enter into the denominator of the likelihood function, and the $\mathrm{c}=1$ observations enter into both the numerator and the denominator of the likelihood function. In this input DATA step, the data for four alternatives appear on one line, and all of the data for a choice set of eight alternatives appear on two lines. The DATA step shows data entry in the way that requires the fewest programming statements. Each execution of the input statement reads information about one alternative. The @@ in the input statement specifies that SAS should not automatically go to a new input data set line when it reads the next row of data. This specification is needed here because each line in the input data set contains the data for four output data set rows. The data from the first two subjects is printed.

```
title 'Choice of Chocolate Candies';
data chocs;
 input Subj c Dark Soft Nuts @@;
 Set = 1;
 datalines;
 12000 120011 12010 1 2 0 1 1
 1111000 12 1 0 1 1 2 11 1 0 1 2 1 1 1
 22000 2 2 0 0 1 2 2 0 1 0 2 2 0 1 1
 2 2 1000 2 111011 2 2 1110 2 2 11 1 1
 320000 320011 320110 3 2 0 1 1
 32100 32101 311110 3 21111
 42000 42001 42010 420 1 1
 41100 42 101 4 4 2 11 0 4 2 1 1 1
 5 2 0 0 0 5 1 0 0 1 5 2 0 1 0 5 2 0 1 1
 5 2 100 0 5 2 1 0 1 5 5 1 1 0 5 2 1 1 1
 62000 620011 6 2 0 1 0 6 2 0 1 1
 62100 611101 6 21110 6 21111
 720000 7 1 0 0 1 7 2 2 0 1 0 7 2 0 1 1
 721000 7 2 1 0 1 7 2 1 1 0 7 2 1 1 1
 82000 8 20011882010 8 2 0 1 1
 82100 811 0 1 8 2 1 1 0 8 2 1 1 1
 92000 92001 92010 9 2 0 1 1
 92100 91101 921100 9 2 1111
102000 10200 1 10 2 0 1 0 10 2 0 1 1
102 1 0 0 101 1 0 1 10 2 1 1 0 10 2 1 1 1
;
proc print data=chocs noobs;
 where subj <= 2;
 var subj set c dark soft nuts;
 run;
```

Choice of Chocolate Candies					
Subj	Set	c	Dark	Soft	Nuts
1	1	2	0	0	0
1	1	2	0	0	1
1	1	2	0	1	0
1	1	2	0	1	1
1	1	1	1	0	0
1	1	2	1	0	1
1	1	2	1	1	0
1	1	2	1	1	1


2	1	2	0	0	0
2	1	2	0	0	1
2	1	2	0	1	0
2	1	2	0	1	1
2	1	2	1	0	0
2	1	1	1	0	1
2	1	2	1	1	0
2	1	2	1	1	1

These next steps illustrate a more typical form of data entry. The experimental design is stored in a separate data set from the choices and is merged with the choices as the data are read, which produces the same results as the preceding steps.

```
title 'Choice of Chocolate Candies';
* Alternative Form of Data Entry;
data combos; /* Read the design matrix. */
 input Dark Soft Nuts;
 datalines;
00
0 01
010
0 1 1
10}
101
1 1 0
111
;
data chocs; /* Create the data set. */
 input Choice @@; drop choice; /* Read the chosen combo num. */
 Subj = _n_; Set = 1; /* Store subj, choice set num. */
 do i = 1 to 8; /* Loop over alternatives. */
 c = 2 - (i eq choice); /* Designate chosen alt. */
 set combos point=i; /* Read design matrix. */
 output; /* Output the results. */
 end;
 datalines;
5675262666
;
```

The variable Choice is the number of the chosen alternative. For each choice set, each of the eight observations in the experimental design is read. The point= option on the set statement is used to read the $i$ th observation of the data set COMBOS. When i (the alternative index) equals Choice (the number of the chosen alternative), the logical expression (i eq choice) equals 1 ; otherwise it is 0 . The statement $\mathrm{c}=2$ - (i eq choice) sets c to 1 (two minus one) when the alternative is chosen and 2 (two minus zero) otherwise. All eight observations in the COMBOS data set are read 10 times, once per subject. The resulting data set is the same as the one we created previously. In all of the remaining examples, we will simplify this process by using the $\% \mathrm{MktMerge}$ macro to merge the design and data. The basic logic underlying this macro is shown in the preceding step. The number of a
chosen alternative is read, then each alternative of the choice set is read, the chosen alternative is flagged ( $c=1$ ), and the unchosen alternatives are flagged $(c=2)$. One observation per choice set per subject is read from the input data stream, and one observation per alternative per choice set per subject is written.

## Choice and Survival Models

In SAS, the multinomial logit model is fit with the SAS/STAT procedure PHREG (proportional hazards regression), with the ties=breslow option. The likelihood function of the multinomial logit model has the same form as a survival analysis model fit by PROC PHREG.

In a discrete choice study, subjects are presented with sets of alternatives and asked to choose the most preferred alternative. The data for one choice set consist of one alternative that was chosen and $m-1$ alternatives that were not chosen. First choice was observed. Second and subsequent choices were not observed; it is only known that the other alternatives would have been chosen after the first choice. In survival analysis, subjects (rats, people, light bulbs, machines, and so on) are followed until a specific event occurs (such as failure or death) or until the experiment ends. The data are event times. The data for subjects who have not experienced the event (such as those who survive past the end of a medical experiment) are censored. The exact event time is not known, but it is known to have occurred after the censored time. In a discrete choice study, first choice occurs at time one, and all subsequent choices (second choice, third choice, and so on) are unobserved or censored. The survival and choice models are the same.

## Fitting the Multinomial Logit Model

The data are now in the right form for analysis. To fit the multinomial logit model, use PROC PHREG as follows.

```
proc phreg data=chocs outest=betas;
 strata subj set;
 model c*c(2) = dark soft nuts / ties=breslow;
 label dark = 'Dark Chocolate' soft = 'Soft Center'
 nuts = 'With Nuts';
 run;
```

The data= option specifies the input data set. The outest= option requests an output data set called BETAS with the parameter estimates. The strata statement specifies that each combination of the variables Set and Subj forms a set from which a choice was made. Each term in the likelihood function is a stratum. There is one term or stratum per choice set per subject, and each is composed of information about the chosen and all the unchosen alternatives.

In the left side of the model statement, you specify the variables that indicate which alternatives were chosen and not chosen. While this could be two different variables, we will use one variable c to provide both pieces of information. The response variable c has values 1 (chosen or first choice) and 2 (unchosen or subsequent choices). The first $c$ of the $c * c(2)$ in the model statement specifies that c indicates which alternative was chosen. The second c specifies that c indicates which alternatives were not chosen, and (2) means that observations with values of 2 were not chosen. When c is set up such that 1 indicates the chosen alternative and 2 indicates the unchosen alternatives, always specify
$\mathrm{c} * \mathrm{c}(2)$ on the left of the equal sign in the model statement. The attribute variables are specified after the equal sign. Specify ties=breslow after a slash to explicitly specify the likelihood function for the multinomial logit model. (Do not specify any other ties= options; ties=breslow specifies the most efficient and always appropriate way to fit the multinomial logit model.) The label statement is added since we are using a template that assumes each variable has a label.

Note that the $c * c(n)$ syntax allows second choice ( $c=2$ ) and subsequent choices ( $c=3, c=4, \ldots$ ) to be entered. Just enter in parentheses one plus the number of choices actually made. For example, with first and second choice data specify $c * c(3)$. Note however that some experts believe that second and subsequent choice data are much less reliable than first choice data.

## Multinomial Logit Model Results

The output is shown next. Recall that we used \%phchoice(on) on page 95 to customize the output from PROC PHREG.



The first table, Model Information, contains the input data set name, dependent variable name, censoring information, and tie handling option.

The Summary of Subjects, Sets, and Chosen and Unchosen Alternatives table is printed by default and should be used to check the data entry. In general, there are as many strata as there are combinations of the Subj and Set variables. In this case, there are ten strata. Each stratum must be composed of $m$ alternatives. In this case, there are eight alternatives. The number of chosen alternatives should be 1 , and the number of unchosen alternatives is $m-1$ (in this case 7). Always check the summary table to ensure that the data are arrayed correctly.

The Convergence Status table shows that the iterative algorithm successfully converged. The next tables, Model Fit Statistics and Testing Global Null Hypothesis: BETA=0 contain the overall fit of the model. The - 2 LOG L statistic under With Covariates is 28.727 and the Chi-Square statistic is 12.8618 with $3 d f(\mathrm{p}=0.0049)$, which is used to test the null hypothesis that the attributes do not influence choice. At common alpha levels such as 0.05 and 0.01 , we would reject the null hypothesis of no relationship between choice and the attributes. Note that 41.589 (-2 LOG L Without Covariates, which is -2 LOG L for a model with no explanatory variables) minus 28.727 (-2 LOG L With Covariates, which is -2 LOG L for a model with all explanatory variables) equals 12.8618 (Model Chi-Square, which is used to test the effects of the explanatory variables).

Next is the 'Multinomial Logit Parameter Estimates' table. For each effect, it contains the maximum likelihood parameter estimate, its estimated standard error (the square root of the corresponding diagonal element of the estimated variance matrix), the Wald Chi-Square statistic (the square of the parameter estimate divided by its standard error), the $d f$ of the Wald Chi-Square statistic ( 1 unless the corresponding parameter is redundant or infinite, in which case the value is 0 ), and the $p$-value of the Chi-Squared statistic with respect to a chi-squared distribution with one $d f$. The parameter estimate with the smallest $p$-value is for soft center. Since the parameter estimate is negative, chewy is the more preferred level. Dark is preferred over milk, and nuts over no nuts, however only the $p$-value for Soft is less than 0.05.

## Fitting the Multinomial Logit Model, All Levels

It is instructive to perform some manipulations on the data set and analyze it again. These steps will perform the same analysis as before, only now, coefficients for both levels of the three attributes are printed. Binary variables for the missing levels are created by subtracting the existing binary variables from 1.

```
data chocs2;
 set chocs;
 Milk = 1 - dark; Chewy = 1 - Soft; NoNuts = 1 - nuts;
 label dark = 'Dark Chocolate' milk = 'Milk Chocolate'
 soft = 'Soft Center' chewy = 'Chewy Center'
 nuts = 'With Nuts' nonuts = 'No Nuts';
 run;
proc phreg data=chocs2;
 strata subj set;
 model c*c(2) = dark milk soft chewy nuts nonuts / ties=breslow;
 run;
```

                    Choice of Chocolate Candies
    The PHREG Procedure
Model Information
Data Set WORK.CHOCS2
Dependent Variable c
Censoring Variable c
Censoring Value(s) 2
Ties Handling BRESLOW
Number of Observations Read 80
Number of Observations Used 80

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Stratum	Subj	Set	Number of Alternatives	Chosen   Alternatives	$\begin{array}{r} \text { Not } \\ \text { Chosen } \end{array}$
1	1	1	8	1	7
2	2	1	8	1	7
3	3	1	8	1	7
4	4	1	8	1	7
5	5	1	8	1	7
6	6	1	8	1	7
7	7	1	8	1	7
8	8	1	8	1	7
9	9	1	8	1	7
10	10	1	8	1	7
Total			80	10	70
Convergence Status					
Convergence criterion (GCONV=1E-8) satisfied.					
Model Fit Statistics					


Criterion	Without   Covariates	With   Covariates

-2 LOG L
AIC
SBC
41.589
28.727
41.589
34.727
41.589
35.635

Testing Global Null Hypothesis: BETA=0

Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	12.8618	3	0.0049
Score	11.6000	3	0.0089
Wald	8.9275	3	0.0303

Multinomial Logit Parameter Estimates

	DF	Parameter   Estimate	Standard   Error	Chi-Square	Pr > ChiSq
Dark Chocolate	1	1.38629	0.79057	3.0749	0.0795
Milk Chocolate	0	0	.	.	.
Soft Center	1	-2.19722	1.05409	4.3450	0.0371
Chewy Center	0	0	.	.	.
With Nuts	1	0.84730	0.69007	1.5076	0.2195
No Nuts	0	0	.	.	.

Now the zero coefficients for the reference levels, milk, chewy, and no nuts are printed. The part-worth utility for Milk Chocolate is a structural zero, and the part-worth utility for Dark Chocolate is larger at 1.38629 . Similarly, the part-worth utility for Chewy Center is a structural zero, and the part-worth utility for Soft Center is smaller at -2.19722 . Finally, the part-worth utility for No Nuts is a structural zero, and the part-worth utility for Nuts is larger at 0.84730 .

## Probability of Choice

The parameter estimates are used next to construct the estimated probability that each alternative will be chosen. The DATA step program uses the following formula to create the choice probabilities.

$$
p\left(c_{i} \mid C\right)=\frac{\exp \left(\mathbf{x}_{i} \boldsymbol{\beta}\right)}{\sum_{j=1}^{m} \exp \left(\mathbf{x}_{j} \boldsymbol{\beta}\right)}
$$

```
* Estimate the probability that each alternative will be chosen;
data p;
 retain sum 0;
 set combos end=eof;
 * On the first pass through the DATA step (_n_ is the pass
 number), get the regression coefficients in B1-B3.
 Note that they are automatically retained so that they
 can be used in all passes through the DATA step.;
 if _n_ = 1 then
 set betas(rename=(dark=b1 soft=b2 nuts=b3));
 keep dark soft nuts p;
 array x[3] dark soft nuts;
 array b[3] b1-b3;
 * For each combination, create x * b;
 p = 0;
 do j = 1 to 3;
 p = p + x[j] * b[j];
 end;
```

```
 * Exponentiate x * b and sum them up;
 p = exp(p);
 sum = sum + p;
 * Output sum exp(x * b) in the macro variable '&sum';
 if eof then call symput('sum',put(sum,best12.));
 run;
 proc format;
 value df 1 = 'Dark' 0 = 'Milk';
 value sf 1 = 'Soft' 0 = 'Chewy';
 value nf 1 = 'Nuts' 0 = 'No Nuts';
 run;
 * Divide each exp(x * b) by sum exp(x * b);
 data p;
 set p;
 p = p / (&sum);
 format dark df. soft sf. nuts nf.;
 run;
proc sort;
 by descending p;
 run;
proc print;
 run;
```

Choice of Chocolate Candies				
Obs	Dark	Soft	Nuts	p
1	Dark	Chewy	Nuts	0.50400
2	Dark	Chewy	No Nuts	0.21600
3	Milk	Chewy	Nuts	0.12600
4	Dark	Soft	Nuts	0.05600
5	Milk	Chewy	No Nuts	0.05400
6	Dark	Soft	No Nuts	0.02400
7	Milk	Soft	Nuts	0.01400
8	Milk	Soft	No Nuts	0.00600

The three most preferred alternatives are Dark/Chewy/Nuts, Dark/Chewy/No Nuts, and Milk/Chewy/Nuts.

## Fabric Softener Example

In this example, subjects are asked to choose among fabric softeners. This example shows all of the steps in a discrete choice study, including experimental design creation and evaluation, creating the questionnaire, inputting the raw data, creating the data set for analysis, coding, fitting the discrete choice model, interpretation, and probability of choice. In addition, custom questionnaires are discussed. We assume the reader is familiar with the experimental design issues discussed in Kuhfeld, Tobias, and Garratt (1994), which starts on page 39. Some of these concepts are reviewed starting on page 84.

## Set Up

The study involves four fictitious fabric softeners Sploosh, Plumbbob, Platter, and Moosey. ${ }^{\S}$ Each choice set consists of each of these four brands and a constant alternative Another. Each of the brands is available at three prices, $\$ 1.49, \$ 1.99$, and $\$ 2.49$. Another is only offered at $\$ 1.99$. There are 50 subjects, each of which will see the same choice sets. We can use the \%MktRuns autocall macro to help us choose the number of choice sets. All of the autocall macros used in this book are documented starting on page 479. To use this macro, you specify the number of levels for each of the factors. With four brands each with three prices, you specify four 3's (or $3 * * 4$ ).
title 'Choice of Fabric Softener';
\%mktruns ( $\left.\begin{array}{llll}3 & 3 & 3 & 3\end{array}\right)$
The output first tells us that we specified a design with four factors, each with three levels. The next table reports the size of the saturated design, which is the number of parameters in the linear design, and suggests design sizes.

	Choice of Fabric Softener   Design Summary
	Number of   Levels Frequency
	$3 \quad 4$
	Choice of Fabric Softener
Saturated	$=9$
Full Fact	rial = 81

[^22]

The output from this macro tells us that the saturated design has nine runs and the full-factorial design has 81 runs. It also tells us that 9 and 18 are optimal design sizes with zero violations. The macro tells us that in nine runs, an orthogonal design with 4 three-level factors is available, and in 18 runs, two orthogonal and balanced designs are available: one with a two-level factor and 7 three-level factors, and one with 6 three-level factors and a six-level factor. There are zero violations with these designs because these sizes can be divided by 3 and $3 \times 3=9$. Twelve and 15 are also reported as potential design sizes, but each has 6 violations. Six times (the $4(4-1) / 2=6$ pairs of the four threes) 12 and 15 cannot be divided by $3 \times 3=9$. Ideally, we would like to have a manageable number of choice sets for people to evaluate and a design that is both orthogonal and balanced. When violations are reported, orthogonal and balanced designs are not possible. While orthogonality and balance are not required, they are nice properties to have. With 4 three-level factors, the number of choice sets in all orthogonal and balanced designs must be divisible by $3 \times 3=9$.

Nine choice sets is a bit small. Furthermore, there are no error $d f$. We set the number of choice sets to 18 since it is small enough for each person to see all choice sets, large enough to have reasonable error $d f$, and an orthogonal and balanced design is available. It is important to remember however that the concept of number of parameters and error $d f$ discussed here applies to the linear design and not to the choice design. ${ }^{\text {I }}$ We could use the nine-run design for a discrete choice model and have error $d f$ in the choice model. If we were to instead use this design for a full-profile conjoint (not recommended), there would be no error $d f$.

To make the code easier to modify for future use, the number of choice sets and alternatives are stored in macro variables and the prices are put into a format. Our design, in raw form, will have values for price of 1,2 , and 3 . We will use a format to assign the actual prices: $\$ 1.49, \$ 1.99$, and $\$ 2.49$. The

[^23]format also creates a price of $\$ 1.99$ for missing, which will be used for the constant alternative.

```
%let n = 18; /* n choice sets */
%let m = 5; /* m alternative including constant */
%let mm1 = %eval(&m - 1); /* m - 1 */
proc format; /* create a format for the price */
 value price 1 = '$1.49' 2 = '$1.99' 3 = '$2.49' . = '$1.99';
 run;
```

Designing the Choice Experiment

In the next steps, an efficient experimental design is created. We will use an autocall macro \%MktEx to create most of our designs. (All of the autocall macros used in this book are documented starting on page 479.) When you invoke the \%MktEx macro for a simple problem, you only need to specify the numbers of levels, and number of runs. The macro does the rest. Here is the $\% \mathrm{MktEx}$ macro usage for this example:

```
%mktex(3 ** 4, n=&n)
```

The syntax ' $n{ }^{* *} m$ ' means $m$ factors each at $n$ levels. This example has four factors, x 1 through x 4 , all with three levels. A design with 18 runs is requested. The $\mathrm{n}=$ option specifies the number of runs. These are all the options that are needed for a simple problem such as this one. However, throughout this book, random number seeds are explicitly specified with the seed= option so that the results will be reproducible.l Here is the macro call with the random number seed specified:

```
%mktex(3 ** 4, n=&n, seed=17)
proc print; run;
Here are the results.
```



[^24]```
Choice of Fabric Softener
The OPTEX Procedure
Class Level Information
```



```
\(x 1 \quad 3 \quad 123\)
\begin{tabular}{llll}
\(x 2\) & 3 & 2
\end{tabular}
x3 3 1 2 3
x4 3 1 2 3
Choice of Fabric Softener
The OPTEX Procedure
```

| | | | | Average
 Design
 Number | D-Efficiency |
| :---: | :---: | :---: | :---: | :---: | :---: |

The macro found a perfect, orthogonal and balanced, 100% efficient design consisting of 4 three-level factors, $\mathrm{x} 1-\mathrm{x} 4$. The levels are the integers 1 to 3 . For this problem, the macro generated the design directly. For other problems, the macro may have to use a computerized search. See page 142 for more information on how the \%MktEx macro works.

Examining the Design

You should run basic checks on all designs, even orthogonal designs such as this one. You can use the \%MktEval macro to display information about the design. The macro first prints a matrix of canonical correlations between the factors. We hope to see an identity matrix (a matrix of ones on the diagonal and zeros everywhere else) which means the design is orthogonal. Next, the macro prints all one-way frequencies for all attributes, all two-way frequencies, and all n-way frequencies (in this case four-way) frequencies. We hope to see equal or at least nearly equal one-way and two-way frequencies, and we want to see that each combination occurs only once.

```
%mkteval;
```

```
            Choice of Fabric Softener
                Canonical Correlations Between the Factors
There are O Canonical Correlations Greater Than 0.316
                x1 x2 x3 x4
\begin{tabular}{lllll}
\(x 1\) & 1 & 0 & 0 & 0 \\
x2 & 0 & 1 & 0 & 0 \\
x3 & 0 & 0 & 1 & 0 \\
\(x 4\) & 0 & 0 & 0 & 1
\end{tabular}
            Choice of Fabric Softener
                Summary of Frequencies
There are 0 Canonical Correlations Greater Than 0.316
```

 Frequencies
 \(\mathrm{x} 1 \quad 666\)
 \(x 2 \quad 666\)
 \(x 3 \quad 666\)
 \(x 4 \quad 666\)
 x1 x2 222222222
 x1 x3 222222222
 \(\mathrm{x} 1 \mathrm{x} 4 \quad 222222222\)
 x2 x3 222222222
 x2 x4 222222222
 x3 x4 222222222
 \(\begin{array}{llllllllllllllllllll}\text { N-Way } & & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}\)
 A canonical correlation is the maximum correlation between linear combinations of the coded factors (see page 90). All zeros off the diagonal show that this design is orthogonal for main effects. If any off-diagonal canonical correlations had been greater than $0.316\left(r^{2}>0.1\right)$, the macro would have listed them in a separate table. The last title line tells you that none of them was this large. For nonorthogonal designs and designs with interactions, the canonical-correlation matrix is not a substitute for looking at the variance matrix (with examine=v, discussed on pages 146, 191, and 556). It just provides a quick and more-compact picture of the correlations between the factors. The variance matrix is sensitive to the actual model specified and the actual coding. The canonical-correlation matrix just tells you if there is some correlation between the main effects. In this case, there are no correlations.

The equal one-way frequencies show you that this design is balanced. The equal two-way frequencies show you that this design is orthogonal. The n-way frequencies, all equal to one, show there are no duplicate profiles. This is a perfect design for a main-effects model.

You should always check the n-way frequencies to ensure that you do not have duplicates. For this situation for example, a 100% efficient design exists where each run appears twice. It consists of two copies of the fractional-factorial design 3^{4} in 9 runs. When you get duplicates, specify options=nodups in the \%MktEx macro, or sometimes you can just change the random number seed. Most designs will not have duplicates, so it is better to specify options=nodups only after you have found a design with duplicates. The no-duplicates constraint greatly slows down the algorithm.

The \%MktEval macro produces a very compact summary of the design, hence some information, for example the levels to which the frequencies correspond, is not shown. You can use the print=freqs option to get a less compact and more detailed display.

```
%mkteval(data=design, print=freqs);
```

Here are some of the results.

| x 1 x 2 | 2 | 1 | 1 | . | . |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | 2 | 1 | 2 | . | . |
| | 2 | 1 | 3 | . | . |
| | 2 | 2 | 1 | . | . |
| | 2 | 2 | 2 | . | . |
| | 2 | 2 | 3 | . | . |
| | 2 | 3 | 1 | . | . |
| | 2 | 3 | 2 | . | . |
| | 2 | 3 | 3 | - | . |
| - | | | | | |
| . | | | | | |
| - | | | | | |
| x3 x4 | 2 | . | . | 1 | 1 |
| | 2 | . | . | 1 | 2 |
| | 2 | . | . | 1 | 3 |
| | 2 | . | . | 2 | 1 |
| | 2 | - | . | 2 | 2 |
| | 2 | . | . | 2 | 3 |
| | 2 | - | . | 3 | 1 |
| | 2 | . | . | 3 | 2 |
| | 2 | - | . | 3 | 3 |
| N-Way | 1 | 1 | 1 | 1 | 1 |
| | 1 | 1 | 1 | 2 | 3 |
| | 1 | 1 | 2 | 1 | 3 |
| | 1 | 1 | 2 | 3 | 2 |
| | 1 | 1 | 3 | 2 | 2 |
| | 1 | 1 | 3 | 3 | 1 |
| | 1 | 2 | 1 | 1 | 2 |
| | 1 | 2 | 1 | 3 | 3 |
| | 1 | 2 | 2 | 2 | 2 |
| | 1 | 2 | 2 | 3 | 1 |
| | 1 | 2 | 3 | 1 | 3 |
| | 1 | 2 | 3 | 2 | 1 |
| | 1 | 3 | 1 | 2 | 1 |
| | 1 | 3 | 1 | 3 | 2 |
| | 1 | 3 | 2 | 1 | 1 |
| | 1 | 3 | 2 | 2 | 3 |
| | 1 | 3 | 3 | 1 | 2 |
| | 1 | 3 | 3 | 3 | 3 |

Randomizing the Design, Postprocessing

The design we just looked at and examined was in the default output data set DESIGN. The DESIGN data set is sorted and often has a first row consisting entirely of ones. For these reasons, you should actually use the randomized design. In the randomized design, the choice sets are presented in a
random order and the levels have been randomly reassigned. Neither of these operations affects the design efficiency, balance, or orthogonality. The macro automatically randomizes the design and stores the results in a data set called RANDOMIZED. The next steps assign formats and labels, and store the results in a SAS data set SASUSER.DES. It is important to store the design in a permanent SAS data set or in some other permanent form so that it will be available for analysis after the data are collected.

```
data sasuser.des;
    set randomized;
    format x1-x&mm1 price.;
    label x1 = 'Sploosh' x2 = 'Plumbbob' x3 = 'Platter' x4 = 'Moosey';
    run;
```

This is the final design.

```
proc print data=sasuser.des label; /* print final design */
    title2 'Efficient Design';
    run;
title2;
```


Choice of Fabric Softener Efficient Design

| Obs | Sploosh | Plumbbob | Platter | Moosey |
| ---: | ---: | ---: | ---: | ---: |
| | | | | |
| 1 | $\$ 1.99$ | $\$ 1.49$ | $\$ 1.99$ | $\$ 2.49$ |
| 2 | $\$ 2.49$ | $\$ 2.49$ | $\$ 1.49$ | $\$ 1.99$ |
| 3 | $\$ 1.49$ | $\$ 1.99$ | $\$ 2.49$ | $\$ 1.49$ |
| 4 | $\$ 2.49$ | $\$ 1.99$ | $\$ 2.49$ | $\$ 1.99$ |
| 5 | $\$ 1.49$ | $\$ 2.49$ | $\$ 2.49$ | $\$ 2.49$ |
| 6 | $\$ 1.49$ | $\$ 1.99$ | $\$ 1.49$ | $\$ 2.49$ |
| 7 | $\$ 2.49$ | $\$ 1.49$ | $\$ 1.49$ | $\$ 1.49$ |
| 8 | $\$ 2.49$ | $\$ 1.49$ | $\$ 2.49$ | $\$ 2.49$ |
| 9 | $\$ 1.99$ | $\$ 2.49$ | $\$ 2.49$ | $\$ 1.49$ |
| 10 | $\$ 1.49$ | $\$ 1.49$ | $\$ 1.99$ | $\$ 1.49$ |
| 11 | $\$ 1.99$ | $\$ 2.49$ | $\$ 1.49$ | $\$ 2.49$ |
| 12 | $\$ 1.49$ | $\$ 1.49$ | $\$ 1.49$ | $\$ 1.99$ |
| 13 | $\$ 1.99$ | $\$ 1.49$ | $\$ 2.49$ | $\$ 1.99$ |
| 14 | $\$ 1.49$ | $\$ 2.49$ | $\$ 1.99$ | $\$ 1.99$ |
| 15 | $\$ 2.49$ | $\$ 2.49$ | $\$ 1.99$ | $\$ 1.49$ |
| 16 | $\$ 1.99$ | $\$ 1.99$ | $\$ 1.99$ | $\$ 1.99$ |
| 17 | $\$ 1.99$ | $\$ 1.99$ | $\$ 1.49$ | $\$ 1.49$ |
| 18 | $\$ 2.49$ | $\$ 1.99$ | $\$ 1.99$ | $\$ 2.49$ |

Generating the Questionnaire

A questionnaire based on the design is printed using the DATA step. The statement array brands [\&m] \$ _temporary_ ('Sploosh' 'Plumbbob' 'Platter' 'Moosey' 'Another') creates a constant array so that brands [1] accesses the string 'Sploosh', brands [2] accesses the string 'Plumbbob', and so on. The _temporary_ specification means that no output data set variables are created for this array. The linesleft= specification in the file statement creates the variable ll, which contains the number of lines left on a page. This ensures that each choice set is not split over two pages.

```
options ls=80 ps=60 nonumber nodate;
title;
data _null_; /* print questionnaire */
    array brands[&m] $_temporary_ ('Sploosh' 'Plumbbob' 'Platter'
                                    'Moosey' 'Another');
    array x[&m] x1-x&m;
    file print linesleft=ll;
    set sasuser.des;
    x&m = 2; /* constant alternative */
    format x&m price.;
    if _n_ = 1 or ll < 12 then do;
        put _page_;
        put @60 'Subject: _-_-------' //;
        end;
    put _n_ 2. ') Circle your choice of '
            'one of the following fabric softeners:' /;
    do brnds = 1 to &m;
        put , ' brnds 1. ') ' brands[brnds] 'brand at '
                x[brnds] +(-1) '.' /;
        end;
    run;
```

In the interest of space, only the first two choice sets are printed. The questionnaire is printed, copied, and the data are collected.

Subject: \qquad

1) Circle your choice of one of the following fabric softeners:
2) Sploosh brand at $\$ 1.99$.
3) Plumbbob brand at $\$ 1.49$.
4) Platter brand at $\$ 1.99$.
5) Moosey brand at $\$ 2.49$.
6) Another brand at $\$ 1.99$.
7) Circle your choice of one of the following fabric softeners:
8) Sploosh brand at $\$ 2.49$.
9) Plumbbob brand at $\$ 2.49$.
10) Platter brand at $\$ 1.49$.
11) Moosey brand at $\$ 1.99$.
12) Another brand at $\$ 1.99$.

In practice, data collection may be much more elaborate than this. It may involve art work or photographs, and the choice sets may be presented and the data may be collected through personal interview or over the web. However the choice sets are presented and the data are collected, the essential ingredients remain the same. Subjects are shown sets of alternatives and are asked to make a choice, then they go on to the next set.

Entering the Data

The data consist of a subject number followed by 18 integers in the range 1 to 5 . These are the alternatives that were chosen for each choice set. For example, the first subject chose alternative 2 (Plumbbob brand at $\$ 1.49$) in the first choice set, alternative 3 (Platter brand at $\$ 1.49$) in the second choice set, and so on. In the interest of space, data from three subjects appear on one line.

```
title 'Choice of Fabric Softener';
data results; /* read choice data set */
    input Subj (choose1-choose&n) (1.) @@;
    datalines;
    1 234513324233214433 2 334213324433233335 3 333313323333333333
    4334413324434414453 5 235413324233514333 6 234433424433214233
    7 234413324433234333 8 234413424433444332 9 334413324353233333
    0 235233325233234333 11 334213324433233332 12 234313324433214353
    3534313334333234333 14 234411424433214443 15 334313325433434335
    6334433325333335333 17 534313424453214433 18 334415524433444543
    9334313325433234433 20 231413324233215533 21 234353534433514333
    234313354233214533 23 334333333333234333 24535212324232214243
    254313324433234333 26 234415525233214333 27 234353524233254333
    234333334333434333 29 334413524335253333 30 334453324533334333
    354313324333233433 32 254313324233234333 33 234413424353413335
    334413324433214333 35 234553324453214345 36 234233524433244333
    234413324433514343 38 254333324433254533 39 334353324333233533
    40 334413324433434333 41 334433424433444443 42 234413324433214333
    43 334413454433434343 44 234413324233214333 45 234453524432214444
    46 234413425433514433 47 544413524433244333 48 335453324433233353
    49234513324133234433 50 234413324333234333
;
```


Processing the Data

Next, we prepare the experimental design for analysis. Our design, which we stored in a permanent SAS data set SASUSER.DES, is arranged with one row per choice set. We call this the linear design (see page 87). The linear design, which came directly from the $\% \mathrm{MktEx}$ macro, is conveniently arrayed for generating the questionnaire, however it is not in the right form for analysis. For analysis, we need a choice design with one row for each alternative of each choice set. We will use the macro \%MktRoll to "roll out" the linear design into the choice design, which is in proper form for analysis. First, we must create a data set that describes how the design will be processed. We call this data set the design key.

In this example, we want a choice design with two factors, Brand and Price. Brand has levels 'Sploosh', 'Plumbbob', 'Platter', 'Moosey', and 'Another'. Price has levels $\$ 1.49, \$ 1.99$, and $\$ 2.49$. Brand and Price are created by different processes. The Price factor will be constructed from the factors of the linear design matrix. In contrast, there is no Brand factor in the linear design. Each brand is a bin into which its factors are collected. The variable Brand will be named on the alt= option of the \%MktRoll macro as the alternative variable, so its values will be read directly out of the

KEY data set. Price will not be named on the alt= macro option, so its values in the KEY data set are variable names from the linear design data set. The values of Price in the final choice design will be read from the named variables in the linear design data set. The Price factor in the choice design is created from the four linear design factors (x1 for Sploosh, x2 for Plumbbob, x3 for Platter, x4 for Moosey, and no attribute for Another, the constant alternative). Here is how the KEY data set is created. The Brand factor levels and the Price linear design factors are stored in the KEY data set.

```
title2 'Key Data Set';
data key;
    input Brand $ Price $;
    datalines;
Sploosh x1
Plumbbob x2
Platter x3
Moosey x4
Another .
;
proc print; run;
title2;
```

| Choice of Fabric | Softener |
| :---: | :--- | :---: |
| Key Data Set | |

Note that the value of Price for alternative Another in the KEY data set is blank (character missing). The period in the in-stream data set is simply a placeholder, used with list input to read both character and numeric missing data. A period is not stored with the data. Next, we use the \%MktRoll macro to process the design.

```
%mktroll(design=sasuser.des, key=key, alt=brand, out=rolled)
```

The \%MktRoll step processes the design=sasuser.des linear design data set using the rules specified in the key=key data set, naming the alt=brand variable as the alternative name variable, and creating an output SAS data set called ROLLED, which contains the choice design. The input design=sasuser.des data set has 18 observations, one per choice set, and the output out=rolled data set has $5 \times 18=90$ observations, one for each alternative of each choice set. Here are the first three observations of the linear design data set.

```
    title2 'Linear Design (First 3 Sets)';
    proc print data=sasuser.des(obs=3); run;
    title2;
```

| Choice of Fabric Softener | | | | |
| :---: | :---: | :---: | :---: | :---: |
| | Linear Design (First 3 Sets) | | | |

These observations define the first three choice sets. Here are those same observations, arrayed for analysis in the choice design data set.

```
title2 'Choice Design (First 3 Sets)';
proc print data=rolled(obs=15); format price price.; run;
title2;
```

```
                    Choice of Fabric Softener
                    Choice Design (First 3 Sets)
```

Obs Set Brand Price

| 1 | 1 | Sploosh | $\$ 1.99$ |
| ---: | :--- | :--- | :--- |
| 2 | 1 | Plumbbob | $\$ 1.49$ |
| 3 | 1 | Platter | $\$ 1.99$ |
| 4 | 1 | Moosey | $\$ 2.49$ |
| 5 | 1 | Another | $\$ 1.99$ |
| 6 | 2 | Sploosh | $\$ 2.49$ |
| 7 | 2 | Plumbbob | $\$ 2.49$ |
| 8 | 2 | Platter | $\$ 1.49$ |
| 9 | 2 | Moosey | $\$ 1.99$ |
| 10 | 2 | Another | $\$ 1.99$ |
| 11 | 3 | Sploosh | $\$ 1.49$ |
| 12 | 3 | Plumbbob | $\$ 1.99$ |
| 13 | 3 | Platter | $\$ 2.49$ |
| 14 | 3 | Moosey | $\$ 1.49$ |
| 15 | 3 | Another | $\$ 1.99$ |

The choice design data set has a choice set variable Set, an alternative name variable Brand, and a price variable Price. The prices come from the linear design, and the price for Another is a constant $\$ 1.99$. Recall that the prices are assigned by the following format.

```
proc format; /* create a format for the price */
    value price 1 = '$1.49' 2 = '$1.99' 3 = '$2.49' . = '$1.99';
    run;
```

The next step merges the choice data with the choice design using the \%MktMerge macro.

```
%mktmerge(design=rolled, data=results, out=res2,
    nsets=&n, nalts=&m, setvars=choose1-choose&n)
```

This step reads the design=rolled choice design and the data=results data set and creates the out=res2 output data set. The data are from an experiment with nsets=\&n choice sets, nalts=\&m alternatives, with variables setvars=choose1-choose\&n containing the numbers of the chosen alternatives. Here are the first 15 observations.

```
title2 'Choice Design and Data (First 3 Sets)';
proc print data=res2(obs=15); run;
title2;
```

| Obs | Subj | Set | Brand | Price | c |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | Sploosh | 2 | 2 |
| 2 | 1 | 1 | Plumbbob | 1 | 1 |
| 3 | 1 | 1 | Platter | 2 | 2 |
| 4 | 1 | 1 | Moosey | 3 | 2 |
| 5 | 1 | 1 | Another | . | 2 |
| 6 | 1 | 2 | Sploosh | 3 | 2 |
| 7 | 1 | 2 | Plumbbob | 3 | 2 |
| 8 | 1 | 2 | Platter | 1 | 1 |
| 9 | 1 | 2 | Moosey | 2 | 2 |
| 10 | 1 | 2 | Another | . | 2 |
| 11 | 1 | 3 | Sploosh | 1 | 2 |
| 12 | 1 | 3 | Plumbbob | 2 | 2 |
| 13 | 1 | 3 | Platter | 3 | 2 |
| 14 | 1 | 3 | Moosey | 1 | 1 |
| 15 | 1 | 3 | Another | . | 2 |

The data set contains the subject ID variable Subj from the data=results data set, the Set, Brand, and Price variables from the design=rolled data set, and the variable c, which indicates which alternative was chosen. The variable c indicates the chosen alternatives: 1 for first choice and 2 for second or subsequent choice. This subject chose the second alternative, Plumbbob, in the first choice set, Platter in the second, and Moosey in the third. This data set has 4500 observations: 50 subjects times 18 choice sets times 5 alternatives.

Since we did not specify a format, we see in the design the raw design values for Price: 1, 2, 3 and missing for the constant alternative. If we were going to treat Price as a categorical variable for analysis, this would be fine. We would simply assign our price format to Price and designate it as a class variable. However, in this analysis we are going to treat price as quantitative and use the actual prices in the analysis. Hence, we must convert our design values of $1,2,3$, and . to $1.49,1.99,2.49$, and 1.99 . We cannot do this by simply assigning a format. Formats create character strings that are printed in place of the original value. We need to convert a numeric variable from one set of numbers to another. We could use if and assignment statements. We could also use the \%MktLab macro, which is used in later examples. However, instead we will use the put function to write the formatted value into a character string, then we read it back using a dollar format and the input function. For example, the expression put (price, price.) converts a number, say 2 , into a string (in this case ' $\$ 1.99$ '), then the input function reads the string and converts it to a numeric 1.99. This step also assigns a label to the variable Price.

```
data res3; /* Create a numeric actual price */
    set res2;
    price = input(put(price, price.), dollar5.);
    label price = 'Price';
    run;
```


Binary Coding

One more thing must be done to these data before they can be analyzed. The factors must be coded. In this example, we use a binary or zero-one coding for the brand effect. This can be done with PROC TRANSREG.

```
proc transreg design=5000 data=res3 nozeroconstant norestoremissing;
    model class(brand / zero=none order=data)
        identity(price) / lprefix=0;
    output out=coded(drop=_type_ _name_ intercept);
    id subj set c;
    run;
```

The design option specifies that no model is fit; the procedure is just being used to code a design. When design is specified, dependent variables are not required. Optionally, design can be followed by "=n" where n is the number of observations to process at one time. By default, PROC TRANSREG codes all observations in one big group. For very large data sets, this can consume large amounts of memory and time. Processing blocks of smaller numbers of observations is more efficient. The option design=5000 processes observations in blocks of 5000 . For smaller computers, try something like design=1000.

The nozeroconstant and norestoremissing options are not necessary for this example but are included here because sometimes they are very helpful in coding choice models. The nozeroconstant option specifies that if the coding creates a constant variable, it should not be zeroed. The nozeroconstant option should always be specified when you specify design=n because the last group of observations may be small and may contain constant variables. The nozeroconstant option is also important if you do something like coding by subj set because sometimes an attribute is constant within a choice set. The norestoremissing option specifies that missing values should not be restored when the out= data set is created. By default, the coded class variable contains a row of missing values for observations in which the class variable is missing. When you specify the norestoremissing option, these observations contain a row of zeros instead. This option is useful when there is a constant alternative
indicated by missing values. Both of these options, like almost all options in PROC TRANSREG, can be abbreviated to three characters (noz and nor).

The model statement names the variables to code and provides information about how they should be coded. The specification class (brand / ...) specifies that the variable Brand is a classification variable and requests a binary coding. The zero=none option creates binary variables for all categories. In contrast, by default, a binary variable is not created for the last category - the parameter for the last category is a structural zero. The zero=none option is used when there are no structural zeros or when you want to see the structural zeros in the multinomial logit parameter estimates table. The order=data option sorts the levels into the order they were first encountered in the data set. The specification identity (price) specifies that Price is a quantitative factor that should be analyzed as is (not expanded into indicator variables).

The lprefix $=0$ option specifies that when labels are created for the binary variables, zero characters of the original variable name should be used as a prefix. This means that the labels are created only from the level values. For example, 'Sploosh' and 'Plumbbob' are created as labels not 'Brand Sploosh' and 'Brand Plumbbob'.

An output statement names the output data set and drops variables that are not needed. These variables do not have to be dropped. However, since they are variable names that are often found in special data set types, PROC PHREG prints warnings when it finds them. Dropping the variables prevents the warnings. Finally, the id statement names the additional variables that we want copied from the input to the output data set. The next steps print the first three coded choice sets.

```
proc print data=coded(obs=15) label;
    title2 'First 15 Observations of Analysis Data Set';
    id subj set c;
    run;
title2;
```

| | | | First | Choice 15 Observa | Fabric
 ions of | Softener
 Analysis | Data Set | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Subj | Set | c | Sploosh | Plumbbob | Platter | Moosey | Another | Price | Brand |
| 1 | 1 | 2 | 1 | 0 | 0 | 0 | 0 | 1.99 | Sploosh |
| 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1.49 | Plumbbob |
| 1 | 1 | 2 | 0 | 0 | 1 | 0 | 0 | 1.99 | Platter |
| 1 | 1 | 2 | 0 | 0 | 0 | 1 | 0 | 2.49 | Moosey |
| 1 | 1 | 2 | 0 | 0 | 0 | 0 | 1 | 1.99 | Another |
| 1 | 2 | 2 | 1 | 0 | 0 | 0 | 0 | 2.49 | Sploosh |
| 1 | 2 | 2 | 0 | 1 | 0 | 0 | 0 | 2.49 | Plumbbob |
| 1 | 2 | 1 | 0 | 0 | 1 | 0 | 0 | 1.49 | Platter |
| 1 | 2 | 2 | 0 | 0 | 0 | 1 | 0 | 1.99 | Moosey |
| 1 | 2 | 2 | 0 | 0 | 0 | 0 | 1 | 1.99 | Another |

| 1 | 3 | 2 | 1 | 0 | 0 | 0 | 0 | 1.49 | Sploosh |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 3 | 2 | 0 | 1 | 0 | 0 | 0 | 1.99 | Plumbbob |
| 1 | 3 | 2 | 0 | 0 | 1 | 0 | 0 | 2.49 | Platter |
| 1 | 3 | 1 | 0 | 0 | 0 | 1 | 0 | 1.49 | Moosey |
| 1 | 3 | 2 | 0 | 0 | 0 | 0 | 1 | 1.99 | Another |

Fitting the Multinomial Logit Model

The next step fits the discrete choice, multinomial logit model.

```
proc phreg data=coded outest=betas brief;
    title2 'Discrete Choice Model';
    model c*c(2) = &_trgind / ties=breslow;
    strata subj set;
    run;
title2;
```

The brief option requests a brief summary for the strata. As with the candy example, c*c (2) designates the chosen and unchosen alternatives in the model statement. We specify the \&_trgind macro variable for the model statement independent variable list. PROC TRANSREG automatically creates this macro variable. It contains the list of coded independent variables generated by the procedure. This is so you do not have to figure out what names TRANSREG created and specify them. In this case, PROC TRANSREG sets \&_trgind to contain the following list.

BrandSploosh BrandPlumbbob BrandPlatter BrandMoosey BrandAnother Price

The ties=breslow option specifies a PROC PHREG model that has the same likelihood as the multinomial logit model for discrete choice. The strata statement specifies that the combinations of Set and Subj indicate the choice sets. This data set has 4500 observations consisting of $18 \times 50=900$ strata and five observations per stratum.

Each subject rated 18 choice sets, but the multinomial logit model assumes each stratum is independent. That is, the multinomial logit model assumes each person makes only one choice. The option of collecting only one datum from each subject is too expensive to consider for many problems, so multiple choices are collected from each subject, and the repeated measures aspect of the problem is ignored. This practice is typical, and it usually works well.

Multinomial Logit Model Results

The output is shown next. (Recall that we used \%phchoice(on) on page 95 to customize the output from PROC PHREG.)

Choice of Fabric Softener
 Discrete Choice Model

The PHREG Procedure

Model Information

| Data Set | WORK. CODED | |
| :--- | :--- | :--- |
| Dependent Variable | c | |
| Censoring Variable | c | |
| Censoring Value(s) | 2 | |
| Ties Handling | BRESLOW | |
| | | 4500 |
| Number of Observations Read | 4500 | |

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

| Pattern | Number of
 Choices | Number of
 Alternatives | Chosen
 Alternatives | Not
 Chosen |
| ---: | ---: | ---: | ---: | ---: |
| 1 | 900 | 5 | 1 | 4 |

| Convergence criterion (GCONV=1E-8)
 Model Fit Statistics | | | |
| :---: | :---: | :---: | :---: |
| | Without | With | th |
| Criterion | Covariates | Covariates | |
| -2 LOG L | 2896.988 | 1391.313 | |
| AIC | 2896.988 | 1401.313 | |
| SBC | 2896.988 | 1425.325 | |
| Testing Global Null Hypothesis: BETA=0 | | | |
| Test | Chi-Square | DF \quad Pr | Pr > ChiSq |
| Likelihood Ratio | 1505.6751 | 5 | $<.0001$ |
| Score | 1345.8861 | 5 | $<.0001$ |
| Wald | 658.0940 | 5 | <. 0001 |

Multinomial Logit Parameter Estimates

| | DF | Parameter
 Estimate | Standard
 Error | Chi-Square | Pr $>$ ChiSq |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Sploosh | 1 | -1.45430 | 0.21487 | 45.8095 | $<.0001$ |
| Plumbbob | 1 | -0.56238 | 0.18579 | 9.1622 | 0.0025 |
| Platter | 1 | 1.83425 | 0.14640 | 156.9854 | $<.0001$ |
| Moosey | 1 | 0.51937 | 0.16029 | 10.4990 | 0.0012 |
| Another | 0 | 0 | . | . | . |
| Price | 1 | -4.79503 | 0.21735 | 486.7239 | $<.0001$ |

The procedure output begins with information about the data set, variables, options, and number of observations read. This is followed by information about the 900 strata. Since the brief option was specified, this table contains one row for each stratum pattern. In contrast, the default table would have 900 rows, one for each choice set and subject combination. Each subject and choice set combination consists of a total of five observations, one that was chosen and four that were not chosen. This pattern was observed 900 times. This table provides a check on data entry. Unless we have an availability or allocation study (page 271) or a nonconstant number of alternatives in different choice sets, we would expect to see one pattern of results where one of the m alternatives was chosen for each choice set. If you do not observe this for a study like this, there was probably a mistake in the data entry or processing.

The most to least preferred brands are: Platter, Moosey, Another, Plumbbob, and Sploosh. Increases in price have a negative utility. For example, the predicted utility of Platter brand at $\$ 1.99$ is $\mathbf{x}_{i} \boldsymbol{\beta}$ which is $\left(\begin{array}{llllll}0 & 0 & 1 & 0 & 0 & \$ 1.99\end{array}\right) \quad(-1.45-0.561 .83 ~ 0.52 \quad 0 \quad-4.80)^{\prime}=1.83+1.99 \times-4.80=-7.72$ Since Price was analyzed as a quantitative factor, we can see for example that the utility of Platter at $\$ 1.89$, which was not in any choice set, is $1.83+1.89 \times-4.80=-7.24$, which is a $\$ 0.10 \times 4.80=0.48$ increase in utility.

Probability of Choice

These next steps compute the expected probability that each alternative is chosen within each choice set. This code could easily be modified to compute expected market share for hypothetical marketplaces that do not directly correspond to the choice sets. Note however, that a term like "expected market share," while widely used, is a misnomer. Without purchase volume data, it is unlikely that these numbers would mirror true market share.

First, PROC SCORE is used to compute the predicted utility for each alternative.

```
proc score data=coded(where=(subj=1) drop=c)
    score=betas type=parms out=p;
    var &_trgind;
    run;
```

The data set to be scored is named with the data= option, and the coefficients are specified in the option score=beta. Note that we only need to read all of the choice sets once, since the parameter estimates were computed in an aggregate analysis. This is why we specified where=(subj=1). We do not need $\mathbf{x}_{j} \hat{\boldsymbol{\beta}}$ for each of the different subjects. We dropped the variable c from the CODED data set since this
name will be used by PROC SCORE for the results ($\mathbf{x}_{j} \hat{\boldsymbol{\beta}}$). The option type=parms specifies that the score $=$ data set contains the parameters in _TYPE_ = 'PARMS' observations. The output data set with the predicted utilities is named P. Scoring is based on the coded variables from PROC TRANSREG, whose names are contained in the macro variable \&_trgind. The next step exponentiates $\mathbf{x}_{j} \hat{\boldsymbol{\beta}}$.

```
data p2;
    set p;
    p = exp(c);
    run;
```

Next, $\exp \left(\mathbf{x}_{j} \hat{\boldsymbol{\beta}}\right)$ is summed for each choice set.

```
proc means data=p2 noprint;
    output out=s sum(p) = sp;
    by set;
    run;
```

Finally, each $\mathbf{x}_{j} \hat{\boldsymbol{\beta}}$ is divided by $\sum_{j=1}^{m} \mathbf{x}_{j} \hat{\boldsymbol{\beta}}$.

```
data p;
    merge p2 s(keep=set sp);
    by set;
    p = p / sp;
    keep brand set price p;
    run;
```

Here are the results for the first three choice sets.

```
proc print data=p(obs=15);
    title2 'Choice Probabilities for the First 3 Choice Sets';
    run;
title2;
```

| Choice of Fabric Softener | | | | |
| :---: | :---: | :--- | :---: | :---: |
| Choice Probabilities for the First 3 | Choice Sets | | | |
| Obs | Price | Brand | Set | p |
| | | | | |
| 1 | 1.99 | Sploosh | 1 | 0.01679 |
| 2 | 1.49 | Plumbbob | 1 | 0.45037 |
| 3 | 1.99 | Platter | 1 | 0.44998 |
| 4 | 2.49 | Moosey | 1 | 0.01099 |
| 5 | 1.99 | Another | 1 | 0.07188 |
| 6 | 2.49 | Sploosh | 2 | 0.00030 |
| 7 | 2.49 | Plumbbob | 2 | 0.00072 |
| 8 | 1.49 | Platter | 2 | 0.96153 |
| 9 | 1.99 | Moosey | 2 | 0.02348 |
| 10 | 1.99 | Another | 2 | 0.01397 |

| 11 | 1.49 | Sploosh | 3 | 0.11074 |
| :--- | :--- | :--- | :--- | :--- |
| 12 | 1.99 | Plumbbob | 3 | 0.02457 |
| 13 | 2.49 | Platter | 3 | 0.02455 |
| 14 | 1.49 | Moosey | 3 | 0.79702 |
| 15 | 1.99 | Another | 3 | 0.04312 |

Custom Questionnaires

In this part of the example, a custom questionnaire is printed for each person. Previously, each subject saw the same questionnaire, with the same choice sets, each containing the same alternatives, with everything in the same order. In this example, the order of the choice sets and all alternatives within choice sets are randomized for each subject. Randomizing avoids any systematic effects due to the order of the alternatives and choice sets. The constant alternative is always printed last. If you have no interest in custom questionnaires, you can skip ahead to page 134.

First, the macro variable \&forms is created. It contains the number of separate questionnaires (or forms or subjects, in this case 50). We can use the $\% \mathrm{MktEx}$ macro to create a data set with one observation for each alternative of each choice set for each person. The specification \%mktex (\&forms \&n \&mm1, $\mathrm{n}=\& \mathrm{forms} * \& \mathrm{n} * \& \mathrm{~mm} 1$) is \%mktex (50 $184, \mathrm{n}=50 * 18 * 4$) and creates a $50 \times 18 \times 4$ full-factorial design. Note that the $\mathrm{n}=$ specification allows expressions. The macro \%MktLab is then used to assign the variable names Form, Set, and Alt instead of the default x1-x3. The data set is sorted by Form. Within Form, the choice sets are sorted into a random order, and within choice set, the alternatives are sorted into a random order. The 72 observations for each choice set contain 18 blocks of 4 observations - one block per choice set in a random order and the 4 alternatives within each choice set, again in a random order. Note that we store these in a permanent SAS data set so they will be available after the data are collected.

```
%let forms = 50;
title2 'Create 50 Custom Questionnaires';
*---Make the design---;
%mktex(&forms &n &mm1, n=&forms * &n * &mm1)
*---Assign Factor Names---;
%mktlab(data=design, vars=Form Set Alt)
*---Set up for Random Ordering---;
data sasuser.orders;
    set final;
    by form set;
    retain r1;
    if first.set then r1 = uniform(17);
    r2 = uniform(17);
    run;
*---Random Sort---;
proc sort out=sasuser.orders(drop=r:); by form r1 r2; run;
proc print data=sasuser.orders(obs=16); run;
```

The first 16 observations in this data set are shown next.

| Choice of Fabric Softener Create 50 Custom Questionnaires | | | |
| :---: | :---: | :---: | :---: |
| Obs | Form | Set | Alt |
| 1 | 1 | 4 | 3 |
| 2 | 1 | 4 | 1 |
| 3 | 1 | 4 | 2 |
| 4 | 1 | 4 | 4 |
| 5 | 1 | 8 | 2 |
| 6 | 1 | 8 | 3 |
| 7 | 1 | 8 | 1 |
| 8 | 1 | 8 | 4 |
| 9 | 1 | 16 | 1 |
| 10 | 1 | 16 | 2 |
| 11 | 1 | 16 | 3 |
| 12 | 1 | 16 | 4 |
| 13 | 1 | 1 | 3 |
| 14 | 1 | 1 | 1 |
| 15 | 1 | 1 | 4 |
| 16 | 1 | 1 | 2 |

The data set is transposed, so the resulting data set contains $50 \times 18=900$ observations, one per subject per choice set. The alternatives are in the variables Col1-Col4. The first 18 observations, which contain the ordering of the choice sets for the first subject, are shown next.

```
proc transpose data=sasuser.orders out=sasuser.orders(drop=_name_);
    by form notsorted set;
    run;
proc print data=sasuser.orders(obs=18);
    run;
```

| Obs | Form | Set | COL1 | COL2 | COL3 | COL4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 4 | 3 | 1 | 2 | 4 |
| 2 | 1 | 8 | 2 | 3 | 1 | 4 |
| 3 | 1 | 16 | 1 | 2 | 3 | 4 |
| 4 | 1 | 1 | 3 | 1 | 4 | 2 |
| 5 | 1 | 6 | 2 | 4 | 1 | 3 |
| 6 | 1 | 7 | 4 | 1 | 3 | 2 |
| 7 | 1 | 12 | 3 | 2 | 1 | 4 |
| 8 | 1 | 2 | 2 | 4 | 1 | 3 |
| 9 | 1 | 17 | 3 | 4 | 1 | 2 |

| 10 | 1 | 15 | 4 | 2 | 3 | 1 |
| :--- | :--- | ---: | :--- | :--- | :--- | :--- |
| 11 | 1 | 14 | 1 | 2 | 3 | 4 |
| 12 | 1 | 10 | 2 | 4 | 3 | 1 |
| 13 | 1 | 5 | 1 | 4 | 2 | 3 |
| 14 | 1 | 9 | 2 | 4 | 1 | 3 |
| 15 | 1 | 13 | 3 | 2 | 1 | 4 |
| 16 | 1 | 3 | 3 | 4 | 2 | 1 |
| 17 | 1 | 18 | 4 | 2 | 1 | 3 |
| 18 | 1 | 11 | 3 | 1 | 4 | 2 |

The following DATA step prints the 50 custom questionnaires.

```
options ls=80 ps=60 nodate nonumber;
title;
data _null_;
    array brands[&mm1] $ _temporary_
                    ('Sploosh' 'Plumbbob' 'Platter' 'Moosey');
    array x[&mm1] x1-x&mm1;
    array c[&mm1] col1-col&mm1;
    format x1-x&mm1 price.;
    file print linesleft=ll;
    do frms = 1 to &forms;
        do choice = 1 to &n;
                if choice = 1 or ll < 12 then do;
                    put _page_;
                    put @60 'Subject: ' frms //;
                    end;
                put choice 2. ') Circle your choice of '
                    'one of the following fabric softeners:' /;
                set sasuser.orders;
                set sasuser.des point=set;
                do brnds = 1 to &mm1;
                    put ' ' brnds 1. ') ' brands[c[brnds]] 'brand at '
                    x[c[brnds]] +(-1) '.' /;
            end;
            put , 5) Another brand at $1.99.' /;
            end;
        end;
    stop;
    run;
```

The loop do frms $=1$ to \&forms creates the 50 questionnaires. The loop do choice $=1$ to $\& n$ creates the alternatives within each choice set. On the first choice set and when there is not enough room for the next choice set, we skip to a new page (put _page_) and print the subject (forms) number. The data set SASUSER.ORDERS is read and the Set variable is used to read the relevant observation from SASUSER.DES using the point= option in the set statement. The order of the alternatives is in the c array and variables col1-col\&mm1 from the SASUSER.ORDERS data set. In the first observation of SASUSER.ORDERS, $\operatorname{Set}=4, \operatorname{Col1}=3, \operatorname{Col}=1, \mathrm{Col} 3=2$, and $\mathrm{Col}=4$. The first brand, is c[brnds] = c[1] = col1 = 3, so brands[c[brnds]] = brands[c[1]] = brands[3]
= 'Platter', and the price, from observation Set=4 of SASUSER.DES, is $\mathrm{x}[\mathrm{c}[\mathrm{brnds}]$] $=\mathrm{x}[3]=$ $\$ 2.49$. The second brand, is $c[b r n d s]=c[2]=c o l 2=1$, so brands[c[brnds]] = brands[c[2]] = brands[1] = 'Sploosh', and the price, from observation Set=4 of SASUSER.DES, is x [c[brnds]] $=\mathrm{x}[1]=\$ 2.49$.

In the interest of space, only the first two choice sets are printed. Note that the subject number is printed on the form. This information is needed to restore all data to the original order.

1) Circle your choice of one of the following fabric softeners:
2) Platter brand at $\$ 2.49$.
3) Sploosh brand at $\$ 2.49$.
4) Plumbbob brand at $\$ 1.99$.
5) Moosey brand at $\$ 1.99$.
6) Another brand at \$1.99.
7) Circle your choice of one of the following fabric softeners:
8) Plumbbob brand at $\$ 1.49$.
9) Platter brand at $\$ 2.49$.
10) Sploosh brand at $\$ 2.49$.
11) Moosey brand at $\$ 2.49$.
12) Another brand at \$1.99.

Processing the Data for Custom Questionnaires

Here are the data. (Actually, these are the data that would have been collected if the same people as in the previous situation made the same choices, without error and uninfluenced by order effects.) Before these data are analyzed, the original order must be restored.

```
title 'Choice of Fabric Softener';
data results; /* read choice data set */
        input Subj (choose1-choose&n) (1.) @@;
        datalines;
    1514443141111122241 2 532231422321124311 3 224113221414144231
    4421413132322544334 5 123244311522341532 6 233214431443133321
    7 313214224433422312 8 244132344421114412 9 115422242443114224
    10521432445311432321 11 331243123313423222 12 431234434313123245
    13 313313411243435334 14 443443434342333114 15 344423243531141345
    1642544432145443341417 234241535433442432 18 325222352241521311
    19134113342433542213 20 315321253334442412 21 513453254212232224
    22 312314223544113125 23 433444344431143432 24 353234433451334321
    25 322411331352444431 26 243135451131141445 27 553253331223333111
    28 233443212333231424 29 442454334541231533 30 223133332135132542
    31422222434323513242 32434144312354323423 33 414212243433154445
    34133114112312232331 35425311432255122522 36 142334254232324432
    37511321124112341323 38 542353113412342543 39 221542432333512212
    40 12423222224421121141 24341134142313321342 214122324311222114
    43 32325132131332434244 11434444414421442245 131252434312452121
    46 314215325411422113 47 13325413445311143248 231335341342551314
    49 125124122444221224 50 444112131412134341
;
```

The data set is transposed, and the original order is restored.

```
proc transpose data=results /* create one obs per choice set */
    out=res2(rename=(col1=choose) drop=_name_);
    by subj;
    run;
data res3(keep=subj set choose);
    array c[&mm1] col1-col&mm1;
    merge sasuser.orders res2;
    if choose < 5 then choose = c[choose];
    run;
```

proc sort; by subj set; run;

The actual choice number, stored in Choose, indexes the alternative numbers from SASUSER.ORDERS to restore the original alternative orders. For example, for the first subject, the first choice was 5 , which is the Another constant alternative. Since the first subject saw the fourth choice set first, the fourth data value for the first subject in the processed data set will have a value of 5 . The choice in the second choice set for the first subject was 1, and the first alternative the subject saw was Plumbbob. The data set SASUSER.ORDERS shows in the second observation that this choice of 1 corresponds to the second (original) alternative (in the first column variable, Col1 = 2) of choice set Set= 8. In
the original ordering, Plumbbob is the second alternative. Hence the eighth data value in the processed data set will have a value of 2 . This DATA step writes out the data after the original order has been restored. It matches the data on page 118.

```
data _null_;
    set res3;
    by subj;
    if first.subj then do;
        if mod(subj, 3) eq 1 then put;
        put subj 4. +1 @@;
        end;
    put choose 1. @@;
    run;
```

| 1 | 234513324233214433 | 2 | 334213324433233335 | 3 | 333313323333333333 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 4 | 334413324434414453 | 5 | 235413324233514333 | 6 | 234433424433214233 |
| 7 | 234413324433234333 | 8 | 234413424433444332 | 9 | 334413324353233333 |
| 10 | 235233325233234333 | 11 | 334213324433233332 | 12 | 234313324433214353 |
| 13 | 534313334333234333 | 14 | 234411424433214443 | 15 | 334313325433434335 |
| 16 | 334433325333335333 | 17 | 534313424453214433 | 18 | 334415524433444543 |
| 19 | 334313325433234433 | 20 | 231413324233215533 | 21 | 234353534433514333 |
| 22 | 234313354233214533 | 23 | 334333333333234333 | 24 | 535212324232214243 |
| 25 | 254313324433234333 | 26 | 234415525233214333 | 27 | 234353524233254333 |
| 28 | 234333334333434333 | 29 | 334413524335253333 | 30 | 334453324533334333 |
| 31 | 354313324333233433 | 32 | 254313324233234333 | 33 | 234413424353413335 |
| 34 | 334413324433214333 | 35 | 234553324453214345 | 36 | 234233524433244333 |
| 37 | 23441324433514343 | 38 | 254333324433254533 | 39 | 334353324333233533 |
| 40 | 334413324433434333 | 41 | 334433424433444443 | 42 | 234413324433214333 |
| 43 | 334413454433434343 | 44 | 234413324233214333 | 45 | 234453524432214444 |
| 46 | 234413425433514433 | 47 | 544413524433244333 | 48 | 335453324433233353 |
| 49 | 234513324133234433 | 50 | 234413324333234333 | | |

The data can be combined with the design and analyzed as in the previous example.

Vacation Example

This example illustrates the design and analysis for a larger choice experiment. We will discuss designing a choice experiment, evaluating the design, generating the questionnaire, processing the data, binary coding, generic attributes, quantitative price effects, quadratic price effects, effects coding, alternativespecific effects, analysis, and interpretation of the results. In this example, a researcher is interested in studying choice of vacation destinations. There are five destinations (alternatives) of interest: Hawaii, Alaska, Mexico, California, and Maine. Here are two summaries of the design, one with factors first grouped by attribute and one grouped by destination.

| Factor | Destination | Attribute | Levels |
| :--- | :--- | :--- | :--- |
| X1 | Hawaii | Accommodations | Cabin, Bed \& Breakfast, Hotel |
| X2 | Alaska | Accommodations | Cabin, Bed \& Breakfast, Hotel |
| X3 | Mexico | Accommodations | Cabin, Bed \& Breakfast, Hotel |
| X4 | California | Accommodations | Cabin, Bed \& Breakfast, Hotel |
| X5 | Maine | Accommodations | Cabin, Bed \& Breakfast, Hotel |
| | | | |
| X6 | Hawaii | Scenery | Mountains, Lake, Beach |
| X7 | Alaska | Scenery | Mountains, Lake, Beach |
| X8 | Mexico | Scenery | Mountains, Lake, Beach |
| X9 | California | Scenery | Mountains, Lake, Beach |
| X10 | Maine | Scenery | Mountains, Lake, Beach |
| | | | |
| X11 | Hawaii | Price | $\$ 999, \$ 1249, \$ 1499$ |
| X12 | Alaska | Price | $\$ 999, \$ 1249, \$ 1499$ |
| X13 | Mexico | Price | $\$ 999, \$ 1249, \$ 1499$ |
| X14 | California | Price | $\$ 999, \$ 1249, \$ 1499$ |
| X15 | Maine | Price | $\$ 999, \$ 1249, \$ 1499$ |

| Factor | Destination | Attribute | Levels |
| :--- | :--- | :--- | :--- |
| X1 | Hawaii | Accommodations | Cabin, Bed \& Breakfast, Hotel |
| X6 | | Scenery | Mountains, Lake, Beach |
| X11 | | Price | $\$ 999, \$ 1249, \$ 1499$ |
| | | | |
| X2 | Alaska | Accommodations | Cabin, Bed \& Breakfast, Hotel |
| X7 | | Scenery | Mountains, Lake, Beach
 X12 |
| | | Price | |
| X3 | Mexico | Accommodations | Cabin, Bed \& Breakfast, Hotel |
| X8 | | Scenery | Mountains, Lake, Beach |
| X13 | | Price | $\$ 999, \$ 1249, \$ 1499$ |
| | | | |
| X4 | California | Accommodations | Cabin, Bed \& Breakfast, Hotel |
| X9 | | Scenery | Mountains, Lake, Beach |
| X14 | | Price | $\$ 999, \$ 1249, \$ 1499$ |
| | | Accommodations | Cabin, Bed \& Breakfast, Hotel |
| X5 | Maine | Scenery | Mountains, Lake, Beach |
| X10 | | Price | $\$ 999, \$ 1249, \$ 1499$ |
| X15 | | | |

Each alternative is composed of three factors: package cost ($\$ 999, \$ 1,249, \$ 1,499$), scenery (mountains, lake, beach), and accommodations (cabin, bed \& breakfast, and hotel). There are five destinations, each with three attributes, for a total of 15 factors. This problem requires a design with 15 three-level factors, denoted 3^{15}. Each row of the design matrix contains the description of the five alternatives in one choice set. Note that the levels do not have to be the same for all destinations. For example, the cost for Hawaii and Alaska could be different from the other destinations. However, for this example, each destination will have the same attributes.

Set Up

We can use the \%MktRuns autocall macro to suggest design sizes. (All of the autocall macros used in this book are documented starting on page 479.) To use this macro, you specify the number of levels for each of the factors. With 15 attributes each with three prices, you specify fifteen 3 's (3 $\begin{array}{lllllll}3 & 3 & 3 & 3\end{array}$ 333333333) or you can use the more compact syntax of 3 ** 15 .

```
title 'Vacation Example';
```

```
%mktruns( 3 ** 15 )
```

The output tells us the size of the saturated design, which is the number of parameters in the linear design, and suggests design sizes.

```
                    Vacation Example
                        Design Summary
    Number of
    Levels Frequency
        3 15
            Vacation Example
Saturated = 31
Full Factorial = 14,348,907
```

Some Reasonable
Design Sizes

| 36 | 0 | |
| :--- | ---: | ---: |
| 45 | 0 | |
| $54 *$ | 0 | |
| 63 | 0 | |
| $72 *$ | 0 | |
| 33 | 105 | 9 |
| 39 | 105 | 9 |
| 42 | 105 | 9 |
| 48 | 105 | 9 |
| 51 | 105 | 9 |

* - 100% Efficient Design can be made with the MktEx Macro.

Vacation Example

In this design, there are $15 \times(3-1)+1=31$ parameters, so at least 31 choice sets must be created. With all three-level factors, the number of choice sets in all orthogonal and balanced designs must be divisible by $3 \times 3=9$. Hence, optimal designs for this problem have at least 36 choice sets (the smallest number ≥ 31 and divisible by 9) and the number of choice sets must be a multiple of 9 . Note however, that zero violations does not guarantee that a 100% efficient design exists. It just means that 100% efficiency is not precluded by unequal cell frequencies. In fact, the \%MktEx orthogonal design catalog does not include orthogonal designs for this problem in 36,45 , and 63 runs (because they do not exist).

Thirty-six would be a good design size (2 blocks of size 18) as would 54 (3 blocks of size 18). Fifty-four would probably be the best choice, and that is what we would recommend for this study. However, we will instead create an efficient experimental design with 36 choice sets using the \%MktEx macro. In practice, with more difficult designs, an orthogonal design is not available, and using 36 choice sets will allow us to see an example of using the \%Mkt family of macros to get a nonorthogonal design.

We can see what orthogonal designs with three-level factors are available in 36 runs as follows. The \%MktOrth macro creates a data set with information about the orthogonal designs that the \%MktEx macro knows how to make. This macro produces a data set called MKTDESLEV that contains variables n, the number of runs; Design, a description of the design; and Reference, which contains the type of the design. In addition, there are variables: x1, the number of 1-level factors (which is always zero); x2, the number of 2 -level factors; x 3 , the number of 3 -level factors; and so on. We specify that \%MktOrth only output $\mathrm{n}=36$ run designs and sort this list so that designs with the most three-level factors are printed first.

```
%mktorth(range=n=36)
proc sort data=mktdeslev out=list(drop=x:);
    by descending x3;
    run;
proc print; run;
```


| 16 | 36 | 2 | $* *$ | 3 | 3 | $* *$ | 2 | 6 | $* *$ | 3 |
| :--- | :--- | :--- | :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | | Orthogonal Array |
| :--- |
| 17 |

There are 13 two-level factors available in 36 runs, and we need 15 , only two more, so we would expect to make a pretty good nonorthogonal design.

Designing the Choice Experiment

The following code creates a design.

```
%let m = 6; /* m alts including constant */
%let mm1 = %eval(&m - 1); /* m - 1 */
%let n = 18; /* number of choice sets per person */
%let blocks = 2; /* number of blocks */
%mktex(3 ** 15 2, n=&n * &blocks, seed=151)
```

The specification $3 * * 15$ requests a design with 15 factors, $\mathrm{x} 1-\mathrm{x} 15$, each with three levels. This specification also requests a two-level factor (the 2 following the $3 * *$ 15). This is because 36 choice sets may be too many for one person to rate, so we may want to block the design into two blocks, and we can use a two-level factor to do this. A design with $18 \times 2=36$ runs is requested, which will mean 36 choice sets. A random number seed is explicitly specified so we will be able to reproduce these exact results.*

Here are some of the log messages.

```
NOTE: Generating the candidate set.
NOTE: Performing 20 searches of 81 candidates, full-factorial=28,697,814.
NOTE: Generating the orthogonal array design, n=36.
```

The macro searches a fractional-factorial candidate set of 81 runs, and it also generates a tabled design in 36 runs to try as part of the design. This will be explained in more detail on page 142.

[^25]Here are some of the results from the \%MktEx macro.

| Design | Vacation Example | | | |
| :---: | :---: | :---: | :---: | :---: |
| | Row, Col | Current D-Efficiency | Best D-Efficiency | Notes |
| 1 | Start | 82.2324 | 82.2324 | Can |
| 1 | End | 82.2324 | | |
| 2 | Start | 78.4867 | | Tab, Ran |
| 2 | 615 | 82.6447 | 82.6447 | |
| 2 | $7 \quad 15$ | 82.7537 | 82.7537 | |
| 2 | 715 | 83.2331 | 83.2331 | |
| 2 | 815 | 84.6947 | 84.6947 | |
| . | | | | |
| 2 | End | 98.7672 | | |
| 3 | Start | 81.7827 | | Tab,Ran |
| 3 | 1115 | 98.9438 | 98.9438 | |
| 3 | End | 98.9438 | | |
| 11 | Start | 82.7854 | | Tab, Ran |
| 11 | End | 97.8091 | | |
| 12 | Start | 53.6699 | | Ran, Mut, Ann |
| 12 | End | 92.8450 | | |
| 21 | Start | 48.8411 | | Ran, Mut, Ann |
| 21 | End | 93.1010 | | |

Design Search History

| Design | Row, Col | Current D-Efficiency | Best | |
| :---: | :---: | :---: | :---: | :---: |
| | | | D-Efficiency | Notes |
| 0 | Initial | 98.9438 | 98.9438 | Ini |
| 1 | Start | 76.7520 | | Tab, Ran |
| 1 | End | 98.6368 | | |
| 2 | Start | 74.2345 | | Tab, Ran |
| 2 | End | 98.8567 | | |
| - | | | | |
| - | | | | |
| - | | | | |
| 51 | Start | 80.4775 | | Tab, Ran |
| 51 | 415 | 98.9438 | 98.9438 | |
| 51 | End | 98.9438 | | |
| - | | | | |
| - | | | | |
| - | | | | |
| 90 | Start | 78.6219 | | Tab, Ran |
| 90 | 1415 | 98.9438 | 98.9438 | |
| 90 | End | 98.9438 | | |
| - | | | | |
| - | | | | |
| - | | | | |
| 138 | Start | 81.4007 | | Tab, Ran |
| 138 | 3215 | 98.9438 | 98.9438 | |
| 138 | End | 98.9438 | | |

NOTE: Stopping since it appears that no improvement is possible.
Vacation Example

Design Refinement History

Current Best
Design Row,Col D-Efficiency D-Efficiency Notes

| 0 | Initial | 98.9438 | 98.9438 Ini |
| :---: | :---: | :---: | :---: |

| 1 | Start | 97.5641 | | Pre, Mut,Ann | |
| :--- | ---: | ---: | ---: | ---: | :--- |
| 1 | 14 | 13 | 98.9438 | 98.9438 | |
| 1 | 15 | 1 | 98.9438 | 98.9438 | |
| 1 | 18 | 13 | 98.9438 | 98.9438 | |
| 1 | 21 | 4 | 98.9438 | 98.9438 | |
| 1 | | End | 97.9925 | | |
| . | | | | | |
| . | | | | | Pre,Mut, Ann |
| . | | | | | |
| | | | 96.3118 | | |
| 9 | Start | 98.9438 | 98.9438 | | |
| 9 | 14 | 10 | 6 | 98.9438 | 98.9438 |

NOTE: Stopping since it appears that no improvement is possible.

Vacation Example

The OPTEX Procedure

Class Level Information

Class Levels -Values-

| x 1 | 3 | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- |
| x 2 | 3 | 1 | 2 | 3 |
| x 3 | 3 | 1 | 2 | 3 |
| x 4 | 3 | 1 | 2 | 3 |
| x 5 | 3 | 1 | 2 | 3 |
| x 6 | 3 | 1 | 2 | 3 |
| x 7 | 3 | 1 | 2 | 3 |
| x 8 | 3 | 1 | 2 | 3 |
| x 9 | 3 | 1 | 2 | 3 |
| x 10 | 3 | 1 | 2 | 3 |
| x 11 | 3 | 1 | 2 | 3 |
| x 12 | 3 | 1 | 2 | 3 |
| x 13 | 3 | 1 | 2 | 3 |
| x 14 | 3 | 1 | 2 | 3 |
| x 15 | 3 | 1 | 2 | 3 |
| x 16 | 2 | 1 | 2 | |

Vacation Example
The OPTEX Procedure

The \%MktEx macro used 32 seconds and found a design that is almost 99% efficient. (Differences in the fourth decimal place between the iteration history and the final table, in this case 98.9438 versus 98.9437, are due to rounding error and differences in ridging strategies between the macro and PROC OPTEX and are nothing to worry about.)

The \%MktEx Macro Algorithm

The \%MktEx macro creates efficient linear experimental designs using several approaches. The macro will try to create a tabled design, it will search a set of candidate runs (rows of the design), and it will use a coordinate-exchange algorithm using both random initial designs and also a partial tabled design initialization. The macro stops if at any time it finds a perfect, 100% efficient, orthogonal and balanced design. This first phase is the algorithm search phase. In it, the macro determines which approach is working best for this problem. At the end of this phase, the macro chooses the method that has produced the best design and performs another set of iterations using exclusively the chosen approach. Finally, the macro performs a third set of iterations where it takes the best design it found so far and tries to improve it.

The $\% \mathrm{MktEx}$ macro can directly generate, without iterations, thousands of different $100 \% D$-efficient, orthogonal and balanced, tabled designs. It does this using its design catalog and many different general and ad hoc algorithms. The closest design that the macro knows how to make for this problem is $2^{1} 3^{13}$ in 36 runs.

The candidate-set search has two parts. First, either PROC PLAN is run to create a full-factorial design for small problems, or PROC FACTEX is run to create a fractional-factorial design for large problems. Either way, this larger design is a candidate set that in the second part is searched by PROC OPTEX using the modified Fedorov algorithm. A design is built from a selection of the rows of the candidate set (Fedorov, 1972; Cook and Nachtsheim, 1980). The modified Fedorov algorithm considers each run in the design and each candidate run. Candidate runs are swapped in and design runs are swapped out if the swap improves D-efficiency. In this case, since the full-factorial design is large (over 28 million runs), the candidate-set search step calls PROC FACTEX to make the candidate set and then PROC OPTEX to do the search. The Can line of the iteration history shows that this step found a design that was 82.2324% efficient.

Next, the \%MktEx macro uses the coordinate-exchange algorithm, based on Meyer and Nachtsheim (1995). The coordinate-exchange algorithm considers each level of each factor, and considers the effect on D-efficiency of changing a level $(1 \rightarrow 2$, or $1 \rightarrow 3$, or $2 \rightarrow 1$, or $2 \rightarrow 3$, or $3 \rightarrow 1$, or $3 \rightarrow 2$, and so on). Exchanges that increase efficiency are performed. In this step, the macro first tries to initialize the
design with a tabled design (Tab) and a random design (Ran) both. In this case, 14 of the 16 columns can be initialized with 14 columns of $2^{4} 3^{13}$, and the other two columns are randomly initialized. Levels that are not orthogonally initialized may be exchanged for other levels if the exchange increases efficiency. For example, the iteration history for this example shows that the macro exchanged levels in row 6 column 15 , row 7 column $15, \ldots$, row 11 column 15 , and so on.

The initialization may be more complicated in other problems. Say you asked for the design $4^{1} 5^{1} 3^{4}$ in 18 runs. The macro would use the tabled design $3^{6} 6^{1}$ in 18 runs to initialize the three-level factors orthogonally, and the five-level factor with the six-level factor coded down to five levels (and hence unbalanced). The four-level factor would be randomly initialized. The macro would also try the same initialization but with a random rather than unbalanced initialization of the five-level factor, as a minor variation on the first initialization. In the next initialization variation, the macro would use a fully random initialization. If the number of runs requested were smaller than the number or runs in the initial tabled design, the macro would initialize the design with just the first n rows of the tabled design. Similarly, if the number of runs requested were larger than the number or runs in the initial tabled design, the macro would initialize part of the design with the orthogonal tabled design and the remaining rows and columns randomly. The coordinate-exchange algorithm considers each level of each factor that is not orthogonally initialized, and it exchanges a level if the exchange improves D-efficiency. When the number or runs in the tabled design does not match the number of runs desired, none of the design is initialized orthogonally.

The coordinate-exchange algorithm is not restricted by having a candidate set and hence can potentially consider any possible design. In practice, however, both the candidate-set-based and coordinateexchange algorithms consider only a tiny fraction of the possible designs. When the number of runs in the full-factorial design is very small (say 100 or 200 runs), the modified Fedorov algorithm and coordinate exchange algorithms usually work equally well. When the number of runs in the full-factorial design is small (up to several thousand), the modified Fedorov algorithm is often superior to coordinate exchange. When the full-factorial design is larger, coordinate exchange is usually the superior approach. However, heuristics like these are sometimes wrong, which is why the macro tries both methods to see which one is really best for each problem.

In the first attempt at coordinate exchange (Design 2), the macro found a design that is 98.7672% efficient (Design 2, End). In design 3 and subsequent designs, the macro uses this same approach, but different random initializations of the remaining two columns. In design 3, the $\% \mathrm{MktEx}$ macro finds a design that is 98.9438% efficient. Designs 12 through 21 use a purely random initialization and simulated annealing and are not as good as previous designs. During these iterations, the macro is considering exchanging every level of every factor with all of the other levels, one level of one factor at a time.

At this point, the \%MktEx macro determines that the combination of tabled and random initialization is working best and tries more iterations using that approach. It starts by printing the initial (Ini) best efficiency of 98.9438 . In designs $51,90,138$, and others not shown, the macro finds a design that is 98.9438% efficient. After iteration 138, the macro stops since it keeps finding the same design over and over. This does not necessarily mean the macro found the optimal design; it means it found a very attractive (perhaps local) optimum, and it is unlikely it will do better using this approach.

Next, the \%MktEx macro tries to improve the best design it found previously. Using the previous best design as an initialization (Pre), and random mutations of the initialization (Mut) and simulated annealing (Ann), the macro uses the coordinate-exchange algorithm to try to find a better design. This step is important because the best design that the macro found may be an intermediate design and not be the final design at the end of an iteration. Sometimes the iterations deliberately make the designs
less efficient, and sometimes, the macro never finds a design as efficient or more efficient again. Hence it is worthwhile to see if the best design found so far can be improved. In this case the macro fails to improve the design. At the end, PROC OPTEX is called to print the levels of each factor and the final D-efficiency.

Random mutations add random noise to the initial design before iterations start (levels are randomly changed). This may eliminate the perfect balance that will often be in the initial design. By default, random mutations are used with designs with fully random initializations and in the design refinement step; orthogonal initial designs are not mutated.

Simulated annealing allows the design to get worse occasionally but with decreasing probability as the number of exchanges increases. For design 1, for the first level of the first factor, by default, the macro may execute an exchange (say change a 2 to a 1), that makes the design worse, with probability 0.05 . As more and more exchanges occur, this probability decreases so at the end of the processing of design 1, exchanges that decrease efficiency are hardly ever done. For design 2, this same process is repeated, again starting by default with an annealing probability of 0.05 . This often helps the algorithm overcome local efficiency maxima. To envision this, imagine that you are standing on a molehill next to a mountain. The only way you can start going up the mountain is to first step down off the molehill. Once you are on the mountain, you may occasionally hit a dead end, where all you can do is step down and look for a better place to continue going up. Simulated annealing, by occasionally stepping down the efficiency function, often allows the macro to go farther up it than it would otherwise. The simulated annealing is why you will sometimes see designs getting worse in the iteration history. However, the macro keeps track of the best design, not the final design in each step. By default, annealing is used with designs with fully random initializations and in the design refinement step; simulated annealing is not used with orthogonal initial designs.

For this example, the $\% \mathrm{MktEx}$ macro ran in around 30 seconds. If an orthogonal design had been available, run time would have been a few seconds. If the fully random initialization method had been the best method, run time might have been on the order of 10 to 45 minutes. Since the tabled initialization worked best, run time was much shorter. While it is possible to construct huge problems that will take much longer, for any design that most marketing researchers are likely to encounter, run time should be less than one hour. One of the macro options, maxtime=, ensures this.

Examining the Design

Before you use a design, you should always look at its characteristics. We will use the \%MktEval macro.

\%mkteval;

Here are some of the results.

| | x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | x9 | x 1 | | x12 | x13 | x 14 | x15 | x16 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| x1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| x2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| x3 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| x4 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| x5 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| x6 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| x7 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| x8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| x9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| x10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| x11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| x12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| x13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0.25 | 0.25 | 0 |
| x14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.25 | 1 | 0.25 | 0 |
| x15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.25 | 0.25 | 1 | 0 |
| x16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| | | | | | | | mara | ion | Exan
 Fre | le | | | | | | |
| | | There are 0 Canonical Correlations Greater Than 0.316
 * - Indicates Unequal Frequencies | | | | | | | | | | | | | | |

Frequencies

| x 1 | 12 | 12 | 12 |
| :--- | :--- | :--- | :--- |
| x 2 | 12 | 12 | 12 |
| x 3 | 12 | 12 | 12 |
| x 4 | 12 | 12 | 12 |
| x 5 | 12 | 12 | 12 |
| x 6 | 12 | 12 | 12 |
| x 7 | 12 | 12 | 12 |
| x 8 | 12 | 12 | 12 |
| x 9 | 12 | 12 | 12 |
| x 10 | 12 | 12 | 12 |
| x 11 | 12 | 12 | 12 |
| x 12 | 12 | 12 | 12 |
| x 13 | 12 | 12 | 12 |
| x 14 | 12 | 12 | 12 |
| x 15 | 12 | 12 | 12 |
| x 16 | 18 | 18 | |

This design looks great! The factors x1-x13 form an orthogonal design, x14 and x15 are slightly correlated with each other and with x 13 . The blocking factor x 16 is orthogonal to all the other factors. All of the factors are perfectly balanced. The N-Way frequencies show that each choice set appears once.

What if there had been some larger canonical correlations? Would this be a problem? That depends. You have to decide this for yourself based on your particular study. You do not want large correlations between your most important factors. If you have high correlations between the wrong factors, you can swap them with other factors with the same number of levels, or try to make a new design with a different seed, or change the number of choice sets, and so on. While this design looks great, we should make one minor adjustment based on these results. Since our correlations are in the factors we originally planned to make price factors, we should change our plans slightly and use those factors for less important attributes like scenery.

You can run the \%MktEx macro to provide additional information about a design, for example asking to examine the information matrix (I) and its inverse (V), which is the variance matrix of the parameter estimates. You hope to see that all of the off-diagonal elements of the variance matrix, the covariances, are small relative to the variances on the diagonal. When options=check is specified, the macro evaluates an initial design instead of generating a design. The option init=randomized names the design to evaluate, and the examine= option displays the information and variance matrices. The blocking variable was dropped.

```
%mktex(3 ** 15, n=&n * &blocks, init=randomized(drop=x16),
    options=check, examine=i v)
```

Here is a small part of the output.

Vacation Example

The OPTEX Procedure

| | Information Matrix | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | x112 | x 121 | x 122 | x131 | x132 | x141 | x142 | x151 | x152 |
| x 112 | 36 | -0 | 0 | 0 | -0 | -0 | 0 | -0 | -0 |
| x121 | -0 | 36 | 0 | 0 | -0 | 0 | 0 | 0 | -0 |
| x122 | 0 | 0 | 36 | 0 | -0 | 0 | 0 | -0 | -0 |
| x131 | 0 | 0 | 0 | 36 | 0 | 9 | 0 | 9 | 0 |
| x132 | -0 | -0 | -0 | 0 | 36 | 0 | -9 | 0 | -9 |
| x141 | -0 | 0 | 0 | 9 | 0 | 36 | 0 | 9 | 0 |
| x142 | 0 | 0 | 0 | 0 | -9 | 0 | 36 | 0 | 9 |
| x151 | -0 | 0 | -0 | 9 | 0 | 9 | 0 | 36 | 0 |
| x152 | -0 | -0 | -0 | 0 | -9 | 0 | 9 | 0 | 36 |

This design still looks good. The D-efficiency for the design excluding the blocking factor is 98.9099%. We can see that the nonorthogonality between x13-x15 make their variances larger than the other factors (0.0309 versus 0.0278).

This variance matrix is a little hard to look at. All of the 0.0000 and -0.0000 's tend to obscure the nonzeros. We can use ODS along with PROC FORMAT and PROC PRINT to make a better display. The variance matrix is excluded from the printed output and instead is output to a SAS data set. The persist option is used since the ODS statements need to persist through the macro steps until the macro reaches the PROC OPTEX step. In SAS 9 and previous SAS versions, the match_all option must be specified with persist on the ods output statement. PROC FORMAT is used to construct a format so that the values within rounding error of zero print as ' 0 '. PROC PRINT is called to print the results. The label statement gives the row ID variable, rowname a null header.

```
    ods exclude 'variance matrix'(persist);
    ods output 'variance matrix'(persist match_all)=v;
    %mktex(3 ** 15, n=&n * &blocks, init=randomized(drop=x16),
        options=check, examine=v)
    proc format; value zer -1e-8 - 1e-8 = , 0 '; run;
proc print label data=v(drop=_:);
    format _numeric_ zer7.4;
    label rowname = '00'x;
    id rowname;
    run;
```

| | Vacation Example | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Intercept | | x 12 x | x 21 | x22 | x31 | x32 | x41 |
| Intercept | 0.0278 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| x 11 | 0 | 0.0278 | 0 | 0 | 0 | 0 | 0 | 0 |
| x 12 | 0 | 0 | 0.0278 | 0 | 0 | 0 | 0 | 0 |
| x21 | 0 | 0 | 0 | 0.0278 | 0 | 0 | 0 | 0 |
| x22 | 0 | 0 | 0 | 0 | 0.0278 | 80 | 0 | 0 |
| x31 | 0 | 0 | 0 | 0 | 0 | 0.0278 | 0 | 0 |
| x32 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0278 | 0 |
| x41 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0278 |
| | x122 | x131 | x132 | x141 | | x142 | x151 | x152 |
| x112 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 |
| x 121 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 |
| x122 | 0.0278 | 0 | 0 | 0 | | 0 | 0 | 0 |
| x131 | 0 | 0.0309 | 0 | -0.0 | 062 | 0 | -0.0062 | 0 |
| x132 | 0 | 0 | 0.0309 | 90 | | 0.0062 | 0 | 0.0062 |
| x141 | 0 | -0.0062 | 0 | 0.0 | 309 | 0 | -0.0062 | 0 |
| x142 | 0 | 0 | 0.0062 | 20 | | 0.0309 | 0 | -0.0062 |
| x151 | 0 | -0.0062 | 0 | -0.0 | 062 | 0 | 0.0309 | 0 |
| x152 | 0 | 0 | 0.0062 | 20 | | -0.0062 | 0 | 0.0309 |

These next steps use the \%MktLab macro to reassign the variable names, store the design in a permanent SAS data set, SASUSER.BLOCKDES, and then use the \%MktEx macro to check the results. The vars= option provides the new variable names: the first variable (originally x1) becomes x 1 (still), ..., the fifth variable (originally x5) becomes x5 (still), the sixth variable (originally x6) becomes x11, ... the tenth variable (originally x10) becomes x 15 , the eleventh through fifteenth original variables become $\mathrm{x} 6, \mathrm{x} 9, \mathrm{x} 7$, $\mathrm{x} 8, \mathrm{x} 10$, and finally the last variable becomes Block. We made the correlated variables correspond to the least important attributes in different alternatives (in this case the scenery factors
for Alaska, Mexico, and Maine).
\%mktlab(data=randomized, vars=x1-x5 x11-x15 x6 x9 x7 x8 x10 Block, out=sasuser.blockdes)
\%mkteval(blocks=block)
Here is the output from the \%MktLab macro, which shows the correspondence between the original and new variable names.

```
Variable Mapping:
    x1 : x1
    x2 : x2
    x3 : x3
    x4 : x4
    x5 : x5
    x6 : x11
    x7 : x12
    x8 : x13
    x9 : x14
    x10 : x15
    x11 : x6
    x12 : x9
    x13 : x7
    x14 : x8
    x15 : x10
    x16 : Block
```

Here is some of the output from the $\% \mathrm{MktEval}$ macro.

| x6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| x9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| x7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0.25 | 0.25 |
| x8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.25 | 1 | 0.25 |
| x 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.25 | 0.25 | 1 |
| Vacation ExampleSummary of Frequencies | | | | | | | | | | | | | | | | |
| There are 0 Canonical Correlations Greater Than 0.316 | | | | | | | | | | | | | | | | |

Frequencies

| Block | 1818 |
| :---: | :---: |
| x 1 | 121212 |
| x 2 | 121212 |
| x3 | 121212 |
| x 4 | 121212 |
| x5 | 121212 |
| x11 | 121212 |
| x12 | 121212 |
| x 13 | 121212 |
| x14 | 121212 |
| x15 | 121212 |
| x6 | 121212 |
| x9 | 121212 |
| x7 | 121212 |
| x8 | 121212 |
| x10 | 121212 |
| Block x1 | 666666 |
| Block x2 | 666666 |
| Block x3 | 666666 |
| Block x4 | 666666 |
| Block x5 | 666666 |
| Block x11 | 666666 |
| Block x12 | 666666 |
| Block x13 | 666666 |
| Block x14 | 666666 |
| Block x15 | 666666 |
| Block x6 | 666666 |
| Block x9 | 666666 |
| Block x7 | 666666 |
| Block x8 | 666666 |
| Block x10 | 666666 |

```
    x1 x2 444444444
    x1 x3 444444444
    x1 x4 444444444
    .
    .
    x9 x7 444444444
    x9 x8 444444444
    x9 x10 444444444
    * x7 x8 633336363
    * x7 x10 6 3 3 3 36363
    * x8 x10 633363336
    N-Way 
```


Generating the Questionnaire

This next DATA step prints the questionnaires. They are then copied and the data are collected.

```
title;
proc sort data=sasuser.blockdes; by block; run;
options ls=80 ps=60 nodate nonumber;
data _null_;
    array dests[&mm1] $ 10 _temporary_ ('Hawaii' 'Alaska' 'Mexico'
                            'California' 'Maine');
    array prices[3] $ 5 _temporary_ ('$999' '$1249' '$1499');
    array scenes[3] $ 13 _temporary_
        ('the Mountains' 'a Lake' 'the Beach');
    array lodging[3] $ 15 _temporary_
            ('Cabin' 'Bed & Breakfast' 'Hotel');
    array x[15];
    file print linesleft=ll;
    set sasuser.blockdes;
    by block;
    if first.block then do;
        choice = 0;
        put _page_;
        put @50 'Form: ' block ' Subject: _-_-----' //;
        end;
    choice + 1;
```

```
if ll < 19 then put _page_;
put choice 2. ') Circle your choice of '
    'vacation destinations:' /;
do dest = 1 to &mm1;
    put , , dest 1. ') ' dests[dest]
        +(-1) ,, staying in a ' lodging[x[dest]]
        'near ' scenes[x[&mm1 + dest]] +(-1) ',' /
        , with a package cost of '
        prices[x[2 * &mm1 + dest]] +(-1) '.' /;
    end;
put " &m) Stay at home this year." /;
run;
```

In this design, there are five destinations, and each destination has three attributes. Each destination name is accessed from the array dests. Note that destination is not a factor in the design; it is a bin into which the attributes are grouped. The factors in the design are named in the statement array x [15], which is a short-hand notation for array $\mathrm{x}[15] \mathrm{x} 1-\mathrm{x} 15$. The first five factors are used for the lodging attribute of the five destinations. The actual descriptions of lodging are accessed by lodging[x[dest]]. The variable Dest varies from 1 to 5 destinations, so x [dest] extracts the levels for the Dest destination. Similarly for scenery, scenes [x[\&mm1 + dest]] extracts the descriptions of the scenery. The index \&mm1 + dest accesses factors 6 through 10, and $x[\& m m 1+$ dest] indexes the scenes array. For prices, prices[x[2 * \&mm1 + dest]], the index $2 * \& m m 1+$ dest accesses the factors 11 through 15 . Here are the first two choice sets.

Form: 1 Subject: \qquad

1) Circle your choice of vacation destinations:
2) Hawaii, staying in a Cabin near a Lake, with a package cost of $\$ 999$.
3) Alaska, staying in a Cabin near a Lake, with a package cost of $\$ 1249$.
4) Mexico, staying in a Hotel near the Mountains, with a package cost of $\$ 1499$.
5) California, staying in a Bed \& Breakfast near a Lake, with a package cost of $\$ 1499$.
6) Maine, staying in a Cabin near the Mountains, with a package cost of $\$ 1499$.
7) Stay at home this year.
8) Circle your choice of vacation destinations:
9) Hawaii, staying in a Hotel near the Mountains, with a package cost of $\$ 1499$.
10) Alaska, staying in a Hotel near a Lake, with a package cost of $\$ 1499$.
11) Mexico, staying in a Hotel near the Beach, with a package cost of $\$ 1499$.
12) California, staying in a Hotel near the Mountains, with a package cost of $\$ 1499$.
13) Maine, staying in a Bed \& Breakfast near the Beach, with a package cost of $\$ 1499$.
14) Stay at home this year.

In practice, data collection may be much more elaborate than this. It may involve art work or photographs, and the choice sets may be presented and the data may be collected through personal interview or over the web. However the choice sets are presented and the data collected, the essential ingredients remain the same. Subjects are shown sets of alternatives and asked to make a choice, then they go on to the next set.

Entering and Processing the Data

Here are some of the input data. Data from a total of 200 subjects were collected, 100 per form.

```
data results;
        input Subj Form (choose1-choose&n) (1.) @@;
        datalines;
\begin{tabular}{rrlrrlrrr}
1 & 1 & 132513243441314151 & 2 & 2 & 455113115112113413 & 3 & 1 & 132153331144534151 \\
4 & 2 & 431133511214334413 & 5 & 1 & 133113141141321443 & 6 & 2 & 151114113242134413 \\
7 & 1 & 143553241511354153 & 8 & 2 & 451113513244113511 & 9 & 1 & 111124231141311151 \\
10 & 2 & 454113133144133513 & 11 & 1 & 153513231543321153 & 12 & 2 & 431153113414334513 \\
13 & 1 & 153514531414314151 & 14 & 2 & 431114113142133113 & 15 & 1 & 143513111511314151 \\
16 & 2 & 515113143414334313 & 17 & 1 & 133125333424111151 & 18 & 2 & 525113113111134111 \\
19 & 1 & 143113131141344211 & 20 & 2 & 435114333112433413 & 21 & 1 & 133113531543215143
\end{tabular}
```

These next steps prepare the design for analysis. We need to covert our linear design into a choice design. ${ }^{\dagger}$ We need to create a data set KEY that describes how the factors in our linear design will be used to make the choice design for analysis. The KEY data set will contain all of the factor names,

[^26]$\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3, \ldots \mathrm{x} 15$. We can run the \%MktKey macro to get these names in the SAS log, for cutting and pasting into the program without typing them.

```
%mktkey(x1-x15)
```

The \%MktKey macro produced the following line.

```
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15
```

This code makes the KEY data set and processes the design.

```
title 'Vacation Example';
data key;
    input Place $ 1-10 (Lodge Scene Price) ($);
    datalines;
Hawaii x1 x6 x11
Alaska x2 x7 x12
Mexico x3 x8 x13
California x4 x9 x14
Maine x5 x10 x15
Home
;
%mktroll(design=sasuser.blockdes, key=key, alt=place, out=rolled)
```

For analysis, the design will have four factors as shown by the variables in the data set KEY. Place is the alternative name; its values are directly read from the KEY in-stream data. Lodge is an attribute whose values will be constructed from the SASUSER.BLOCKDES data set. Lodge is created from x1 for Hawaii, x2 for Alaska, ..., x5 for Maine, and no attribute for Home. Similarly, Scene is created from $\mathrm{x} 6-\mathrm{x} 10$, and Price is created from $\mathrm{x} 11-\mathrm{x} 15$. The macro $\% \mathrm{MktRoll}$ is used to create the data set ROLLED from SASUSER.BLOCKDES using the mapping in KEY and using the variable Place as the alternative ID variable.

The macro warns us:

```
WARNING: The variable block is in the DESIGN= data set but not
    the KEY= data set.
```

While this message could indicate a problem, in this case it does not. The variable Block in the design= sasuser.blockdes data set will not appear in the final design. The purpose of the variable Block (sorting the design into blocks) has already been achieved. You can specify options=nowarn if you want to suppress this warning.

These next steps show the results for the first two choice sets. The data set is converted from a design matrix with one row per choice set to a design matrix with one row per alternative per choice set.

```
proc print data=sasuser.blockdes(obs=2);
    id Block;
    var x1-x15;
    run;
proc print data=rolled(obs=12); run;
```


The next steps assign formats, convert the variable Price to contain actual prices, and recode the constant alternative.

```
proc format;
    value price 1 = ' 999' 2 = '1249'
            3 = '1499' 0 = , 0';
    value scene 1 = 'Mountains' 2 = 'Lake'
            3 = 'Beach' 0 = 'Home';
    value lodge 1 = 'Cabin' 2 = 'Bed & Breakfast'
            3 = 'Hotel' 0 = 'Home';
    run;
data rolled2;
    set rolled;
    if place = 'Home' then do; lodge = 0; scene = 0; price = 0; end;
    price = input(put(price, price.), 5.);
    format scene scene. lodge lodge.;
    run;
proc print data=rolled2(obs=12); run;
```

| | | Vacation Example | | | |
| ---: | ---: | :--- | :--- | :--- | ---: |
| Obs | Set | Place | Lodge | Scene | Price |
| | | | | | |
| 1 | 1 | Hawaii | Cabin | Lake | 999 |
| 2 | 1 | Alaska | Cabin | Lake | 1249 |
| 3 | 1 | Mexico | Hotel | Mountains | 1499 |
| 4 | 1 | California | Bed \& Breakfast | Lake | 1499 |
| 5 | 1 | Maine | Cabin | Mountains | 1499 |
| 6 | 1 | Home | Home | Home | 0 |
| 7 | 2 | Hawaii | Hotel | Mountains | 1499 |
| 8 | 2 | Alaska | Hotel | Lake | 1499 |
| 9 | 2 | Mexico | Hotel | Beach | 1499 |
| 10 | 2 | California | Hotel | Mountains | 1499 |
| 11 | 2 | Maine | Bed \& Breakfast | Beach | 1499 |
| 12 | 2 | Home | Home | Home | 0 |

It is not necessary to recode the missing values for the constant alternative. In practice, we usually will not do this step. However, for this first analysis, we will want all nonmissing values of the attributes so we can see all levels in the final printed output. We also recode Price so that for a later analysis, we can analyze Price as a quantitative effect. For example, the expression put (price, price.) converts a number, say 2 , into a string (in this case '1249'), then the input function reads the string and converts it to a numeric 1249. Next, we use the macro \%MktMerge to combine the data and design and create the variable c, indicating whether each alternative was a first choice or a subsequent choice.

```
%mktmerge(design=rolled2, data=results, out=res2, blocks=form,
    nsets=&n, nalts=&m, setvars=choose1-choose&n)
proc print data=res2(obs=12); run;
```

This macro takes the design=rolled2 experimental design, merges it with the data=result data set, creating the out=res2 output data set. The RESULTS data set contains the variable Form that contains the block number. Since there are two blocks, this variable must have values of 1 and 2 . This variable must be specified in the blocks= option. The experiment has nsets=\&n choice sets, nalts=6 alternatives, and the variables setvars=choose1-choose\&n contain the numbers of the chosen alternatives. The output data set RES2 has 21600 observations (200 subjects who each saw 18 choice sets with 6 alternatives). Here are the first two choice sets.

| Obs | Subj | Form | Set | Place | Lodge | Scene | Price |
| :---: | ---: | ---: | ---: | :--- | :--- | :--- | ---: |
| | | | | | | | |
| 1 | 1 | 1 | 1 | Hawaii | Cabin | Lake | 999 |
| 2 | 1 | 1 | 1 | Alaska | Cabin | Lake | 1249 |
| 3 | 1 | 1 | 1 | Mexico | Hotel | Mountains | 1499 |
| 4 | 1 | 1 | 1 | California | Bed \& Breakfast | Lake | 1499 |
| 2 | Maine | Cabin | Mountains | 1499 | 2 | | |
| 5 | 1 | 1 | 1 | Maine | Home | 0 | 2 |

| 7 | 1 | 1 | 2 | Hawaii | Hotel | Mountains | 1499 | 2 |
| ---: | ---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| 8 | 1 | 1 | 2 | Alaska | Hotel | Lake | 1499 | 2 |
| 9 | 1 | 1 | 2 | Mexico | Hotel | Beach | 1499 | 1 |
| 10 | 1 | 1 | 2 | California | Hotel | Mountains | 1499 | 2 |
| 11 | 1 | 1 | 2 | Maine | Bed \& Breakfast | Beach | 1499 | 2 |
| 12 | 1 | 1 | 2 | Home | Home | Home | 0 | 2 |
| | | | | | | | | |

Binary Coding

One more thing must be done to these data before they can be analyzed. The binary design matrix is coded for each effect. This can be done with PROC TRANSREG.

```
proc transreg design=5000 data=res2 nozeroconstant norestoremissing;
    model class(place / zero=none order=data)
        class(price scene lodge / zero=none order=formatted) /
        lprefix=0;
    output out=coded(drop=_type_ _name_ intercept);
    id subj set form c;
    run;
```

The design option specifies that no model is fit; the procedure is just being used to code a design. When design is specified, dependent variables are not required. Optionally, design can be followed by " $=n$ " where n is the number of observations to process at one time. By default, PROC TRANSREG codes all observations in one big group. For very large data sets, this can consume large amounts of memory and time. Processing blocks of smaller numbers of observations is more efficient. The option design $=5000$ processes observations in blocks of 5000 . For smaller computers, try something like design=1000.

The nozeroconstant and norestoremissing options are not necessary for this example but are included here because sometimes they are very helpful in coding choice models. The nozeroconstant option specifies that if the coding creates a constant variable, it should not be zeroed. The nozeroconstant option should always be specified when you specify design $=n$ because the last group of observations may be small and may contain constant variables. The nozeroconstant option is also important if you do something like coding by subj set because sometimes an attribute is constant within a choice set. The norestoremissing option specifies that missing values should not be restored when the out= data set is created. By default, the coded class variable contains a row of missing values for observations in which the class variable is missing. When you specify the norestoremissing option, these observations contain a row of zeros instead. This option is useful when there is a constant alternative indicated by missing values. Both of these options, like almost all options in PROC TRANSREG, can be abbreviated to three characters (noz and nor).

The model statement names the variables to code and provides information about how they should be coded. The specification class (place / ...) specifies that the variable Place is a classification variable and requests a binary coding. The zero=none option creates binary variables for all categories. The order=data option sorts the levels into the order they were first encountered in the data set. It is specified so 'Home' will be the last destination in the analysis, as it is in the data set. The class(price scene lodge / ...) specification names the variables Price, Scene, and Lodge as categorical variables and creates binary variables for all of the levels of all of the variables. The levels are sorted into order based on their formatted values. The lprefix $=0$ option specifies that when
labels are created for the binary variables, zero characters of the original variable name should be used as a prefix. This means that the labels are created only from the level values. For example, 'Mountains' and 'Bed \& Breakfast' are created as labels not 'Scene Mountains' and 'Lodge Bed \& Breakfast'.

An output statement names the output data set and drops variables that are not needed. These variables do not have to be dropped. However, since they are variable names that are often found in special data set types, PROC PHREG prints warnings when it finds them. Dropping the variables prevents the warnings. Finally, the id statement names the additional variables that we want copied from the input to the output data set. The next steps print the first coded choice set.

```
proc print data=coded(obs=6);
    id place;
    var subj set form c price scene lodge;
    run;
proc print data=coded(obs=6) label;
    var pl:;
    run;
proc print data=coded(obs=6) label;
    id place;
    var sc:;
    run;
proc print data=coded(obs=6) label;
    id place;
    var lo: pr:;
    run;
```

| Vacation Example | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Place | | Subj | Set | Form | c | Price | Scene | | |
| Hawaii | | 1 | 1 | 1 | 1 | 999 | Lake | Cab | |
| Alaska | | 1 | 1 | 1 | 2 | 1249 | Lake | Cab | |
| Mexico | | 1 | 1 | 1 | 2 | 1499 | Mountains | Ho | |
| California | | 1 | 1 | 1 | 2 | 1499 | Lake | Bed | Breakfast |
| Maine | | 1 | 1 | 1 | 2 | 1499 | Mountains | Cab | |
| Home | | 1 | 1 | 1 | 2 | 0 | Home | Hom | |
| | | | | Vacation Example | | | | | |
| Obs Ha | Hawaii | | Alaska | Mexico | California | | Maine | Home | Place |
| 1 | 1 | | 0 | 0 | | 0 | 0 | 0 | Hawaii |
| 2 | 0 | | 1 | 0 | | 0 | 0 | 0 | Alaska |
| 3 | 0 | | 0 | 1 | | 0 | 0 | 0 | Mexico |
| 4 | 0 | | 0 | 0 | | 1 | 0 | 0 | California |
| 5 | 0 | | 0 | 0 | | 0 | 1 | 0 | Maine |
| 6 | 0 | | 0 | 0 | | 0 | 0 | 1 | Home |

| | Vacation Example | | | | | |
| :--- | :---: | :---: | :---: | :---: | :--- | :---: |
| Place | Beach | Home | Lake | Mountains | Scene | |
| Hawaii | 0 | 0 | 1 | 0 | Lake | |
| Alaska | 0 | 0 | 1 | 0 | Lake | |
| Mexico | 0 | 0 | 0 | 1 | Mountains | |
| California | 0 | 0 | 1 | 0 | Lake | |
| Maine | 0 | 0 | 0 | 1 | Mountains | |
| Home | 0 | 1 | 0 | 0 | Home | |
| | Vacation Example | | | | | |

The coded design consists of binary variables for destinations Hawaii - Home, scenery Beach - Mountains, lodging Bed \& Breakfast - Hotel, and price $0-1499$. For example, in the last printed panel of the first choice set, the Bed \& Breakfast column has a 1 for Hawaii since Hawaii has B \& B lodging in this choice set. The Bed \& Breakfast column has a 0 for Alaska since Alaska does not have B \& B lodging in this choice set. These binary variables will form the independent variables in the analysis.

Note that we are fitting a model with generic attributes. Generic attributes are assumed to be the same for all alternatives. For example, our model is structured so that the part-worth utility for being on a lake will be the same for Hawaii, Alaska, and all of the other destinations. Similarly, the part-worth utilities for the different prices will not depend on the destinations. In contrast, on page 171, using the same data, we will code alternative-specific effects where the part-worth utilities are allowed by the model to be different for each of the destinations.

PROC PHREG is run in the usual way to fit the choice model.

```
proc phreg data=coded brief;
    model c*c(2) = &_trgind / ties=breslow;
    strata subj set;
    run;
```

We specify the \&_trgind macro variable for the model statement independent variable list. PROC TRANSREG automatically creates this macro variable. It contains the list of coded independent variables generated by the procedure. This is so you do not have to figure out what names TRANSREG created and specify them. In this case, PROC TRANSREG sets \&_trgind to contain the following list.

```
PlaceHawaii PlaceAlaska PlaceMexico PlaceCalifornia PlaceMaine PlaceHome
Price0 Price999 Price1249 Price1499 SceneBeach SceneHome SceneLake
SceneMountains LodgeBed___Breakfast LodgeCabin LodgeHome LodgeHotel
```

The analysis is stratified by subject and choice set. Each stratum consists of a set of alternatives from which a subject made one choice. In this example, each stratum consists of six alternatives, one of which was chosen and five of which were not chosen. (Recall that we used \%phchoice(on) on page 95 to customize the output from PROC PHREG.) The full table of the strata would be quite large with one line for each of the 3600 strata, so the brief option was specified on the PROC PHREG statement. This option produces a brief summary of the strata. In this case, we see there were 3600 choice sets that all fit one response pattern. Each consisted of 6 alternatives, 1 of which was chosen and 5 of which were not chosen. There should be one pattern for all choice sets in an example like this one - the number of alternatives, number of chosen alternatives, and the number not chosen should be constant.

| Testing Global Null Hypothesis: BETA=0 | | | |
| :--- | :--- | :--- | :--- |
| Test | Chi-Square | DF | Pr $>$ ChiSq |
| | | | |
| Likelihood Ratio | 6555.6923 | 11 | $<.0001$ |
| Score | 5631.6233 | 11 | $<.0001$ |
| Wald | 2472.1970 | 11 | $<.0001$ |

| | Multinomial Logit Parameter Estimates | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | DF | Parameter
 Estimate | Standard Error | Chi-Square | Pr > ChiSq |
| Hawaii | 1 | 3.54935 | 0.45628 | 60.5117 | $<.0001$ |
| Alaska | 1 | 0.78414 | 0.46602 | 2.8312 | 0.0924 |
| Mexico | 1 | 2.77734 | 0.45831 | 36.7232 | <. 0001 |
| California | 1 | 2.22583 | 0.45901 | 23.5147 | <. 0001 |
| Maine | 1 | 1.39482 | 0.46227 | 9.1043 | 0.0026 |
| Home | 0 | 0 | . | . | . |
| 0 | 0 | 0 | . | . | . |
| 999 | 1 | 3.64557 | 0.09529 | 1463.7685 | <. 0001 |
| 1249 | 1 | 1.36008 | 0.08161 | 277.7719 | <. 0001 |
| 1499 | 0 | 0 | . | . | - |
| Beach | 1 | 1.44385 | 0.07158 | 406.9211 | $<.0001$ |
| Home | 0 | 0 | . | . | - |
| Lake | 1 | 0.78337 | 0.08023 | 95.3493 | $<.0001$ |
| Mountains | 0 | 0 | - | - | - |
| Bed \& Breakfast | 1 | 0.61542 | 0.05554 | 122.7790 | $<.0001$ |
| Cabin | 1 | -1.45370 | 0.06818 | 454.6628 | <. 0001 |
| Home | 0 | 0 | . | . | . |
| Hotel | 0 | 0 | - | - | - |

The destinations, from most preferred to least preferred, are Hawaii, Mexico, California, Maine, Alaska, and then stay at home. The utility for lower price is greater than the utility for higher price. The beach is preferred over a lake, which is preferred over the mountains. A bed \& breakfast is preferred over a hotel, which is preferred over a cabin. Notice that the coefficients for the constant alternative (home and zero price) are all zero. Also notice that for each factor, destination, price, scenery and accommodations, the coefficient for the last level is always zero. This will always occur when we code with zero=none. The last level of each factor is a reference level, and the other coefficients will have values relative to this zero. For example, all of the coefficients for the destination are positive relative to the zero for staying at home. For scenery, all of the coefficients are positive relative to the zero for the mountains. For accommodations, the coefficient for cabin is less than the zero for hotel, which is less than the coefficient for bed \& breakfast. In some sense, each class variable in a choice model with a constant alternative has two reference levels or two levels that will always have a zero coefficient: the level corresponding to the constant alternative and the level corresponding to the last level. At first, it is reassuring to run the model with all levels represented to see that all the right levels get zeroed. Later, we will see ways to eliminate these levels from the output.

Quantitative Price Effect

These data can also be analyzed in a different way. The Price variable can be specified directly as a quantitative variable, instead of with indicator variables for a qualitative price effect. You could print the independent variable list and copy and edit it, removing the Price indicator variables and adding Price.
\%put \&_trgind;
Alternatively, you could run PROC TRANSREG again with the new coding. We use this latter approach, because it is easier, and it will allow us to illustrate other options. In the previous analysis, there were a number of structural-zeros in the parameter estimate results due to the usage of the zero=none option in the PROC TRANSREG coding. This is a good thing, particularly for a first attempt at the analysis. It is good to specify zero=none and check the results and make sure you have the right pattern of zeros and nonzeros. Later, you can run again excluding some of the structural zeros. This time, we will explicitly specify the 'Home' level in the zero= option as the reference level so it will be omitted from the \&_trgind variable list. The first class specification specifies zero='Home' since there is one variable. The second class specification specifies zero='Home' 'Home' specifying the reference level for each of the two variables. The variable Price is designated as an identity variable. The identity transformation is the no-transformation option, which is used for variables that need to enter the model with no further manipulations. The identity variables are simply copied into the output data set and added to the \&_trgind variable list. The statement label price = 'Price' is specified to explicitly set a label for the identity variable price. This is because we explicitly modified PROC PHREG output using \%phchoice(on) so that the rows of the parameter estimate table would be labeled only with variable labels not variable names. A label for Price must be explicitly specified in order for the output to contain a label for the price effect.

```
proc transreg design data=res2 nozeroconstant norestoremissing;
    model class(place / zero='Home' order=data) identity(price)
            class(scene lodge / zero='Home' 'Home' order=formatted) /
            lprefix=0;
    output out=coded(drop=_type_ _name_ intercept);
    label price = 'Price';
    id subj set form c;
    run;
proc phreg data=coded brief;
    model c*c(2) = &_trgind / ties=breslow;
    strata subj set;
    run;
```

Here are the results.

Multinomial Logit Parameter Estimates

| | DF | Parameter
 Estimate | Standard
 Error | Chi-Square | Pr > ChiSq |
| :--- | ---: | ---: | ---: | ---: | ---: |
| | | | | | |
| Hawaii | 1 | 14.72561 | 0.51256 | 825.3759 | $<.0001$ |
| Alaska | 1 | 12.03600 | 0.50269 | 573.2784 | $<.0001$ |
| Mexico | 1 | 13.95733 | 0.50734 | 756.8369 | $<.0001$ |
| California | 1 | 13.41320 | 0.50709 | 699.6586 | $<.0001$ |
| Maine | 1 | 12.65675 | 0.50650 | 624.4204 | $<.0001$ |
| Price | 1 | -0.00766 | 0.0001935 | 1567.3937 | $<.0001$ |
| Beach | 1 | 1.46904 | 0.06967 | 444.5790 | $<.0001$ |
| Lake | 1 | 0.74802 | 0.07753 | 93.0983 | $<.0001$ |
| Mountains | 0 | 0 | . | . | . |
| Bed \& Breakfast | 1 | 0.62936 | 0.05532 | 129.4274 | $<.0001$ |
| Cabin | 1 | -1.36891 | 0.06567 | 434.5382 | $<.0001$ |
| Hotel | 0 | 0 | . | . | . |

The results of the two different analyses are similar. The coefficients for the destinations all increase by a nonconstant amount (approximately 11.21) but the pattern is the same. There is still a negative effect for price. Also, the fit of this model is slightly worse, Chi-Square $=6493.6633$, compared to the previous value of 6555.6923 (bigger values mean better fit), because price has one fewer parameter.

Quadratic Price Effect

Previously, we saw price treated as a qualitative factor with two parameters and two $d f$, then we saw price treated as a quantitative factor with one parameter and one $d f$. Alternatively, we could treat price as quantitative and add a quadratic price effect (price squared). Like treating price as a qualitative factor, there are two parameters and two $d f$ for price. First, we create PriceL, the linear price term by centering the original price and dividing by the price increment (250). This maps (999, 1249, 1499) to $(-1,0,1)$. Next, we run PROC TRANSREG and PROC PHREG with the new price variables.

```
data res3;
    set res2;
    PriceL = price;
    if price then pricel = (price - 1249) / 250;
    run;
proc transreg design=5000 data=res3 nozeroconstant norestoremissing;
    model class(place / zero='Home' order=data)
        pspline(pricel / degree=2)
        class(scene lodge / zero='Home' 'Home' order=formatted) /
        lprefix=0;
    output out=coded(drop=_type_ _name_ intercept);
    label pricel = 'Price';
    id subj set form c;
    run;
```

The pspline or polynomial spline expansion with the degree $=2$ option replaces the variable PriceL with two coded variables, PriceL_1 (which is the same as the original PriceL) and PriceL_2 (which is PriceL squared). A degree=2 spline with no knots (neither knots= nor nknots= were specified) simply expands the variable into a quadratic polynomial.

```
proc phreg data=coded brief;
    model c*c(2) = &_trgind / ties=breslow;
    strata subj set;
    run;
```

This step produced the following results.

The fit is exactly the same as when price was treated as qualitative, Chi-Square $=6555.6923$. This is because both models are the same except for the different but equivalent $2 d f$ codings of price. The coefficients for the destinations in the two models differ by a constant 1.36008 . The coefficients for the factors after price are unchanged. The part-worth utility for $\$ 999$ is $-1.82278 \times(999-1249) / 250+$ $0.46270 \times((999-1249) / 250)^{2}=2.28548$, the part-worth utility for $\$ 1249$ is $-1.82278 \times(1249-$ $1249) / 250+0.46270 \times((1249-1249) / 250)^{2}=0$, and the part-worth utility for $\$ 1499$ is $-1.82278 \times$ $(1499-1249) / 250+0.46270 \times((1499-1249) / 250)^{2}=-1.36008$, which differ from the coefficients when price was treated as qualitative, by a constant -1.36008 .

Effects Coding

In the previous analyses, binary $(1,0)$ codings were used for the variables. The next analysis illustrates effects ($1,0,-1$) coding. The two codings differ in how the final reference level is coded. In binary coding, the reference level is coded with zeros. In effects coding, the reference level is coded with minus ones.

| | Binary Coding | | Effects Coding | |
| :---: | :---: | :---: | ---: | ---: |
| Levels | One | Two | One | Two |
| 1 | 1 | 0 | 1 | 0 |
| 2 | 0 | 1 | 0 | 1 |
| 3 | 0 | 0 | -1 | -1 |

In this example, we will use a binary coding for the destinations and effects codings for the attributes.
PROC TRANSREG can be used for effects coding. The effects option used inside the parentheses after class asks for a ($0,1,-1$) coding. The zero= option specifies the levels that receive the -1 's. PROC PHREG is run with almost the same variable list as before, except now the variables for the reference levels, those whose parameters are structural zeros are omitted. Refer back to the parameter estimates table on page 162, a few select lines of which are reproduced next:

| | (Some Lines in the) | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Multinomial Logit Parameter Estimates | | | | |
| | DF | Parameter Estimate | Standard Error | Chi-Square | Pr > ChiSq |
| Home | 0 | 0 | . | . | . |
| 0 | 0 | 0 | . | . | . |
| 1499 | 0 | 0 | . | . | . |
| Home | 0 | 0 | . | . | . |
| Mountains | 0 | 0 | . | . | . |
| Home | 0 | 0 | . | - | - |
| Hotel | 0 | 0 | . | . | . |

Notice that the coefficients for the constant alternative (home and zero price) are all zero. Also notice that for each factor, destination, price, scenery and accommodations, the coefficient for the last level is always zero. In some sense, each class variable in a choice model with a constant alternative has two reference levels or two levels that will always have a zero coefficient: the level corresponding to the constant alternative and the level corresponding to the last level. In some of the preceding examples, we eliminated the 'Home' levels by specifying zero=Home. Now we will see how to eliminate all of the structural zeros from the parameter estimate table.

First, for each classification variable, we change the level for the constant alternative to missing. (Recall that they were originally missing and we only made them nonmissing to deliberately produce the zero coefficients.) This will cause PROC TRANSREG to ignore those levels when constructing indicator variables. When you use this strategy, you must specify the norestoremissing option in the PROC

TRANSREG statement. During the first stage of design matrix creation, PROC TRANSREG puts zeros in the indicator variables for observations with missing class levels. At the end, it replaces the zeros with missings, "restoring the missing values." When the norestoremissing option is specified, missing values are not restored and we get zeros in the indicator variables for missing class levels. The DATA step if statements recode the constant levels to missing. Next, in PROC TRANSREG, the reference levels 'Mountains' and 'Hotel' are listed in the zero= option in the class specification.

```
data res4;
    set res3;
    if scene = 0 then scene = .;
    if lodge = 0 then lodge = .;
    run;
proc transreg design=5000 data=res4 nozeroconstant norestoremissing;
    model class(place / zero='Home' order=data)
        pspline(pricel / degree=2)
        class(scene lodge /
                effects zero='Mountains' 'Hotel' order=formatted) /
        lprefix=0;
    output out=coded(drop=_type_ _name_ intercept);
    label pricel = 'Price';
    id subj set form c;
    run;
```

The coded data and design matrix are printed for the first choice set. The coded design matrix begins with five binary columns for the destinations, 'Hawaii' through 'Maine'. There is not a column for the stay-at-home destination and the row for stay at home has all zeros in the coded variables. Next is the linear price effect, 'Price 1', consisting of 0,1 , and -1 . It is followed by the quadratic price effect, 'Price 2', which is 'Price 1' squared. Next are the scenery terms, effects coded. 'Beach' and 'Lake' have values of 0 and 1 ; -1 's in the fourth row for the reference level, 'Mountains'; and zeros in the last row for the stay-at-home alternative. Next are the lodging terms, effects coded. 'Bed \& Breakfast' and 'Cabin' have values of 0 and $1 ;-1$'s in the first, third and fourth row for the reference level, 'Hotel'; and zeros in the last row for the stay-at-home alternative.

```
proc print data=coded(obs=6) label; run;
```


Vacation Example

| Obs | Cabin | Place | Price | Scene | Lodge | Subj | Set | Form | C |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | Hawaii | -1 | Lake | Cabin | 1 | 1 | 1 | 1 |
| 2 | 1 | Alaska | 0 | Lake | Cabin | 1 | 1 | 1 | 2 |
| 3 | -1 | Mexico | 1 | Mountains | Hotel | 1 | 1 | 1 | 2 |
| 4 | 0 | California | 1 | Lake | Bed \& Breakfast | 1 | 1 | 1 | 2 |
| 5 | 1 | Maine | 1 | Mountains | Cabin | 1 | 1 | 1 | 2 |
| 6 | 0 | Home | 0 | | | 1 | 1 | 1 | 2 |

proc phreg data=coded brief;
model c*c(2) = \&_trgind / ties=breslow;
strata subj set;
run;

Vacation Example

The PHREG Procedure

Model Information

Data Set
Dependent Variable c Censoring Variable c Censoring Value(s) 2 Ties Handling BRESLOW

| Number of Observations Read | 21600 |
| :--- | :--- |
| Number of Observations Used | 21600 |

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

| | Number of | Number of | Chosen | Not |
| ---: | ---: | ---: | ---: | ---: |
| Pattern | Choices | Alternatives | Alternatives | Chosen |

$\begin{array}{lllll}1 & 3600 & 6 & 1 & 5\end{array}$
Convergence Status

| Convergence Status | |
| :---: | :---: |
| Convergence criterion (GCONV=1E-8) | satisfied |
| Model Fit Statistics | |
| Criterion | Without |
| Covariates | Covariates |
| -2 LOG L | 12900.668 |
| AIC | 12900.668 |
| SBC | 12900.668 |

It is instructive to compare the results of this analysis to the previous analysis on page 166. First, the model fit and chi-square statistics are the same indicating the models are equivalent. The coefficients for the destinations differ by a constant 0.46298 , the price coefficients are the same, the scenery coefficients differ by a constant -0.7424 , and the lodging coefficients differ by a constant 0.27943 . Notice that $0.46298+0+-0.74241+0.27943=0$, so the utility for each alternative is unchanged by the different but equivalent codings.

Alternative-Specific Effects

In all of the analyses presented so far in this example, we have assumed that the effects for price, scenery, and accommodations are generic or constant across the different destinations. Equivalently, we assumed that destination does not interact with the attributes. Next, we show a model with alternative-specific effects that does not make this assumption. Our new model allows for different price, scenery and lodging effects for each destination. The coding can be done with PROC TRANSREG and its syntax for interactions. Before we do the coding, let's go back to the design preparation stage and redo it in a more normal fashion so reference levels will be omitted from the analysis.

We start by creating the data set KEY. This step differs from the one we saw on page 155 only in that now we have a missing value for Place for the constant alternative.

```
data key;
    input Place $ 1-10 (Lodge Scene Price) ($);
    datalines;
\begin{tabular}{llll} 
Hawaii & x1 & x6 & x11 \\
Alaska & x2 & x7 & x12 \\
Mexico & x3 & x8 & x13 \\
California & x4 & x9 & x14 \\
Maine & x5 & x10 & x15 \\
. & . & . &. \\
; & & &
\end{tabular}
```

Next, we use the $\% M k t R o l l$ macro to process the design and the \%MktMerge macro to merge the design and data.

```
%mktroll(design=sasuser.blockdes, key=key, alt=place, out=rolled)
%mktmerge(design=rolled, data=results, out=res2, blocks=form,
    nsets=&n, nalts=&m, setvars=choose1-choose&n,
    stmts=%str(price = input(put(price, price.), 5.);
        format scene scene. lodge lodge.;))
proc print data=res2(obs=12); run;
```

The usage of the \%MktRoll macro is exactly the same as we saw on page 155 . The \%MktMerge macro usage differs from page 157 in that instead of assigning labels and recoding price in a separate DATA step, we now do it directly in the macro. The stmts= option is used to add a price $=$ assignment statement and format statement to the DATA step that merges the two data sets. The statements were included in a \%str () macro since they contain semicolons. Here are the first two choice sets.

Vacation Example

| Obs | Subj | Form | Set | Place | Lodge | Scene | Price | c |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 1 | Hawaii | Cabin | Lake | 999 | 1 |
| 2 | 1 | 1 | 1 | Alaska | Cabin | Lake | 1249 | 2 |
| 3 | 1 | 1 | 1 | Mexico | Hotel | Mountains | 1499 | 2 |
| 4 | 1 | 1 | 1 | California | Bed \& Breakfast | Lake | 1499 | 2 |
| 5 | 1 | 1 | 1 | Maine | Cabin | Mountains | 1499 | 2 |
| 6 | 1 | 1 | 1 | | . | . | . | 2 |
| 7 | 1 | 1 | 2 | Hawaii | Hotel | Mountains | 1499 | 2 |
| 8 | 1 | 1 | 2 | Alaska | Hotel | Lake | 1499 | 2 |
| 9 | 1 | 1 | 2 | Mexico | Hotel | Beach | 1499 | 1 |
| 10 | 1 | 1 | 2 | California | Hotel | Mountains | 1499 | 2 |
| 11 | 1 | 1 | 2 | Maine | Bed \& Breakfast | Beach | 1499 | 2 |
| 12 | 1 | 1 | 2 | | | | | 2 |

Notice that the attributes for the constant alternative are all missing. Next, we code with PROC TRANSREG. Since we are using missing values for the constant alternative, we must specify the norestoremissing option in the PROC TRANSREG statement. When you specify the norestoremissing option, the indicator variables created for missing class variable values contain all zeros instead of all missings. First, we specify the variable Place as a class variable. Next, we interact Place with all of the attributes, Price, Scene, and Lodge, to create the alternative-specific effects.

```
proc transreg design=5000 data=res2 nozeroconstant norestoremissing;
    model class(place / zero=none order=data)
            class(place * price place * scene place * lodge /
                zero=none order=formatted) / lprefix=0 sep=' , ', ';
    output out=coded(drop=_type_ _name_ intercept);
    id subj set form c;
    run;
proc print data=coded(obs=6) label noobs; run;
```

The coded design matrix consists of:

- five binary columns, 'Hawaii' through 'Maine', for the five destinations,
- fifteen binary columns (5 destinations times 3 prices), 'Alaska, 999' through 'Mexico, 1499', for the alternative-specific price effects,
- fifteen binary columns (5 destinations times 3 sceneries), 'Alaska, Beach' through 'Mexico, Mountains', for the alternative-specific scenery effects,
- fifteen binary columns (5 destinations times 3 lodgings), 'Alaska, Bed \& Breakfast' through 'Mexico, Hotel', for the alternative-specific lodging effects.

The entire sixth row of the coded design matrix, the stay-at-home alternative, consists of zeros.

| Mexico, Mexico, Mexico, Alaska, Alaska, Alaska,
 999 | 1249 | 1499 | Beach | Lake | Mountains | Beach | Lake | Mounta |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | | | | | | | | |

Hawaii, Hawaii, Hawaii, Maine, Maine, Maine, Mexico, Mexico, Mexico, Beach Lake Mountains Beach Lake Mountains Beach Lake Mountains

| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Alaska, | | | California, | | | | | |
| Bed \& | Alaska, | Alaska, | Bed \& | California, | California, | | | |
| Breakfast | Cabin | Hotel | Breakfast | Cabin | Hotel | | | |

| 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 |

Hawaii
Bed \& Hawaii, Hawaii, \& Maine, Maine, Bed \& Mexico, Mexico, Breakfast Cabin Hotel Breakfast Cabin Hotel Breakfast Cabin Hotel

| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

| Place | Price | Scene | Lodge | Subj | Set | Form | c |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hawaii | 999 | Lake | Cabin | 1 | 1 | 1 | 1 |
| Alaska | 1249 | Lake | Cabin | 1 | 1 | 1 | 2 |
| Mexico | 1499 | Mountains | Hotel | 1 | 1 | 1 | 2 |
| California | 1499 | Lake | Bed \& Breakfast | 1 | 1 | 1 | 2 |
| Maine | 1499 | Mountains | Cabin | 1 | 1 | 1 | 2 |
| | . | - | . | 1 | 1 | 1 | 2 |

Analysis proceeds by running PROC PHREG as before.

```
proc phreg data=coded brief;
    model c*c(2) = &_trgind / ties=breslow;
    strata subj set;
    run;
```


Vacation Example

The PHREG Procedure

Model Information

Testing Global Null Hypothesis: BETA=0

| Alaska, Bed \& Breakfast | 1 | 0.50806 | 0.18663 | 7.4104 | 0.0065 |
| :--- | ---: | ---: | ---: | ---: | :---: |
| Alaska, Cabin | 1 | -1.95733 | 0.33673 | 33.7882 | $<.0001$ |
| Alaska, Hotel | 0 | 0 | . | . | . |
| California, Bed \& Breakfast | 1 | 0.65346 | 0.13179 | 24.5850 | $<.0001$ |
| California, Cabin | 1 | -1.43215 | 0.17478 | 67.1409 | $<.0001$ |
| California, Hotel | 0 | 0 | . | . | . |
| Hawaii, Bed \& Breakfast | 1 | 0.48132 | 0.11148 | 18.6408 | $<.0001$ |
| Hawaii, Cabin | 1 | -1.43085 | 0.12552 | 129.9497 | $<.0001$ |
| Hawaii, Hotel | 0 | 0 | . | . | . |
| Maine, Bed \& Breakfast | 1 | 0.87057 | 0.17456 | 24.8723 | $<.0001$ |
| Maine, Cabin | 1 | -1.61015 | 0.22579 | 50.8554 | $<.0001$ |
| Maine, Hotel | 0 | 0 | . | . | . |
| Mexico, Bed \& Breakfast | 1 | 0.59476 | 0.12173 | 23.8715 | $<.0001$ |
| Mexico, Cabin | 1 | -1.53314 | 0.15499 | 97.8448 | $<.0001$ |
| Mexico, Hotel | 0 | 0 | . | . | . |

There are zero coefficients for the reference level. Do we need this more complicated model instead of the simpler model? To answer this, first look at the coefficients. Are they similar across different destinations? In this case, they seem to be. This suggests that the simpler model may be sufficient.

More formally, the two models can be statistically compared. You can test the null hypothesis that the two models are not significantly different by comparing their likelihoods. The difference between two $-2 \log \left(\mathcal{L}_{C}\right)$'s (the number reported under 'With Covariates' in the output) has a chi-square distribution. We can get the $d f$ for the test by subtracting the two $d f$ for the two likelihoods. The difference $6588.76-6555.6923=33.0677$ is distributed χ^{2} with $35-11=24 d f(p<0.10265)$. This more complicated model does not account for significantly more variance than the simpler model.

Vacation Example, with Alternative-Specific Attributes

This example discusses choosing the number of choice sets, designing the choice experiment, ensuring that certain key interactions are estimable, examining the design, blocking an existing design, generating the questionnaire, generating artificial data, reading, processing, and analyzing the data, binary coding, generic attributes, alternative-specific effects, aggregating the data, analysis, and interpretation of the results. In this example, a researcher is interested in studying choice of vacation destinations. Here and on the next page are two summaries of the design, one with factors grouped by attribute and one grouped by destination.

| Factor | Destination | Attribute | Levels |
| :--- | :--- | :--- | :--- |
| X1 | Hawaii | Accommodations | Cabin, Bed \& Breakfast, Hotel |
| X2 | Alaska | Accommodations | Cabin, Bed \& Breakfast, Hotel |
| X3 | Mexico | Accommodations | Cabin, Bed \& Breakfast, Hotel |
| X4 | California | Accommodations | Cabin, Bed \& Breakfast, Hotel |
| X5 | Maine | Accommodations | Cabin, Bed \& Breakfast, Hotel |
| | | | |
| X6 | Hawaii | Scenery | Mountains, Lake, Beach |
| X7 | Alaska | Scenery | Mountains, Lake, Beach |
| X8 | Mexico | Scenery | Mountains, Lake, Beach |
| X9 | California | Scenery | Mountains, Lake, Beach |
| X10 | Maine | Scenery | Mountains, Lake, Beach |
| | | | |
| X11 | Hawaii | Price | $\$ 1249, \$ 1499, \$ 1749$ |
| X12 | Alaska | Price | $\$ 1249, \$ 1499, \$ 1749$ |
| X13 | Mexico | Price | $\$ 999, \$ 1249, \$ 1499$ |
| X14 | California | Price | $\$ 999, \$ 1249, \$ 1499, \$ 1749$ |
| X15 | Maine | Price | $\$ 999, \$ 1249, \$ 1499$ |
| | | | |
| X16 | Hawaii | Side Trip | Yes, No |
| X17 | Mexico | Side Trip | Yes, No |

This example is a modification of the previous example. Now, all alternatives do not have the same factors, and all factors do not have the same numbers of levels. There are still five destinations of interest: Hawaii, Alaska, Mexico, California, and Maine. Each alternative is composed of three factors like before: package cost, scenery, and accommodations, only now they do not all have the same levels, and the Hawaii and Mexico alternatives are composed of one additional attribute. For Hawaii and Alaska, the costs are $\$ 1,249, \$ 1,499$, and $\$ 1,749$; for California, the prices are $\$ 999, \$ 1,249, \$ 1,499$, and $\$ 1,749$; and for Mexico and Maine, the prices are $\$ 999, \$ 1,249$, and $\$ 1,499$. Scenery (mountains, lake, beach) and accommodations (cabin, bed \& breakfast, and hotel) are the same as before. The Mexico trip now has the option of a side trip to sites of archaeological significance, via bus, for an additional cost of $\$ 100$. The Hawaii trip has the option of a side trip to an active volcano, via helicopter, for an additional cost of $\$ 200$. This is typical of the problems that marketing researchers face. We have lots of factors and asymmetry - each alternative is not composed of the same factors, and the factors do not all have the same numbers of levels.

| Factor | Destination | Attribute | Levels |
| :--- | :--- | :--- | :--- |
| X1 | Hawaii | Accommodations | Cabin, Bed \& Breakfast, Hotel |
| X6 | | Scenery | Mountains, Lake, Beach |
| X11 | | Price | $\$ 1249, \$ 1499, \$ 1749$ |
| X16 | | Side Trip | Yes, No |
| | | | |
| X2 | Alaska | Accommodations | Cabin, Bed \& Breakfast, Hotel |
| X7 | | Scenery | Mountains, Lake, Beach |
| X12 | | Price | $\$ 1249, \$ 1499, \$ 1749$ |
| | | Accommodations | Cabin, Bed \& Breakfast, Hotel |
| X3 | Mexico | Scenery | Mountains, Lake, Beach
 X8 |
| X13 | | Price | $\$ 999, \$ 1249, \$ 1499$ |
| X17 | | Side Trip | Yes, No |
| | | | |
| X4 | California | Accommodations | Cabin, Bed \& Breakfast, Hotel |
| X9 | | Scenery | Mountains, Lake, Beach |
| X14 | | Price | $\$ 999, \$ 1249, \$ 1499, \$ 1749$ |
| X5 | Maine | Accommodations | Cabin, Bed \& Breakfast, Hotel |
| X10 | | Scenery | Mountains, Lake, Beach |
| X15 | | Price | $\$ 999, \$ 1249, \$ 1499$ |

Choosing the Number of Choice Sets

We can use the \%MktRuns autocall macro to suggest experimental design sizes. (All of the autocall macros used in this book are documented starting on page 479.) As before, we specify a list containing the number of levels of each factor.

```
title 'Vacation Example with Asymmetry';
%mktruns( 3 ** 14 4 2 2 )
```

The output tells us the size of the saturated design, which is the number of parameters in the linear design, and suggests design sizes.

```
Vacation Example with Asymmetry
    Design Summary
    Number of
    Levels Frequency
        2 2
        3 14
        4 1
```

Vacation Example with Asymmetry
Saturated $=34$
Full Factorial $=76,527,504$

| Some Reasonable
 Design Sizes | Violations | Cannot Be
 Divided By | | | | | | |
| ---: | :--- | ---: | :--- | :--- | :--- | :--- | :---: | :---: |
| $72 *$ | 0 | | | | | | | |
| $144 *$ | 0 | | | | | | | |
| 36 | 2 | 8 | | | | | | |
| 108 | 2 | 8 | | | | | | |
| 54 | 18 | 4 | 8 | 12 | | | | |
| 90 | 18 | 4 | 8 | 12 | | | | |
| 126 | 18 | 4 | 8 | 12 | | | | |
| 45 | 48 | 2 | 4 | 6 | 8 | 12 | | |
| 63 | 48 | 2 | 4 | 6 | 8 | 12 | | |
| 81 | 48 | 2 | 4 | 6 | 8 | 12 | | |

* - 100\% Efficient Design can be made with the MktEx Macro.

Vacation Example with Asymmetry

| n | Design | | | | | | | | | | | | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 72 | 2 | ** | 20 | 3 | ** | 24 | 4 | ** | 1 | | | | Orthogonal Array |
| 72 | 2 | ** | 19 | 3 | ** | 20 | 4 | ** | 1 | 6 | ** | 1 | Orthogonal Array |
| 72 | 2 | ** | 18 | 3 | ** | 16 | 4 | ** | 1 | 6 | ** | 2 | Orthogonal Array |
| 72 | 2 | ** | 13 | 3 | ** | 25 | 4 | ** | 1 | | | | Orthogonal Array |
| 72 | 2 | ** | 12 | 3 | ** | 21 | 4 | ** | 1 | 6 | ** | 1 | Orthogonal Array |
| 72 | 2 | ** | 11 | 3 | ** | 24 | 4 | ** | 1 | 6 | ** | 1 | Orthogonal Array |
| 72 | 2 | ** | 11 | 3 | ** | 17 | 4 | ** | 1 | 6 | ** | 2 | Orthogonal Array |
| 72 | 2 | ** | 10 | 3 | ** | 20 | 4 | ** | 1 | 6 | ** | 2 | Orthogonal Array |
| 72 | 2 | ** | 9 | 3 | ** | 16 | 4 | ** | 1 | 6 | ** | 3 | Orthogonal Array |
| 144 | 2 | ** | 92 | 3 | ** | 24 | 4 | ** | 1 | | | | Orthogonal Array |
| 144 | 2 | ** | 91 | 3 | ** | 20 | 4 | ** | 1 | 6 | ** | 1 | Orthogonal Array |
| 144 | 2 | ** | 90 | 3 | ** | 16 | 4 | ** | 1 | 6 | ** | 2 | Orthogonal Array |
| 144 | 2 | * | 85 | 3 | ** | 25 | 4 | ** | 1 | | | | Orthogonal Array |
| 144 | 2 | ** | 84 | 3 | ** | 21 | 4 | ** | 1 | 6 | ** | 1 | Orthogonal Array |
| 144 | 2 | * | 83 | 3 | ** | 24 | 4 | ** | 1 | 6 | ** | 1 | Orthogonal Array |
| 144 | 2 | ** | 83 | 3 | ** | 17 | 4 | ** | 1 | 6 | ** | 2 | Orthogonal Array |
| 144 | 2 | * | 82 | 3 | ** | 20 | 4 | | 1 | 6 | ** | 2 | Orthogonal Array |
| 144 | 2 | | 81 | 3 | | 16 | 4 | ** | 1 | 6 | ** | 3 | Orthogonal Array |

We need at least 34 choice sets, as shown by (Saturated=34) in the listing. Any size that is a multiple of 72 would be optimal. We would recommend 72 choice sets, four blocks of size 18. However, like the previous vacation example, we will use fewer choice sets so that we can illustrate getting an efficient but nonorthogonal design. A design with 36 choice sets is pretty good. Thirty-six is not divisible by $8=2 \times 4$, so we cannot have equal frequencies in the California price and Mexico and Hawaii side trip
combinations. This should not pose any problem. This leaves only 2 error $d f$ for the linear model, but in the choice model, we will have adequate error $d f$.

Designing the Choice Experiment

This problem requires a design with 1 four-level factor for price and 4 three-level factors for price. There are 10 three-level factors for scenery and accommodations as before. Also, we need 2 two-level factors for the two side trips. Note that we do not need a factor for the price or mode of transportation of the side trips since they are constant within each trip. With the \%MktEx macro, making an asymmetric design is no more difficult than making a symmetric design.

```
%mktex(3 ** 13 4 3 2 2, n=36, seed=205)
%mkteval;
```

Here is the last part of the results.

```
Vacation Example with Asymmetry
    The OPTEX Procedure
    Class Level Information
    Class Levels -Values-
    x1 3 1 2 3
    x2 3 1 2 3
    x3 3 1 2 3
    x4 3 1 2 3
    x5 3 1 2 3
    x6 3 1 2 3
    x7 3 1 2 3
    x8 3 1 2 3
    x9 3 1 2 3
    x10 3 1 2 3
    x11 3 1 2 3
    x12 3 123
    x13 3 12 3
    x14 4 1 2 3 4
    x15 3 1 2 3
    x16 2 1 2
    x17 2 1 2
```


Vacation Example with Asymmetry

The OPTEX Procedure

| | Design
 Number | | D-Efficiency | | | | A-Efficiency | | | | G-Efficiency | | | | | Average Prediction Standard Error | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | 1 | | | 8.88 | | | | 97.5 | 943 | | | 97.49 | 925 | | | 9718 |
| | | | The | | $\begin{aligned} & \text { nonj } \\ & \text { e } 2 \end{aligned}$ | acati
 cal
 Canon | | | ple
 ions
 rrel | with
 Betw
 ation | Asym ween ns Gr | metr
 the
 reate | ry
 Facto
 er Th | ors
 0.31 | | | |
| | x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | x9 | x10 | x11 | x 12 | x 13 | x14 | x 15 | x16 | x 17 |
| x 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| x 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| x3 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| x 4 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| x5 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| x6 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| x7 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| x8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| x9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| x 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| x 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| x 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| x 13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0.25 | 0 | 0 |
| x14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0.33 | 0.33 |
| x15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.25 | 0 | 1 | 0 | 0 |
| x16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.33 | 0 | 1 | 0 |
| x17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.33 | 0 | 0 | 1 |

The macro found a very nice, almost orthogonal and almost 99% efficient design in 40 seconds. However, we will not use this design. Instead, we will make a larger design with interactions.

Ensuring that Certain Key Interactions are Estimable

Next, we will ensure that certain key interactions are estimable. Specifically, it would be good if in the aggregate, the interactions between price and accommodations were estimable for each destination. We would like the following interactions to be estimable: $\mathrm{x} 1 * \mathrm{x} 11 \mathrm{x} 2 * \mathrm{x} 12 \mathrm{x} 3 * \mathrm{x} 13 \mathrm{x} 4 * \mathrm{x} 15 \mathrm{x} 5 * \mathrm{x} 15$. We will again use the \%MktEx macro.

```
%mktex(3 ** 13 4 3 2 2, n=36,
    interact=x1*x11 x2*x12 x3*x13 x4*x14 x5*x15,
    seed=205)
```

We immediately get this message.

```
ERROR: More parameters than runs.
    If you really want to do this, specify RIDGE=.
    There are 36 runs with 56 parameters.
ERROR: The MKTEX macro ended abnormally.
```

If we want interactions to be estimable, we will need more choice sets. The number of parameters is 1 for the intercept, $14 \times(3-1)+(4-1)+2 \times(2-1)=33$ for main effects, and $4 \times(3-1) \times(3-$ 1) $+(4-1) \times(3-1)=22$ for interactions for a total of $1+33+22=56$ parameters. This means we need at least 56 choice sets, and ideally for this design with 2,3 , and 4 level factors, we would like the number of sets to be divisible by $2 \times 2,2 \times 3,2 \times 4,3 \times 3$, and 3×4. Sixty is divisible by $2,3,4,6$, and 12 so is a reasonable design size. Sixty choice sets could be divided into three blocks of size 20 , four blocks of size 15, or five blocks of size 12. Seventy-two choice sets would be better, since unlike 60,72 can be divided by 9 . Unfortunately, 72 would require one more block.

We can also run the \%MktRuns macro to help us choose the number of choice sets. However, the $\% M k t R u n s$ does not have a special syntax for interactions, you have to specify the main effects and interactions of two factors as if it were a single factor. For example, for the interaction of 2 three-level factors, you specify 9 in the list. For the interaction of a three-level factor and a four-level factor, you specify 12 in the list. Do not specify ' 339 ' or ' 3412 '; just specify ' 3 ' and ' 12 '. In this example, we specify four 9 's for the four accommodation/price interactions involving only three-level factors, one 12 for the California accommodation/price interaction, five 3's for scenery, and two 2's for the side trips. We also specified a keyword option max= to consider only the 45 design sizes from the minimum of 56 up to 100 .

```
title 'Vacation Example with Asymmetry';
%mktruns(9 9 9 9 12 3 3 3 3 3 2 2, max=45)
```

 Vacation Example with Asymmetry
 Design Summary
 Number of
 Levels Frequency
 \(2 \quad 2\)
 \(3 \quad 5\)
 \(9 \quad 4\)
 \(12 \quad 1\)
 Vacation Example with Asymmetry
 Saturated $=56$
Full Factorial $=76,527,504$

We see that 72 cannot be divided by $27=9 \times 3$ so for example the Maine accommodation/price combinations cannot occur with equal frequency with each of the three-level factors. We see that 72 cannot be divided by $81=9 \times 9$ so for example the Mexico accommodation/price combinations cannot occur with equal frequency with each of the Hawaii accommodation/price combinations. We see that 72 cannot be divided by $108=9 \times 12$ so for example the California accommodation/price combinations cannot occur with equal frequency with each of the Maine accommodation/price combinations. With interactions, there are many higher-order opportunities for nonorthogonality. However, usually we will not be overly concerned about potential unequal cell frequencies on combinations of attributes in different alternatives.

The smallest number of runs in the table is 60 . While 72 is better in that it can be divided by more numbers, either 72 or 60 should work fine. We will pick the larger number and run the \%MktEx macro again with $\mathrm{n}=72$ specified.

```
%mktex(3 ** 13 4 3 2 2, n=72, seed=368,
    interact=x1*x11 x2*x12 x3*x13 x4*x14 x5*x15)
```

The macro printed these notes to the log.

```
NOTE: Generating the candidate set.
NOTE: Performing 20 searches of 243 candidates, full-factorial=76,527,504.
NOTE: Generating the orthogonal array design, n=72.
```

The candidate-set search is using a fractional-factorial candidate set with $3^{5}=243$ candidates. The two-level factors in the candidate set are made from three-level factors by coding down. Coding down replaces an m-level factor with a factor with fewer than m levels, for example a two-level factor could be created from a three-level factor: $\left(\begin{array}{lll}1 & 2 & 3\end{array}\right) \Rightarrow\left(\begin{array}{lll}1 & 2 & 1\end{array}\right)$. The four-level factor in the candidate set is made from 2 three-level factors and coding down. $((123) \times(123) \Rightarrow(123456789) \Rightarrow(123412341))$. The tabled design used for the partial initialization in the coordinate-exchange steps has 72 runs. Here are some of the results.

Vacation Example with Asymmetry

Algorithm Search History

| Design | Row, Col | Current | Best | |
| :---: | :---: | :---: | :---: | :---: |
| | | D-Efficiency | D-Efficiency | Notes |
| 1 | Start | 84.8774 | 84.8774 | Can |
| 1 | End | 84.8774 | | |
| 2 | Start | 59.2427 | | Tab |
| 2 | 351 | 84.8786 | 84.8786 | |
| 2 | 3513 | 84.8989 | 84.8989 | |
| 2 | 3615 | 84.9311 | 84.9311 | |
| 2 | $39 \quad 13$ | 84.9506 | 84.9506 | |
| 2 | 455 | 84.9835 | 84.9835 | |
| 2 | 471 | 85.0125 | 85.0125 | |
| 2 | 475 | 85.0377 | 85.0377 | |
| 2 | 4815 | 85.0422 | 85.0422 | |
| 2 | 495 | 85.0514 | 85.0514 | |
| 2 | 5813 | 85.0854 | 85.0854 | |
| 2 | 613 | 85.1230 | 85.1230 | |
| 2 | 642 | 85.1699 | 85.1699 | |
| 2 | 154 | 85.1913 | 85.1913 | |
| 2 | 1712 | 85.2029 | 85.2029 | |
| 2 | 391 | 85.2635 | 85.2635 | |
| 2 | 3913 | 85.2714 | 85.2714 | |
| 2 | 4312 | 85.2730 | 85.2730 | |
| 2 | 552 | 85.2758 | 85.2758 | |
| 2 | 5512 | 85.3610 | 85.3610 | |
| 2 | 5812 | 85.3972 | 85.3972 | |
| 2 | 432 | 85.4009 | 85.4009 | |
| 2 | 552 | 85.4463 | 85.4463 | |
| 2 | 692 | 85.4590 | 85.4590 | |
| 2 | 33 | 85.4733 | 85.4733 | |
| 2 | 1712 | 85.4950 | 85.4950 | |
| 2 | 295 | 85.4956 | 85.4956 | |
| 2 | 495 | 85.5033 | 85.5033 | |
| 2 | 5915 | 85.5195 | 85.5195 | |
| 2 | 65 5 | 85.5611 | 85.5611 | |
| 2 | 6515 | 85.6228 | 85.6228 | |
| 2 | $67 \quad 2$ | 85.6288 | 85.6288 | |
| 2 | 15 4 | 85.6392 | 85.6392 | |
| 2 | $17 \quad 2$ | 85.6499 | 85.6499 | |
| 2 | 295 | 85.6701 | 85.6701 | |
| 2 | 331 | 85.6813 | 85.6813 | |
| 2 | 291 | 85.7072 | 85.7072 | |
| 2 | 495 | 85.7076 | 85.7076 | |
| 2 | End | 85.7076 | | |

$\left.\begin{array}{rrrrr}3 & \text { Start } & 59.2427 & & \text { Tab } \\ 3 & 49 & 5 & 85.7076 & 85.7076\end{array}\right]$

Vacation Example with Asymmetry
The OPTEX Procedure
Vacation Example with Asymmetry
The OPTEX Procedure
Class Level Information

Class

x1 Levels

The OPTEX Procedure

| | | | | Average |
| :---: | :---: | :---: | :---: | :---: |
| | | | | Prediction |
| Design | | | | Standard |
| Number | D-Efficiency | A-Efficiency | G-Efficiency | Error |
| 1 | 90.0208 | 79.9719 | 95.1716 | 0.8819 |

The macro ran in just under 8 minutes. The algorithm search history shows that the candidate-set approach (Can) used in design 1 found a design that was 84.8774% efficient. The macro makes no attempt to improve on this design, unless there are restriction on the design, until the end in the design refinement step, and only if it is the best design found.

Designs 2 through 11 used the coordinate-exchange algorithm with a tabled design initialization (Tab). This process found a design that was 85.7076% efficient. For this problem, the tabled design initialization initializes all 72 rows; For other problems, when the number of runs in the design is greater than the number of runs in the nearest tabled design, the remaining rows would be randomly initialized. The tabled design initialization usually works very well when all but at most a very few rows and columns are left uninitialized and there are no interactions or restrictions. That is not the case in this problem, and when the algorithm switches to a fully random initialization in design 12, it immediately does better.

The algorithm search phase picked the coordinate-exchange algorithm with a random initialization, random mutations, and simulated annealing as the algorithm to use in the next step, the design search step. The design search history is initialized with the best design (D-efficiency $=89.6452$) found so far. The design search phase starts out with the initial design (Ini) found in the algorithm search phase. In iteration 20, the macro finds a design with D-efficiency $=90.0208$.

The final set of iterations tries to improve the best design found so far. Random mutations (Ran), simulated annealing (Ann), and level exchanges are used on the previous best (Pre) design. The random mutations are responsible for making the efficiency of the starting design worse than the previous best efficiency. In this case, the design refinement step was unable to improve the best design found by the design search step.

Examining the Design

We can use the \%MktEval macro to evaluate the goodness of this design.

```
%mkteval(data=design);
```

Here are some of the results.

| | Vacation Example with Asymmetry ical Correlations Between the Factors Canonical Correlations Greater Than | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | x9 |
| x1 | 1 | 0.07 | 0.13 | 0.17 | 0.07 | 0.03 | 0.10 | 0.06 | 0.13 |
| x2 | 0.07 | 1 | 0.15 | 0.17 | 0.10 | 0.07 | 0.13 | 0.14 | 0.10 |
| x3 | 0.13 | 0.15 | 1 | 0.15 | 0.08 | 0.09 | 0.10 | 0.14 | 0.09 |
| x4 | 0.17 | 0.17 | 0.15 | 1 | 0.09 | 0.10 | 0.09 | 0.03 | 0.11 |
| x5 | 0.07 | 0.10 | 0.08 | 0.09 | 1 | 0.09 | 0.10 | 0.07 | 0.11 |
| x6 | 0.03 | 0.07 | 0.09 | 0.10 | 0.09 | 1 | 0.11 | 0.07 | 0.09 |
| x7 | 0.10 | 0.13 | 0.10 | 0.09 | 0.10 | 0.11 | 1 | 0.10 | 0.06 |
| x8 | 0.06 | 0.14 | 0.14 | 0.03 | 0.07 | 0.07 | 0.10 | 1 | 0.03 |
| x9 | 0.13 | 0.10 | 0.09 | 0.11 | 0.11 | 0.09 | 0.06 | 0.03 | 1 |


```
N-Way 
    1
```



```
    1
```

We can use the \%MktEx macro to check the design and print the information matrix and variance matrix.

```
%mktex(3 ** 13 4 3 2 2, n=72, examine=i v, options=check, init=randomized,
    interact=x1*x11 x2*x12 x3*x13 x4*x14 x5*x15)
```

In the interest of space, the results from this step are not shown.

Blocking an Existing Design

An existing design is blocked using the \%MktBlock macro. The macro takes the observations in an existing design and optimally sorts them into blocks. Here we are seeing how to block the linear version of the choice design, but the macro can also be used directly on the choice design.

```
%mktblock(data=randomized, nblocks=4, out=sasuser.blockdes, seed=114)
```

This step took 2 seconds. Here are some of the results including the one-way frequencies within blocks. They should be examined to ensure that each level is well represented in each block. The design is nearly balanced in most of the factors and blocks. Perfect balance is impossible for the three level factors.

| | Vacation Example with Asymmetry | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | The | are | nonic | Correlations Greater Than 0.316 | | | | | |
| | Block | x1 | x 2 | x3 | x 4 | x5 | x6 | x7 | x8 |
| Block | 1 | 0.06 | 0.10 | 0.10 | 0.15 | 0.10 | 0.10 | 0.10 | 0.10 |
| x1 | 0.06 | 1 | 0.07 | 0.13 | 0.17 | 0.07 | 0.03 | 0.10 | 0.06 |
| x 2 | 0.10 | 0.07 | 1 | 0.15 | 0.17 | 0.10 | 0.07 | 0.13 | 0.14 |
| x3 | 0.10 | 0.13 | 0.15 | 1 | 0.15 | 0.08 | 0.09 | 0.10 | 0.14 |
| x4 | 0.15 | 0.17 | 0.17 | 0.15 | 1 | 0.09 | 0.10 | 0.09 | 0.03 |
| x5 | 0.10 | 0.07 | 0.10 | 0.08 | 0.09 | 1 | 0.09 | 0.10 | 0.07 |
| x6 | 0.10 | 0.03 | 0.07 | 0.09 | 0.10 | 0.09 | 1 | 0.11 | 0.07 |
| x7 | 0.10 | 0.10 | 0.13 | 0.10 | 0.09 | 0.10 | 0.11 | 1 | 0.10 |
| x8 | 0.10 | 0.06 | 0.14 | 0.14 | 0.03 | 0.07 | 0.07 | 0.10 | 1 |

| N-Way | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| :---: |
| | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

Generating the Questionnaire

These next steps print the questionnaire.

```
%let m = 6; /* m alts including constant */
%let mm1 = %eval(&m - 1); /* m - 1 */
%let n = 18; /* number of choice sets */
%let blocks = 4; /* number of blocks */
title;
options ls=80 ps=60 nonumber nodate;
data _null_;
    array dests[&mm1] $ 10 _temporary_ ('Hawaii' 'Alaska' 'Mexico'
                                    'California' 'Maine');
    array scenes[3] $ 13 _temporary_
                ('the Mountains' 'a Lake' 'the Beach');
    array lodging[3] $ 15 _temporary_
                ('Cabin' 'Bed & Breakfast' 'Hotel');
    array x[15];
    array p[&mm1];
    length price $ 6;
    file print linesleft=ll;
    set sasuser.blockdes;
    by block;
    p1 = 1499 + (x[11] - 2) * 250;
    p2 = 1499 + (x[12] - 2) * 250;
    p3 = 1249 + (x[13] - 2) * 250;
    p4 = 1374 + (x[14] - 2.5) * 250;
    p5 = 1249 + (x[15] - 2) * 250;
    if first.block then do;
        choice = 0;
        put _page_;
        put @50 'Form: ' block ' Subject: _-_-_-_-' //;
        end;
    choice + 1;
    if ll < (19 + (x16 = 1) + (x17 = 1)) then put _page_;
    put choice 2. ') Circle your choice of '
            'vacation destinations:' /;
```

```
do dest = 1 to &mm1;
    price = left(put(p[dest], dollar6.));
    put ' ' dest 1. ') ' dests[dest]
        +(-1) ', staying in a ' lodging[x[dest]]
        'near ' scenes[x[&mm1 + dest]] +(-1) ',' /
        +7 'with a package cost of ' price +(-1) @@;
    if dest = 3 and x16 = 1 then
        put ', and an optional visit' / +7
            'to archaeological sites for an additional $100' @@;
    else if dest = 1 and x17 = 1 then
        put ', and an optional helicopter' / +7
            'flight to an active volcano for an additional $200' @@;
    put '.' /;
    end;
put " &m) Stay at home this year." /;
run;
```

Here are the first two choice sets for the first subject.

Form: 1 Subject: \qquad

1) Circle your choice of vacation destinations:
2) Hawaii, staying in a Cabin near the Mountains, with a package cost of $\$ 1,249$, and an optional helicopter flight to an active volcano for an additional \$200.
3) Alaska, staying in a Hotel near a Lake, with a package cost of $\$ 1,749$.
4) Mexico, staying in a Cabin near a Lake, with a package cost of $\$ 1,499$.
5) California, staying in a Bed \& Breakfast near the Mountains, with a package cost of $\$ 1,499$.
6) Maine, staying in a Bed \& Breakfast near a Lake, with a package cost of $\$ 999$.
7) Stay at home this year.
```
2) Circle your choice of vacation destinations:
```

1) Hawaii, staying in a Hotel near a Lake,
with a package cost of $\$ 1,499$, and an optional helicopter
flight to an active volcano for an additional \$200.
2) Alaska, staying in a Cabin near a Lake, with a package cost of $\$ 1,499$.
3) Mexico, staying in a Bed \& Breakfast near a Lake, with a package cost of $\$ 1,249$.
4) California, staying in a Cabin near a Lake, with a package cost of $\$ 1,499$.
5) Maine, staying in a Hotel near a Lake, with a package cost of $\$ 1,499$.
6) Stay at home this year.

In practice, data collection may be much more elaborate than this. It may involve art work or photographs, and the choice sets may be presented and the data may be collected through personal interview or over the web. However the choice sets are presented and the data collected, the essential ingredients remain the same. Subjects are shown sets of alternatives and asked to make a choice, and then they go on to the next set.

Generating Artificial Data

This next step generates an artificial set of data. Collecting data is time consuming and expensive. Generating some artificial data before the data are collected to test your code and make sure the analysis will run is a good idea. It helps avoid the "How am I going to analyze this?" question from occurring after the data have already been collected. See page 256 for an alternative method of testing your design. This step generates data for 300 subjects, 100 per block.

```
data _null_;
    array dests[&mm1] _temporary_(5 -1 4 3 2);
    array scenes[3] _temporary_ (-1 0 1);
    array lodging[3] _temporary_ (0 3 2);
    array u[&m];
    array x[15];
```

```
do rep = 1 to 100;
    n = 0;
    do i = 1 to &blocks;
        k + 1;
        if mod(k,3) = 1 then put;
        put k 3. +1 i 1. +2 @@;
        do j = 1 to &n; n + 1;
            set sasuser.blockdes point=n;
            do dest = 1 to &mm1;
                u[dest] = dests[dest] + lodging[x[dest]] +
                        scenes[x[&mm1 + dest]] -
                        x[2 * &mm1 + dest] +
                        2 * normal(17);
                end;
            u[1] = u[1] + (x16 = 1);
            u[3] = u[3] + (x17 = 1);
            u&m = -3 + 3 * normal(17);
            m = max(of u1-u&m);
            if abs(u1 - m) < 1e-4 then c = 1;
            else if abs(u2 - m) < 1e-4 then c = 2;
            else if abs(u3 - m) < 1e-4 then c = 3;
            else if abs(u4 - m) < 1e-4 then c = 4;
            else if abs(u5 - m) < 1e-4 then c = 5;
            else c = 6;
            put +(-1) c @@;
            end;
        end;
    end;
stop;
run;
```

The dests, scenes, and lodging arrays are initialized with part-worth utilities for each level. The utilities for each of the destinations are computed and stored in the array u in the statement u [dest] $=\ldots$, which includes an error term $2 *$ normal (17). The utilities for the side trips are added in separately with $u[1]=u[1]+(x 16=1)$ and $u[3]=u[3]+(x 17=1)$. The utility for the stay-athome alternative is $-3+3 *$ normal (17). The maximum utility is computed, $m=\max$ (of $u 1-u \& m$) and the alternative with the maximum utility is chosen. The put statement writes out the results to the log.

Reading, Processing, and Analyzing the Data

The results from the previous step are pasted into a DATA step and run to mimic reading real input data.

```
title 'Vacation Example with Asymmetry';
data results;
    input Subj Form (choose1-choose&n) (1.) @@;
    datalines;
    1 1 413131153351111535 2 2 111151141153511152 3 3 331151344433111341
    44313311134131311114 5 1 533133551541441321 6 2 311151111113311511
    7 3 313113111311351331 8 4 413341341134141131 9 1 533335315133141661
;
```

The analysis proceeds in a fashion similar to before in the simpler vacation example on page 154 . We start by creating some formats for the factor levels and the key to converting the linear design into a choice design. ${ }^{\ddagger}$

```
proc format;
    value price 1 = ' 999' 2 = '1249' 3 = '1499' 4 = '1749';
    value scene 1 = 'Mountains' 2 = 'Lake' 3 = 'Beach';
    value lodge 1 = 'Cabin' 2 = 'Bed & Breakfast' 3 = 'Hotel';
    value side 1 = 'Side Trip' 2 = 'No';
    run;
data key;
    input Place $ 1-10 (Lodge Scene Price Side) ($);
    datalines;
Hawaii x1 x6 x11 x16
Alaska x2 x7 x12 .
Mexico x3 x8 x13 x17
California x4 x9 x14 .
Maine x5 x10 x15 .
;
```

For analysis, the design will have five attributes. Place is the alternative name. Lodge, Scene, Price and Side are created from the design using the indicated factors. See page 155 for more information on creating the design key. Notice that Side only applies to some of the alternatives and hence has missing values for the others. Processing the design and merging it with the data are similar to what was done on pages 155 and 157. One difference is now there are asymmetries in Price. For Hawaii's price, x11, we need to change 1,2 , and 3 to $\$ 1249, \$ 1499$, and $\$ 1749$. For Alaska's price, x12, we need to change 1,2 , and 3 to $\$ 1249, \$ 1499$, and $\$ 1749$. For Mexico's price, x13, we need to change 1,2 , and 3 to $\$ 999, \$ 1249$, and $\$ 1499$. For California's price, x14, we need to change $1,2,3$, and 4 to $\$ 999$, $\$ 1249, \$ 1499$, and $\$ 1749$. For Maine's price, x11, we need to change 1,2 , and 3 to $\$ 999$, $\$ 1249$, and $\$ 1499$. We can simplify the problem by adding 1 to x 11 and x 12 , which are the factors that start at

[^27]$\$ 1249$ instead of $\$ 999$. This will allow us to use a common format to set the price. See pages 251 and 502 for examples of handling more complicated asymmetries.

```
data temp;
    set sasuser.blockdes;
    x11 + 1;
    x12 + 1;
    run;
%mktroll(design=temp, key=key, alt=place, out=rolled, options=nowarn)
%mktmerge(design=rolled, data=results, out=res2, blocks=form,
    nsets=&n, nalts=&m, setvars=choose1-choose&n,
    stmts=%str(price = input(put(price, price.), 5.);
                format scene scene. lodge lodge. side side.;))
proc print data=res2(obs=18); run;
```

Here are the first three choice sets.

Indicator variables and labels are created using PROC TRANSREG like before.

```
proc transreg design=5000 data=res2 nozeroconstant norestoremissing;
    model class(place / zero=none order=data)
            class(price scene lodge / zero=none order=formatted)
            class(place * side / zero=' , 'No' separators=', ' ') /
            lprefix=0;
    output out=coded(drop=_type_ _name_ intercept);
    id subj set form c;
    run;
proc print data=coded(obs=6) label;
    run;
```

The design=5000 option specifies that no model is fit; the procedure is just being used to code a design in blocks of 5000 observations at a time. The nozeroconstant option specifies that if the coding creates a constant variable, it should not be zeroed. The norestoremissing option specifies that missing values should not be restored when the out= data set is created. The model statement names the variables to code and provides information about how they should be coded. The specification class(place / ...) specifies that the variable Place is a classification variable and requests a binary coding. The zero=none option creates binary variables for all categories. The order=data option sorts the levels into the order they were first encountered in the data set. Similarly, the variables Price, Scene, and Lodge are classification variables. The specification class (place * side / ...) creates alternativespecific side trip effects. The option zero=' ' ' No ' specifies that indicator variables should be created for all levels of Place except blank, and all levels of Side except ' No '. The specification zero=' ' is almost the same as zero=none. The zero=' ' specification names a missing level as the reference level creating indicator variables for all nonmissing levels of the class variables, just like zero=none. The difference is zero=none applies to all of the variables named in the class specification. When you want zero=none to apply to only some variables, then you must use zero=' ', as in zero=' ' 'No' instead. In this case, zero=none applies to the first variable and zero=' ${ }^{\prime}{ }^{\prime}{ }^{\prime}$ applies to the second. With zero=' ', TRANSREG prints the following warning, which can be safely ignored.

WARNING: Reference level ZERO=', was not found for variable Place.
The separators=', ' ' option (separators= quote quote space quote space quote) allows you to specify two label component separators for the main effect and interaction terms, respectively. By specifying a blank for the second value, we request labels for the side trip effects like 'Mexico Side Trip' instead of the default 'Mexico * Side Trip'. This option is explained in more detail on page 209.

The lprefix=0 option specifies that when labels are created for the binary variables, zero characters of the original variable name should be used as a prefix. This means that the labels are created only from the level values. An output statement names the output data set and drops variables that are not needed. Finally, the id statement names the additional variables that we want copied from the input to the output data set.

The PROC PHREG specification is the same as we have used before. (Recall that we used \%phchoice(on) on page 95 to customize the output from PROC PHREG.)

```
proc phreg data=coded brief;
    model c*c(2) = &_trgind / ties=breslow;
    strata subj set;
    run;
```

Here are the results.

Vacation Example with Asymmetry

The PHREG Procedure

Model Information

| Data Set | WORK.CODED |
| :--- | :--- |
| Dependent Variable | c |
| Censoring Variable | c |
| Censoring Value(s) | 2 |
| Ties Handling | BRESLOW |

Number of Observations Read 43200
Number of Observations Used 43200
Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

| Pattern | Number of
 Choices | Number of
 Alternatives | Chosen
 Alternatives | Not
 Chosen |
| ---: | ---: | ---: | ---: | ---: |
| 1 | 7200 | | 6 | 1 |

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

| Criterion | Without
 Covariates | With
 Covariates |
| :--- | ---: | ---: |
| -2 LOG L | 25801.336 | 12547.295 |
| AIC | 25801.336 | 12575.295 |
| SBC | 25801.336 | 12671.641 |
| Testing Global Null Hypothesis: BETA=0 | | |

| Test | Chi-Square | DF | Pr $>$ ChiSq |
| :--- | ---: | ---: | ---: |
| | | | |
| Likelihood Ratio | 13254.0409 | 14 | $<.0001$ |
| Score | 12457.0987 | 14 | $<.0001$ |
| Wald | 5078.7045 | 14 | $<.0001$ |

Multinomial Logit Parameter Estimates

| | DF | Parameter
 Estimate | Standard
 Error | Chi-Square | Pr $>$ ChiSq |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Hawaii | 1 | 3.63561 | 0.23933 | 230.7503 | $<.0001$ |
| Alaska | 1 | -0.96812 | 0.28146 | 11.8309 | 0.0006 |
| Mexico | 1 | 2.30666 | 0.24388 | 89.4600 | $<.0001$ |
| California | 1 | 1.50750 | 0.24418 | 38.1165 | $<.0001$ |
| Maine | 1 | 0.80856 | 0.24780 | 10.6467 | 0.0011 |
| 999 | 1 | 2.12422 | 0.07017 | 916.4316 | $<.0001$ |
| 1249 | 1 | 1.44097 | 0.06097 | 558.5902 | $<.0001$ |
| 1499 | 1 | 0.79010 | 0.06105 | 167.4903 | $<.0001$ |
| 1749 | 0 | 0 | . | . | . |
| Beach | 1 | 1.43665 | 0.04754 | 913.2623 | $<.0001$ |
| Lake | 1 | 0.72145 | 0.04540 | 252.5637 | $<.0001$ |
| Mountains | 0 | 0 | . | . | . |
| Bed \& Breakfast | 1 | 0.72398 | 0.04091 | 313.1374 | $<.0001$ |
| Cabin | 1 | -1.39630 | 0.04876 | 820.0340 | $<.0001$ |
| Hotel | 0 | 0 | . | . | . |
| Alaska Side Trip | 0 | 0 | . | . | . |
| California Side Trip | 0 | 0 | . | . | . |
| Hawaii Side Trip | 1 | 0.69058 | 0.05802 | 141.6519 | $<.0001$ |
| Maine Side Trip | 0 | 0 | . | . | . |
| Mexico Side Trip | 1 | 0.60142 | 0.06145 | 95.8045 | $<.0001$ |

Abstract

You would not expect the part-worth utilities to match those that were used to generate the data, but you would expect a similar ordering within each factor, and in fact that does occur. These data can also be analyzed with quantitative price effects and destination by attribute interactions, as in the previous vacation example.

Aggregating the Data

This data set is rather large with 43,200 observations. You can make the analysis run faster and with less memory by aggregating. Instead of stratifying on each choice set and subject combination, you can stratify just on choice set and specify the number of times each alternative was chosen or unchosen. First, use PROC SUMMARY to count the number of times each observation occurs. Specify all the analysis variables, and in this example, also specify Form. The variable Form was added to the list because Set designates choice set within form. It is the Form and Set combinations that identify the choice sets. (In the previous PROC PHREG step, since the Subj * Set combinations uniquely identified each stratum, Form was not needed.) PROC SUMMARY stores the number of times each unique observation appears in the variable _freq. PROC PHREG is then run with a freq statement. Now, instead of analyzing a data set with 43,200 observations and 7200 strata, we analyze a data set with at most $2 \times 6 \times 72=864$ observations and 72 strata. For each of the 6 alternatives and 72 choice sets, there are typically 2 observations in the aggregate data set: one that contains the number of times it was chosen and one that contains the number of times it was not chosen. When one of those counts is zero, there will be one observation. In this case, the aggregate data set has 726 observations.

```
proc summary data=coded nway;
    class form set c &_trgind;
    output out=agg(drop=_type_);
    run;
proc phreg data=agg;
    model c*c(2) = &_trgind / ties=breslow;
    freq _freq_;
    strata form set;
    run;
```

PROC SUMMARY ran in three seconds, and PROC PHREG ran in less than one second. The parameter estimates and Chi-Square statistics (not shown) are the same as before. The summary table shows the results of the aggregation, 100 out of 600 alternatives were chosen in each stratum. The log likelihood statistics are different, but that does not matter since the Chi-Square statistics are the same. Page 226 provides more information about this.

TS-689E - Discrete Choice

| 71 | 4 | 71 | 600 | 100 | 500 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 72 | 4 | 72 | 600 | 100 | 500 |
| Total | | | 43200 | 7200 | 36000 |

Brand Choice Example with Aggregate Data

In this next example, subjects were presented with brands of a product at different prices. There were four brands and a constant alternative, eight choice sets, and 100 subjects. This example shows how to handle data that come to you already aggregated. It also illustrates comparing the fits of two competing models, the mother logit model, cross effects, IIA, and techniques for handling large data sets. The choice sets, with the price of each alternative and the number of times it was chosen, are shown next.

| Set | Brand 1 | | Brand 2 | | Brand 3 | | Brand 4 | | Other | |
| :---: | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | $\$ 3.99$ | 4 | $\$ 5.99$ | 29 | $\$ 3.99$ | 16 | $\$ 5.99$ | 42 | $\$ 4.99$ | 9 |
| 2 | $\$ 5.99$ | 12 | $\$ 5.99$ | 19 | $\$ 5.99$ | 22 | $\$ 5.99$ | 33 | $\$ 4.99$ | 14 |
| 3 | $\$ 5.99$ | 34 | $\$ 5.99$ | 26 | $\$ 3.99$ | 8 | $\$ 3.99$ | 27 | $\$ 4.99$ | 5 |
| 4 | $\$ 5.99$ | 13 | $\$ 3.99$ | 37 | $\$ 5.99$ | 15 | $\$ 3.99$ | 27 | $\$ 4.99$ | 8 |
| 5 | $\$ 5.99$ | 49 | $\$ 3.99$ | 1 | $\$ 3.99$ | 9 | $\$ 5.99$ | 37 | $\$ 4.99$ | 4 |
| 6 | $\$ 3.99$ | 31 | $\$ 5.99$ | 12 | $\$ 5.99$ | 6 | $\$ 3.99$ | 18 | $\$ 4.99$ | 33 |
| 7 | $\$ 3.99$ | 37 | $\$ 3.99$ | 10 | $\$ 5.99$ | 5 | $\$ 5.99$ | 35 | $\$ 4.99$ | 13 |
| 8 | $\$ 3.99$ | 16 | $\$ 3.99$ | 14 | $\$ 3.99$ | 5 | $\$ 3.99$ | 51 | $\$ 4.99$ | 14 |

The first choice set consists of Brand 1 at $\$ 3.99$, Brand 2 at $\$ 5.99$, Brand 3 at $\$ 3.99$, Brand 4 at $\$ 5.99$, and Other at $\$ 4.99$. From this choice set, Brand 1 was chosen 4 times, Brand 2 was chosen 29 times, Brand 3 was chosen 16 times, Brand 4 was chosen 42 times, and Other was chosen 9 times.

Processing the Data

As in the previous examples, we will process the data to create a data set with one stratum for each choice set within each subject and m alternatives per stratum. This example will have 100 people times 5 alternatives times 8 choice sets equals 4000 observations. The first five observations are for the first subject and the first choice set, the next five observations are for the second subject and the first choice set, ..., the next five observations are for the one-hundredth subject and the first choice set, the next five observations are for the first subject and the second choice set, and so on. Subject 1 in the first choice set is almost certainly not the same as subject 1 in subsequent choice sets since we were given aggregate data. However, that is not important. What is important is that we have a subject and choice set variable whose unique combinations identify each choice set within each subject. In previous examples, we specified strata Subj Set with PROC PHREG, and our data were sorted by choice set within subject. We can still use the same specification even though our data are now sorted by subject within choice set. This next step reads and prepares the data.

```
%let m = 5; /* Number of Brands in Each Choice Set */
    /* (including Other) */
title 'Brand Choice Example, Multinomial Logit Model';
proc format;
    value brand 1 = 'Brand 1' 2 = 'Brand 2' 3 = 'Brand 3'
                        4 = 'Brand 4' 5 = 'Other';
    run;
```

```
data price;
    array p[\&m] p1-p\&m; /* Prices for the Brands */
    array \(f[\& m]\) f1-f\&m; /* Frequency of Choice */
    input \(\mathrm{p} 1-\mathrm{p} \& \mathrm{~m}\) f1-f\&m;
    keep subj set brand price c p1-p\&m;
    * Store choice set and subject number to stratify;
    Set = _n_; Subj = 0;
    do i = 1 to \&m; /* Loop over the \&m frequencies */
        do ci \(=1\) to \(f[i] ; \quad / *\) Loop frequency of choice times */
            subj + 1; /* Subject within choice set */
            do Brand = 1 to \&m; /* Alternatives within choice set */
                Price \(=\) p[brand];
                * Output first choice: c=1, unchosen: c=2;
                c \(=2\) - (i eq brand); output;
                end;
            end;
        end;
format brand brand.;
datalines;
\(3.995 .993 .99 \quad 5.994 .99 \quad 4291642 \quad 9\)
\(\begin{array}{lllllllll}5.99 & 5.99 & 5.99 & 5.99 & 4.99 & 12 & 19 & 22 & 33 \\ 14\end{array}\)
\(5.995 .99 \quad 3.993 .994 .99 \quad 34 \quad 26 \quad 8 \quad 27 \quad 5\)
\(\begin{array}{llllllllll}5.99 & 3.99 & 5.99 & 3.99 & 4.99 & 13 & 37 & 15 & 27 & 8\end{array}\)
\(\begin{array}{lllllllll}5.99 & 3.99 & 3.99 & 5.99 & 4.99 & 49 & 1 & 9 & 37\end{array} 4\)
\(3.99 \quad 5.99 \quad 5.99 \quad 3.994 .99 \quad 31 \quad 12 \quad 6 \quad 18 \quad 33\)
\(\begin{array}{llllllllll}3.99 & 3.99 & 5.99 & 5.99 & 4.99 & 37 & 10 & 5 & 35 & 13\end{array}\)
\(3.99 \quad 3.99 \quad 3.99 \quad 3.994 .99 \quad 16 \quad 14 \quad 5 \quad 51 \quad 14\)
;
proc print data=price(obs=15);
    var subj set c price brand;
    run;
```

The inner loop do Brand $=1$ to \&m creates all of the observations for the m alternatives within a person/choice set combination. Within a choice set (row of input data), the outer two loops, do $i=$ 1 to \&m and do ci $=1$ to $f[i]$ execute the code inside 100 times, the variable Subj goes from 1 to 100. In the first choice set, they first create the data for the four subjects that chose Brand 1 , then the data for the 29 subjects that chose Brand 2, and so on. Here are the first 15 observations of the data set.

| Brand Choice Example, Multinomial Logit Model | | | | | |
| ---: | :---: | :---: | :---: | :---: | :---: |
| Obs | Subj | Set | c | Price | Brand |
| | | | | | |
| 1 | 1 | 1 | 1 | 3.99 | Brand 1 |
| 2 | 1 | 1 | 2 | 5.99 | Brand 2 |
| 3 | 1 | 1 | 2 | 3.99 | Brand 3 |
| 4 | 1 | 1 | 2 | 5.99 | Brand 4 |
| 5 | 1 | 1 | 2 | 4.99 | Other |
| 6 | 2 | 1 | 1 | 3.99 | Brand 1 |
| 7 | 2 | 1 | 2 | 5.99 | Brand 2 |
| 8 | 2 | 1 | 2 | 3.99 | Brand 3 |
| 9 | 2 | 1 | 2 | 5.99 | Brand 4 |
| 10 | 2 | 1 | 2 | 4.99 | Other |
| 11 | 3 | 1 | 1 | 3.99 | Brand 1 |
| 12 | 3 | 1 | 2 | 5.99 | Brand 2 |
| 13 | 3 | 1 | 2 | 3.99 | Brand 3 |
| 14 | 3 | 1 | 2 | 5.99 | Brand 4 |
| 15 | 3 | 1 | 2 | 4.99 | Other |

Note that the data set also contains the variables p1-p5 which contain the prices of each of the alternatives. These variables, which are used in constructing the cross effects, will be discussed in more detail on page 212.

```
proc print data=price(obs=5); run;
```

Brand Choice Example, Multinomial Logit Model

| Obs | p1 | p2 | p3 | p4 | p5 | Set | Subj | Brand | Price | c |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | |
| 1 | 3.99 | 5.99 | 3.99 | 5.99 | 4.99 | 1 | 1 | Brand 1 | 3.99 | 1 |
| 2 | 3.99 | 5.99 | 3.99 | 5.99 | 4.99 | 1 | 1 | Brand 2 | 5.99 | 2 |
| 3 | 3.99 | 5.99 | 3.99 | 5.99 | 4.99 | 1 | 1 | Brand 3 | 3.99 | 2 |
| 4 | 3.99 | 5.99 | 3.99 | 5.99 | 4.99 | 1 | 1 | Brand 4 | 5.99 | 2 |
| 5 | 3.99 | 5.99 | 3.99 | 5.99 | 4.99 | 1 | 1 | Other | 4.99 | 2 |

Simple Price Effects

The data are coded using PROC TRANSREG.

```
proc transreg design data=price nozeroconstant norestoremissing;
    model class(brand / zero=none) identity(price) / lprefix=0;
    output out=coded(drop=_type_ _name_ intercept);
    label price = 'Price';
    id subj set c;
    run;
```

The design option specifies that no model is fit; the procedure is just being used to code a design. The nozeroconstant option specifies that if the coding creates a constant variable, it should not be zeroed. The norestoremissing option specifies that missing values should not be restored when the out= data set is created. The model statement names the variables to code and provides information about how they should be coded. The specification class (brand / zero=none) specifies that the variable Brand is a classification variable and requests a binary coding. The zero=none option creates binary variables for all categories. The specification identity (price) specifies that the variable Price is quantitative and hence should directly enter the model without coding. The lprefix=0 option specifies that when labels are created for the binary variables, zero characters of the original variable name should be used as a prefix. This means that the labels are created only from the level values. An output statement names the output data set and drops variables that are not needed. Finally, the id statement names the additional variables that we want copied from the input to the output data set.

```
proc phreg data=coded brief;
    title2 'Discrete Choice with Common Price Effect';
    model c*c(2) = &_trgind / ties=breslow;
    strata subj set;
    run;
title2;
```

Here are the results. (Recall that we used \%phchoice(on) on page 95 to customize the output from PROC PHREG.)
Brand Choice Example, Multinomial Logit Model
Discrete Choice with Common Price Effect
The PHREG Procedure
Model Information

Model Fit Statistics

| Criterion | Without
 Covariates | With
 Covariates |
| :--- | ---: | ---: |
| -2 LOG L | 2575.101 | 2425.214 |
| AIC | 2575.101 | 2435.214 |
| SBC | 2575.101 | 2458.637 |

Testing Global Null Hypothesis: BETA=0

| Test | Chi-Square | DF | Pr $>$ ChiSq |
| :--- | :---: | :---: | :---: |
| | | | |
| Likelihood Ratio | 149.8868 | 5 | $<.0001$ |
| Score | 153.2328 | 5 | $<.0001$ |
| Wald | 142.9002 | 5 | $<.0001$ |

Multinomial Logit Parameter Estimates

| | DF | Parameter
 Estimate | Standard
 Error | Chi-Square | Pr $>$ ChiSq |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Brand 1 | 1 | 0.66727 | 0.12305 | 29.4065 | $<.0001$ |
| Brand 2 | 1 | 0.38503 | 0.12962 | 8.8235 | 0.0030 |
| Brand 3 | 1 | -0.15955 | 0.14725 | 1.1740 | 0.2786 |
| Brand 4 | 1 | 0.98964 | 0.11720 | 71.2993 | $<.0001$ |
| Other | 0 | 0 | . | . | . |
| Price | 1 | 0.14966 | 0.04406 | 11.5379 | 0.0007 |

Alternative-Specific Price Effects

In the next step, the data are coded for fitting a multinomial logit model with brand by price effects.

```
proc transreg design data=price nozeroconstant norestoremissing;
    model class(brand / zero=none separators=', ,') |
        identity(price) / lprefix=0;
    output out=coded(drop=_type_ _name_ intercept);
    label price = 'Price';
    id subj set c;
    run;
```

The PROC TRANSREG model statement has a vertical bar, "|", between the class specification and the identity specification. Since the zero=none option is specified with class, the vertical bar creates two sets of variables: five indicator variables for the brand effects and five more variables for the brand by price interactions. The separators= option allows you to specify two label component separators as quoted strings. The specification separators=', ' ' (separators= quote quote space quote space quote) specifies a null string (quote quote) and a blank (quote space quote). The separators=', ' ' option in the class specification specifies the separators that are used to construct the labels for the main effect and interaction terms, respectively. By default, the alternative-specific price effects -
the brand by price interactions - would have labels like 'Brand $1 *$ Price' since the default second value for separators= is ' ${ }^{\prime}$ ' (a quoted space asterisk space). Specifying ' ' (a quoted space) as the second value creates labels of the form 'Brand 1 Price'. Since lprefix=0, the main-effects separator, which is the first separators= value, '' (quote quote), is ignored. Zero name or input variable label characters are used to construct the label. The label is simply the formatted value of the class variable. The next steps print the first two coded choice sets and perform the analysis.

```
proc print data=coded(obs=10) label;
        title2 'Discrete Choice with Brand by Price Effects';
        var subj set c brand price &_trgind;
        run;
proc phreg data=coded brief;
        model c*c(2) = &_trgind / ties=breslow;
        strata subj set;
        run;
title2;
```


Brand Choice Example, Multinomial Logit Model
Discrete Choice with Brand by Price Effects

The PHREG Procedure

Model Information

Multinomial Logit Parameter Estimates

| | DF | Parameter
 Estimate | Standard
 Error | Chi-Square | Pr $>$ ChiSq |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Brand 1 | 1 | -0.00972 | 0.43555 | 0.0005 | 0.9822 |
| Brand 2 | 1 | -0.62230 | 0.48866 | 1.6217 | 0.2028 |
| Brand 3 | 1 | -0.81250 | 0.60318 | 1.8145 | 0.1780 |
| Brand 4 | 1 | 0.31778 | 0.39549 | 0.6456 | 0.4217 |
| Other | 0 | 0 | . | . | . |
| Brand 1 Price | 1 | 0.13587 | 0.08259 | 2.7063 | 0.1000 |
| Brand 2 Price | 1 | 0.20074 | 0.09210 | 4.7512 | 0.0293 |
| Brand 3 Price | 1 | 0.13126 | 0.11487 | 1.3057 | 0.2532 |
| Brand 4 Price | 1 | 0.13478 | 0.07504 | 3.2255 | 0.0725 |
| Other Price | 0 | 0 | . | . | . |

The likelihood for this model is essentially the same as for the simpler, common-price-slope model fit previously, $-2 \log \left(\mathcal{L}_{C}\right)=2425.214$ compared to 2424.812 . You can test the null hypothesis that the two models are not significantly different by comparing their likelihoods. The difference between two $-2 \log \left(\mathcal{L}_{C}\right)$'s (the number reported under 'With Covariates' in the output) has a chi-square distribution. We can get the $d f$ for the test by subtracting the two $d f$ for the two likelihoods. The difference $2425.214-2424.812=0.402$ is distributed χ^{2} with $8-5=3 d f$ and is not statistically significant.

Mother Logit Model

This next step fits the so-called "mother logit" model. This step creates the full design matrix, including the brand, price, and cross effects. A cross effect represents the effect of one alternative on the utility of another alternative. First, let's look at the input data set for the first choice set.

```
proc print data=price(obs=5) label;
    run;
```

| Obs | p1 | Brand Choice | | Example, Multinomial Logit Model | | | | | Price | c |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | p2 | p3 | p4 | p5 | Set | Subj | Brand | | |
| 1 | 3.99 | 5.99 | 3.99 | 5.99 | 4.99 | 1 | 1 | Brand 1 | 3.99 | 1 |
| 2 | 3.99 | 5.99 | 3.99 | 5.99 | 4.99 | 1 | 1 | Brand 2 | 5.99 | 2 |
| 3 | 3.99 | 5.99 | 3.99 | 5.99 | 4.99 | 1 | 1 | Brand 3 | 3.99 | 2 |
| 4 | 3.99 | 5.99 | 3.99 | 5.99 | 4.99 | 1 | 1 | Brand 4 | 5.99 | 2 |
| 5 | 3.99 | 5.99 | 3.99 | 5.99 | 4.99 | 1 | 1 | Other | 4.99 | 2 |

The input consists of Set, Subj, Brand, Price, and a choice time variable c. In addition, it contains five variables p 1 through p 5 . The first observation of the Price variable shows us that the first alternative costs $\$ 3.99$; p1 contains the cost of alternative $1, \$ 3.99$, which is the same for all alternatives. It does not matter which alternative you are looking at, p1 shows that alternative 1 costs $\$ 3.99$. Similarly, the
second observation of the Price variable shows us that the second alternative costs $\$ 5.99$; p2 contains the cost of alternative $2, \$ 5.99$, which is the same for all alternatives. There is one price variable, p 1 through p 5 , for each of the five alternatives.

In all of the previous examples, we have used models that were coded so that the utility of an alternative only depended on the attributes of that alternative. For example, the utility of Brand 1 would only depend on the Brand 1 name and its price. In contrast, $\mathrm{p} 1-\mathrm{p} 5$ contain information about each of the other alternatives' attributes. We will construct cross effects using the interaction of p1-p5 and the Brand variable. In a model with cross effects, the utility for an alternative depends on both that alternative's attributes and the other alternatives' attributes. The IIA (independence from irrelevant alternatives) property states that utility only depends on an alternative's own attributes. Cross effects add other alternative's attributes to the model, so they can be used to test for violations of IIA. (See pages 219, 228, 354, and 358 for other discussions of IIA.) Here is the PROC TRANSREG code for the cross-effects model.

```
proc transreg design data=price nozeroconstant norestoremissing;
    model class(brand / zero=none separators=', , ') | identity(price)
        identity (p1-p\&m) *
            class(brand / zero=none lprefix=0 separators=', ' on ') /
        lprefix=0;
    output out=coded(drop=_type_ _name_ intercept);
    label price = 'Price'
        p1 = 'Brand 1' p2 = 'Brand 2' p3 = 'Brand 3'
        p4 = 'Brand 4' p5 = 'Other';
    id subj set \(c\);
    run;
```

The class (brand / ...) | identity(price) specification in the model statement is the same as the previous analysis. The additional terms, identity (p1-p\&m) * class (brand / ...) create the cross effects. The second value of the separators= option, ' on' is used to create labels like 'Brand 1 on Brand 2' instead of the default 'Brand $1 *$ Brand 2'. It is important to note that you must specify the cross effect by specifying identity with the price factors, followed by the asterisk, followed by class and the brand effect, in that order. The order of the specification determines the order in which brand names are added to the labels. Do not specify the brand variable first; doing so will create incorrect labels.

With m alternatives, there are $m \times m$ cross effects, but as we will see, many of them are zero. The first coded choice set is printed with the following PROC PRINT steps. Multiple steps are used to facilitate explaining the coding.

```
title2 'Discrete Choice with Cross Effects, Mother Logit';
proc format; value zer 0 = ' 0' 1 = ' 1'; run;
proc print data=coded(obs=5) label; var subj set c brand price; run;
proc print data=coded(obs=5) label; var Brand:;
    format brand: zer5.2 brand brand.; run;
proc print data=coded(obs=5) label; var p1B:; format p: zer5.2; id brand; run;
proc print data=coded(obs=5) label; var p2B:; format p: zer5.2; id brand; run;
proc print data=coded(obs=5) label; var p3B:; format p: zer5.2; id brand; run;
proc print data=coded(obs=5) label; var p4B:; format p: zer5.2; id brand; run;
proc print data=coded(obs=5) label; var p5B:; format p: zer5.2; id brand; run;
```

The coded data set contains the strata variable Subj and Set, choice time variable c, and Brand and Price. Brand and Price were used to create the coded independent variables but they are not used
in the analysis with PROC PHREG.

Brand Choice Example, Multinomial Logit Model
Discrete Choice with Cross Effects, Mother Logit

| Obs | Subj | Set | c | Brand | Price |
| :---: | :---: | :---: | :---: | :--- | :--- |
| | | | | | |
| 1 | 1 | 1 | 1 | Brand 1 | 3.99 |
| 2 | 1 | 1 | 2 | Brand 2 | 5.99 |
| 3 | 1 | 1 | 2 | Brand 3 | 3.99 |
| 4 | 1 | 1 | 2 | Brand 4 | 5.99 |
| 5 | 1 | 1 | 2 | Other | 4.99 |

The effects 'Brand 1' through 'Other' in the next output are the binary brand effect variables. They indicate the brand for each alternative. The effects 'Brand 1 Price' through 'Other Price' are alternative-specific price effects. They indicate the price for each alternative. All ten of these variables are independent variables in the analysis, and their names are part of the \&_trgind macro variable list, as are all of the cross effects that are described next.

| Brand Choice Example, Multinomial Logit Model Discrete Choice with Cross Effects, Mother Logit | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Obs | Brand 1 | $\begin{gathered} \text { Brand } \\ 2 \end{gathered}$ | $\begin{gathered} \text { Brand } \\ 3 \end{gathered}$ | $\begin{gathered} \text { Brand } \\ 4 \end{gathered}$ | Other | $\begin{gathered} \text { Brand } 1 \\ \text { Price } \end{gathered}$ | $\begin{gathered} \text { Brand } 2 \\ \text { Price } \end{gathered}$ | $\begin{gathered} \text { Brand } 3 \\ \text { Price } \end{gathered}$ | $\begin{gathered} \text { Brand } 4 \\ \text { Price } \end{gathered}$ | Other
 Price | Brand |
| 1 | 1 | 0 | 0 | 0 | 0 | 3.99 | 0 | 0 | 0 | 0 | Brand 1 |
| 2 | 0 | 1 | 0 | 0 | 0 | 0 | 5.99 | 0 | 0 | 0 | Brand 2 |
| 3 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 3.99 | 0 | 0 | Brand 3 |
| 4 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 5.99 | 0 | Brand 4 |
| 5 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 4.99 | Other |

The effects 'Brand 1 on Brand 1' through 'Brand 1 on Other' in the next output are the first five cross effects.

They represent the effect of Brand 1 at its price on the utility of each alternative. The label 'Brand n on Brand m ' is read as 'the effect of Brand n at its price on the utility of Brand m.' For the first choice set, these first five cross effects consist entirely of zeros and $\$ 3.99$'s, where $\$ 3.99$ is the price of Brand 1 in this choice set. The nonzero value is constant across all of the alternatives in each choice set since Brand 1 has only one price in each choice set. Notice the 'Brand 1 on Brand 1' term, which is the effect of Brand 1 at its price on the utility of Brand 1. Also notice the 'Brand 1 Price' effect, which is shown in the previous output. The description "the effect of Brand 1 at its price on the utility of Brand 1" is just a convoluted way of describing the Brand 1 price effect. The 'Brand 1 on Brand 1^{\prime} cross effect is the same as the Brand 1 price effect, hence when we do the analysis, we will see that the coefficient for the 'Brand 1 on Brand 1' cross effect is zero.

The effects 'Brand 2 on Brand 1' through 'Brand 2 on Other' in the next output are the next five cross effects.

They represent the effect of Brand 2 at its price on the utility of each alternative. For the first choice set, these five cross effects consist entirely of zeros and $\$ 5.99$'s, where $\$ 5.99$ is the price of Brand 2 in this choice set. The nonzero value is constant across all of the alternatives in each choice set since Brand 2 has only one price in each choice set. Notice the 'Brand 2 on Brand 2' term, which is the effect of Brand 2 at its price on the utility of Brand 2. The description "the effect of Brand 2 at its price on the utility of Brand 2" is just a convoluted way of describing the Brand 2 price effect. The 'Brand 2 on Brand 2' cross effect is the same as the Brand 2 price effect, hence when we do the analysis, we will see that the coefficient for the 'Brand 2 on Brand 2' cross effect is zero.

The effects 'Brand 3 on Brand 1' through 'Brand 3 on Other' in the next output are the next five cross effects.

| Brand | Brand Choice Example, Multinomial Logit Model Discrete Choice with Cross Effects, Mother Logit | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Brand
 3 on
 Brand 1 | Brand
 3 on
 Brand 2 | Brand
 3 on Brand 3 | Brand
 3 on
 Brand 4 | Brand 3 on Other |
| Brand 1 | 3.99 | 0 | 0 | 0 | 0 |
| Brand 2 | 0 | 3.99 | 0 | 0 | 0 |
| Brand 3 | 0 | 0 | 3.99 | 0 | 0 |
| Brand 4 | 0 | 0 | 0 | 3.99 | 0 |
| Other | 0 | 0 | 0 | 0 | 3.99 |

They represent the effect of Brand 3 at its price on the utility of each alternative. For the first choice set, these five cross effects consist entirely of zeros and $\$ 3.99$'s, where $\$ 3.99$ is the price of Brand 3 in this choice set. Notice that the 'Brand 3 on Brand 3' term is the same as the Brand 3 price effect, hence when we do the analysis, we will see that the coefficient for the 'Brand 3 on Br and 3 ' cross effect is zero.

Here are the remaining cross effects. They follow the same pattern that was described for the previous cross effects.

| Brand Choice Example, Multinomial Logit Model Discrete Choice with Cross Effects, Mother Logit | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Brand | $\begin{gathered} \text { Brand } \\ 4 \text { on } \\ \text { Brand } 1 \end{gathered}$ | Brand
 4 on
 Brand 2 | $\begin{aligned} & \text { Brand } \\ & 4 \text { on } \\ & \text { Brand } 3 \end{aligned}$ | $\begin{gathered} \text { Brand } \\ 4 \text { on } \\ \text { Brand } 4 \end{gathered}$ | Brand 4 on Other |
| Brand 1 | 5.99 | 0 | 0 | 0 | 0 |
| Brand 2 | 0 | 5.99 | 0 | 0 | 0 |
| Brand 3 | 0 | 0 | 5.99 | 0 | 0 |
| Brand 4 | 0 | 0 | 0 | 5.99 | 0 |
| Other | 0 | 0 | 0 | 0 | 5.99 |
| Brand Choice Example, Multinomial Logit Model Discrete Choice with Cross Effects, Mother Logit | | | | | |
| Brand | Other on
 Brand 1 | Other on
 Brand 2 | Other on Brand 3 | Other on Brand 4 | Other on Other |
| Brand 1 | 4.99 | 0 | 0 | 0 | 0 |
| Brand 2 | 0 | 4.99 | 0 | 0 | 0 |
| Brand 3 | 0 | 0 | 4.99 | 0 | 0 |
| Brand 4 | 0 | 0 | 0 | 4.99 | 0 |
| Other | 0 | 0 | 0 | 0 | 4.99 |

We have been describing variables by their labels. While it is not necessary to look at it, the \&_trgind macro variable name list that PROC TRANSREG creates for this problem is as follows:

```
%put &_trgind;
BrandBrand_1 BrandBrand_2 BrandBrand_3 BrandBrand_4 BrandOther
BrandBrand_1Price BrandBrand_2Price BrandBrand_3Price BrandBrand_4Price
BrandOtherPrice p1BrandBrand_1 p1BrandBrand_2 p1BrandBrand_3 p1BrandBrand_4
p1BrandOther p2BrandBrand_1 p2BrandBrand_2 p2BrandBrand_3 p2BrandBrand_4
p2BrandOther p3BrandBrand_1 p3BrandBrand_2 p3BrandBrand_3 p3BrandBrand_4
p3BrandOther p4BrandBrand_1 p4BrandBrand_2 p4BrandBrand_3 p4BrandBrand_4
p4BrandOther p5BrandBrand_1 p5BrandBrand_2 p5BrandBrand_3 p5BrandBrand_4
p5BrandOther
```

The analysis proceeds in exactly the same manner as before.

```
proc phreg data=coded brief;
    model c*c(2) = &_trgind / ties=breslow;
    strata subj set;
    run;
```

Brand Choice Example, Multinomial Logit Model
Discrete Choice with Cross Effects, Mother Logit
The PHREG Procedure

Model Information

Model Fit Statistics

| Criterion | Without
 Covariates | With
 Covariates |
| :--- | ---: | ---: |
| -2 LOG L | 2575.101 | 2349.325 |
| AIC | 2575.101 | 2389.325 |
| SBC | 2575.101 | 2483.018 |

Testing Global Null Hypothesis: BETA=0

| Test | Chi-Square | DF | Pr $>$ ChiSq |
| :--- | :---: | :---: | :---: |
| | | | |
| Likelihood Ratio | 225.7752 | 20 | $<.0001$ |
| Score | 218.4500 | 20 | $<.0001$ |
| Wald | 190.0257 | 20 | $<.0001$ |

| | DF | Parameter
 Estimate | Standard Error | Chi-Square | Pr > ChiSq |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Brand 1 | 1 | 1.24963 | 1.31259 | 0.9064 | 0.3411 |
| Brand 2 | 1 | -0.16269 | 1.38579 | 0.0138 | 0.9065 |
| Brand 3 | 1 | -3.90179 | 1.56511 | 6.2150 | 0.0127 |
| Brand 4 | 1 | 2.49435 | 1.25537 | 3.9480 | 0.0469 |
| Other | 0 | 0 | . | . | |
| Brand 1 Price | 1 | 0.51056 | 0.13178 | 15.0096 | 0.0001 |
| Brand 2 Price | 1 | -0.04920 | 0.13411 | 0.1346 | 0.7137 |
| Brand 3 Price | 1 | -0.27594 | 0.15517 | 3.1623 | 0.0754 |
| Brand 4 Price | 1 | 0.28951 | 0.12192 | 5.6389 | 0.0176 |
| Other Price | 0 | 0 | . | . | . |
| Brand 1 on Brand 1 | 0 | 0 | . | . | |
| Brand 1 on Brand 2 | 1 | 0.51651 | 0.13675 | 14.2653 | 0.0002 |
| Brand 1 on Brand 3 | 1 | 0.66122 | 0.15655 | 17.8397 | <.0001 |
| Brand 1 on Brand 4 | 1 | 0.32806 | 0.12664 | 6.7105 | 0.0096 |
| Brand 1 on Other | 0 | 0 | . | . | . |
| Brand 2 on Brand 1 | 1 | -0.39876 | 0.12832 | 9.6561 | 0.0019 |
| Brand 2 on Brand 2 | 0 | 0 | . | . | . |
| Brand 2 on Brand 3 | 1 | -0.01755 | 0.15349 | 0.0131 | 0.9090 |
| Brand 2 on Brand 4 | 1 | -0.33802 | 0.12220 | 7.6512 | 0.0057 |
| Brand 2 on Other | 0 | 0 | - | . | - |
| Brand 3 on Brand 1 | 1 | -0.43868 | 0.13119 | 11.1823 | 0.0008 |
| Brand 3 on Brand 2 | 1 | -0.31541 | 0.13655 | 5.3356 | 0.0209 |
| Brand 3 on Brand 3 | 0 | 0 | . | . | . |
| Brand 3 on Brand 4 | 1 | -0.54854 | 0.12528 | 19.1723 | $<.0001$ |
| Brand 3 on Other | 0 | 0 | . | . | . |

| Brand 4 on Brand 1 | 1 | 0.24398 | 0.12781 | 3.6443 | 0.0563 |
| :--- | :--- | ---: | :---: | :---: | :---: |
| Brand 4 on Brand 2 | 1 | -0.01214 | 0.13416 | 0.0082 | 0.9279 |
| Brand 4 on Brand 3 | 1 | 0.40500 | 0.15285 | 7.0211 | 0.0081 |
| Brand 4 on Brand 4 | 0 | 0 | . | . | . |
| Brand 4 on Other | 0 | 0 | . | . | . |
| Other on Brand 1 | 0 | 0 | . | . | . |
| Other on Brand 2 | 0 | 0 | . | . | . |
| Other on Brand 3 | 0 | 0 | . | . | . |
| Other on Brand 4 | 0 | 0 | . | . | . |
| Other on Other | 0 | 0 | . | . | . |

The results consist of:

- four nonzero brand effects and a zero for the constant alternative
- four nonzero alternative-specific price effects and a zero for the constant alternative
- $5 \times 5=25$ cross effects, the number of alternatives squared, but only $(5-1) \times(5-2)=12$ of them are nonzero (four brands not counting Other affecting each of the remaining three brands).
- There are three cross effects for the effect of Brand 1 on Brands 2, 3, and 4.
- There are three cross effects for the effect of Brand 2 on Brands 1,3 , and 4.
- There are three cross effects for the effect of Brand 3 on Brands 1, 2, and 4.
- There are three cross effects for the effect of Brand 4 on Brands 1,2 , and 3.

All coefficients for the constant (other) alternative are zero as are the cross effects of a brand on itself.
The mother logit model is used to test for violations of IIA (independence from irrelevant alternatives). IIA means the odds of choosing alternative c_{i} over c_{j} do not depend on the other alternatives in the choice set. Ideally, this more general model will not significantly explain more variation in choice than the restricted models. Also, if IIA is satisfied, few if any of the cross-effect terms should be significantly different from zero. (See pages 213, 228, 354, and 358 for other discussions of IIA.) In this case, it appears that IIA is not satisfied (the data are artificial), so the more general mother logit model is needed. The chi-square statistic is $2424.812-2349.325=75.487$ with $20-8=12 d f(p<0.0001)$.

You could eliminate some of the zero parameters by changing zero=none to zero='Other' and eliminating p5 (p\&m) from the model.

```
proc transreg design data=price nozeroconstant norestoremissing;
    model class(brand / zero='Other' separators=', ', ') | identity(price)
    identity(p1-p4) * class(brand / zero='Other' separators=', ' on ') /
    lprefix=0;
    output out=coded(drop=_type_ _name_ intercept);
    label price = 'Price'
    p1 = 'Brand 1' p2 = 'Brand 2' p3 = 'Brand 3'
    p4 = 'Brand 4';
id subj set c;
run;
```

You could also eliminate the brand by price effects and instead capture brand by price effects as the cross effect of a variable on itself.

```
proc transreg design data=price nozeroconstant norestoremissing;
    model class(brand / zero='Other' separators=', ', ')
            identity(p1-p4) * class(brand / zero='Other' separators=', ' on ') /
            lprefix=0;
    output out=coded(drop=_type_ _name_ intercept);
    label price = 'Price'
            p1 = 'Brand 1' p2 = 'Brand 2' p3 = 'Brand 3'
            p4 = 'Brand 4';
    id subj set c;
    run;
```

In both cases, the analysis (not shown) would be run in the usual manner. Except for the elimination of zero terms, and in the second case, the change to capture the price effects in the cross effects, the results are identical.

Aggregating the Data

In all examples so far (except the last part of the last vacation example), the data set has been created for analysis with one stratum for each choice set and subject combination. Such data sets can be large. The data can also be arrayed with a frequency variable and each choice set forming a separate stratum. This example illustrates how.

```
title 'Brand Choice Example, Multinomial Logit Model';
title2 'Aggregate Data';
%let m = 5; /* Number of Brands in Each Choice Set */
        /* (including Other) */
proc format;
    value brand 1 = 'Brand 1' 2 = 'Brand 2' 3 = 'Brand 3'
            4 = 'Brand 4' 5 = 'Other';
    run;
data price2;
    array p[&m] p1-p&m; /* Prices for the Brands */
    array f[&m] f1-f&m; /* Frequency of Choice */
    input p1-p&m f1-f&m;
    keep set price brand freq c p1-p&m;
    * Store choice set number to stratify;
    Set = _n_;
```

```
    do Brand = 1 to &m;
    Price = p[brand];
    * Output first choice: c=1, unchosen: c=2;
    Freq = f[brand]; c = 1; output;
    * Output number of times brand was not chosen.;
    freq = sum(of f1-f&m) - freq; c = 2; output;
    end;
    format brand brand.;
    datalines;
    3.99 5.99 3.99 5.99 4.99 4 29 16 42 9
    5.99 5.99 5.99 5.99 4.99 12 19 22 33 14
    5.99 5.99 3.99 3.99 4.99 34 26 8 27 5
    5.99 3.99 5.99 3.99 4.99 13 37 15 27 8
    5.99 3.99 3.99 5.99 4.99 49 1 9 9 37 4
    3.99 5.99 5.99 3.99 4.99 31 12 6 18 33
    3.99 3.99 5.99 5.99 4.99 37 10 5 5 35 13
    3.99 3.99 3.99 3.99 4.99 16 14 5 51 14
    ;
    proc print data=price2(obs=10);
    var set c freq price brand;
    run;
```

| Brand ChoiceExample, Multinomial Logit Model
 Aggregate Data | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Obs | Set | c | Freq | Price | Brand |
| 1 | 1 | 1 | 4 | 3.99 | Brand 1 |
| 2 | 1 | 2 | 96 | 3.99 | Brand 1 |
| 3 | 1 | 1 | 29 | 5.99 | Brand 2 |
| 4 | 1 | 2 | 71 | 5.99 | Brand 2 |
| 5 | 1 | 1 | 16 | 3.99 | Brand 3 |
| 6 | 1 | 2 | 84 | 3.99 | Brand 3 |
| 7 | 1 | 1 | 42 | 5.99 | Brand 4 |
| 8 | 1 | 2 | 58 | 5.99 | Brand 4 |
| 9 | 1 | 1 | 9 | 4.99 | Other |
| 10 | 1 | 2 | 91 | 4.99 | Other |

This data set has 5 brands times 2 observations times 8 choice sets for a total of 80 observations, compared to $100 \times 5 \times 8=4000$ using the standard method. Two observations are created for each alternative within each choice set. The first contains the number of people who chose the alternative, and the second contains the number of people who did not choose the alternative.

To analyze the data, specify strata Set and freq Freq.

```
proc transreg design data=price2 nozeroconstant norestoremissing;
        model class(brand / zero=none) identity(price) / lprefix=0;
        output out=coded(drop=_type_ _name_ intercept);
        label price = 'Price';
        id freq set c;
        run;
proc phreg data=coded;
    title2 'Discrete Choice with Common Price Effect, Aggregate Data';
    model c*c(2) = &_trgind / ties=breslow;
    strata set;
    freq freq;
    run;
title2;
```

These steps produced the following results.

Brand Choice Example, Multinomial Logit Model Discrete Choice with Common Price Effect, Aggregate Data

The PHREG Procedure

Model Information

Data Set
WORK. CODED
Dependent Variable c
Censoring Variable c
Censoring Value(s) 2
Frequency Variable Freq
Ties Handling BRESLOW

| Number of Observations Read | 80 |
| :--- | ---: |
| Number of Observations Used | 80 |
| Sum of Frequencies Read | 4000 |
| Sum of Frequencies Used | 4000 |

| Stratum | Set | Number of Alternatives | Chosen
 Alternatives | $\begin{array}{r} \text { Not } \\ \text { Chosen } \end{array}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 500 | 100 | 400 |
| 2 | 2 | 500 | 100 | 400 |
| 3 | 3 | 500 | 100 | 400 |
| 4 | 4 | 500 | 100 | 400 |
| 5 | 5 | 500 | 100 | 400 |
| 6 | 6 | 500 | 100 | 400 |
| 7 | 7 | 500 | 100 | 400 |
| 8 | 8 | 500 | 100 | 400 |
| Total | | 4000 | 800 | 3200 |
| Convergence Status | | | | |
| Convergence criterion (GCONV=1E-8) satisfied. | | | | |

| Criterion | Without
 Covariates | With
 Covariates |
| :--- | ---: | ---: |
| -2 LOG L | 9943.373 | 9793.486 |
| AIC | 9943.373 | 9803.486 |
| SBC | 9943.373 | 9826.909 |
| Testing Global Null Hypothesis: BETA=0 | | |

| Test | Chi-Square | DF | Pr $>$ ChiSq |
| :--- | ---: | ---: | ---: |
| Likelihood Ratio | 149.8868 | 5 | $<.0001$ |
| Score | 153.2328 | 5 | $<.0001$ |
| Wald | 142.9002 | 5 | $<.0001$ |

Multinomial Logit Parameter Estimates

| | DF | Parameter
 Estimate | Standard
 Error | Chi-Square | Pr > ChiSq |
| :--- | ---: | ---: | ---: | ---: | ---: |
| | | | | | |
| Brand 1 | 1 | 0.66727 | 0.12305 | 29.4065 | $<.0001$ |
| Brand 2 | 1 | 0.38503 | 0.12962 | 8.8235 | 0.0030 |
| Brand 3 | 1 | -0.15955 | 0.14725 | 1.1740 | 0.2786 |
| Brand 4 | 1 | 0.98964 | 0.11720 | 71.2993 | $<.0001$ |
| Other | 0 | 0 | . | . | . |
| Price | 1 | 0.14966 | 0.04406 | 11.5379 | 0.0007 |

The summary table is small with eight rows, one row per choice set. Each row represents 100 chosen alternatives and 400 unchosen. The 'Analysis of Maximum Likelihood Estimates' table exactly matches the one produced by the standard analysis. The - 2 LOG L statistics are different than before: 9793.486 now compared to 2425.214 previously. This is because the data are arrayed in this example so that the partial likelihood of the proportional hazards model fit by PROC PHREG with the ties=breslow option is now proportional to - not identical to - the likelihood for the choice model. However, the Model Chi-Square statistics, $d f$, and p-values are the same as before. The two corresponding pairs of -2 LOG L's differ by a constant $9943.373-2575.101=9793.486-2425.214=7368.272=2 \times 800 \times \log (100)$. Since the χ^{2} is the -2 LOG L without covariates minus -2 LOG L with covariates, the constants cancel and the χ^{2} test is correct for both methods.

The technique of aggregating the data and using a frequency variable can be used for other models as well, for example with brand by price effects.

```
proc transreg design data=price2 nozeroconstant norestoremissing;
    model class(brand / zero=none separators=', ' ') |
            identity(price) / lprefix=0;
    output out=coded(drop=_type_ _name_ intercept);
    label price = 'Price';
    id freq set c;
    run;
proc phreg data=coded;
    title2 'Discrete Choice with Brand by Price Effects, Aggregate Data';
    model c*c(2) = &_trgind / ties=breslow;
    strata set;
    freq freq;
    run;
```

This step produced the following results. The only thing that changes from the analysis with one stratum for each subject and choice set combination is the likelihood.

```
    Brand Choice Example, Multinomial Logit Model
Discrete Choice with Brand by Price Effects, Aggregate Data
                    The PHREG Procedure
                    Model Information
            Data Set WORK.CODED
            Dependent Variable c
            Censoring Variable c
            Censoring Value(s) 2
            Frequency Variable Freq
            Ties Handling BRESLOW
                Number of Observations Read 80
                Number of Observations Used 80
                    Sum of Frequencies Read 4000
                    Sum of Frequencies Used 4000
```

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

| Stratum | Set | Number of Alternatives | Chosen Alternatives | Not
 Chosen |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 500 | 100 | 400 |
| 2 | 2 | 500 | 100 | 400 |
| 3 | 3 | 500 | 100 | 400 |
| 4 | 4 | 500 | 100 | 400 |
| 5 | 5 | 500 | 100 | 400 |
| 6 | 6 | 500 | 100 | 400 |
| 7 | 7 | 500 | 100 | 400 |
| 8 | 8 | 500 | 100 | 400 |
| Total | | 4000 | 800 | 3200 |

Convergence criterion (GCONV=1E-8) satisfied.
Model Fit Statistics

| Criterion | Without
 Covariates | With
 Covariates |
| :--- | :---: | ---: |
| -2 LOG L | 9943.373 | 9793.084 |
| AIC | 9943.373 | 9809.084 |
| SBC | 9943.373 | 9846.561 |
| Testing Global Null Hypothesis: BETA=0 | | |

| Test | Chi-Square | DF | Pr $>$ ChiSq |
| :--- | ---: | :---: | ---: |
| | | | |
| Likelihood Ratio | 150.2891 | 8 | $<.0001$ |
| Score | 154.2562 | 8 | $<.0001$ |
| Wald | 143.1425 | 8 | $<.0001$ |

Multinomial Logit Parameter Estimates

Brand 1
Brand 2
Brand 3
Brand 4
Other

Parameter Standard
DF Estimate Error
Error Chi-Square $\operatorname{Pr}>$ ChiSq
. 00972
0.43555
0.0005
0.9822
$-0.62230 \quad 0.48866$
$-0.81250 \quad 0.60318$
$0.31778 \quad 0.39549$
. 8145
0.2028
0.1780

0

| Brand 1 Price | 1 | 0.13587 | 0.08259 | 2.7063 | 0.1000 |
| :--- | ---: | ---: | ---: | :---: | :---: |
| Brand 2 Price | 1 | 0.20074 | 0.09210 | 4.7512 | 0.0293 |
| Brand 3 Price | 1 | 0.13126 | 0.11487 | 1.3057 | 0.2532 |
| Brand 4 Price | 1 | 0.13478 | 0.07504 | 3.2255 | 0.0725 |
| Other Price | 0 | 0 | . | . | . |

Previously, with one stratum per choice set within subject, we compared these models as follows: "The difference $2425.214-2424.812=0.402$ is distributed χ^{2} with $8-5=3 d f$ and is not statistically significant." The difference between two $-2 \log \left(\mathcal{L}_{C}\right)$'s equals the difference between two $-2 \log \left(\mathcal{L}_{B}\right)$'s, since the constant terms $(800 \times \log (100))$ cancel, $9793.486-9793.084=2425.214-2424.812=0.402$.

Choice and Breslow Likelihood Comparison

This section explains why the -2 LOG L values differ by a constant with aggregate data versus individual data. It may be skipped by all but the most dedicated readers.

Consider the choice model with a common price slope. Let x_{0} represent the price of the brand. Let x_{1}, x_{2}, x_{3}, and x_{4} be indicator variables representing the choice of brands. Let $\mathbf{x}=\left(\begin{array}{lll}x_{0} & x_{1} x_{2} & x_{3}\end{array} x_{4}\right)$ be the vector of alternative attributes. (A sixth element for 'Other' is omitted, since its parameter is always zero given the other brands.)
Consider the first choice set. There are five distinct vectors of alternative attributes
$\mathrm{x}_{1}=(3.991000) \quad \mathrm{x}_{2}=(5.990100) \quad \mathrm{x}_{3}=(3.990010) \quad \mathrm{x}_{4}=\left(\begin{array}{l}\text { (} 5.990001)\end{array}\right.$
$\mathrm{x}_{5}=\left(\begin{array}{ll}4.990 & 0\end{array} 0_{0} 0\right)$
The vector \mathbf{x}_{2}, for example, represents choice of Brand 2, and \mathbf{x}_{5} represents the choice of Other. One hundred individuals were asked to choose one of the $m=5$ brands from each of the eight sets. Let f_{1}, f_{2}, f_{3}, f_{4}, and f_{5} be the number of times each brand was chosen. For the first choice set, $f_{1}=4, f_{2}=29$, $f_{3}=16, f_{4}=42$, and $f_{5}=9$. Let N be the total frequency for each choice set, $N=\sum_{j=1}^{5} f_{j}=100$. The likelihood L_{1}^{C} for the first choice set data is

$$
L_{1}^{C}=\frac{\exp \left(\left(\sum_{j=1}^{5} f_{j} \mathbf{x}_{j}\right) \boldsymbol{\beta}\right)}{\left[\sum_{j=1}^{5} \exp \left(\mathbf{x}_{j} \boldsymbol{\beta}\right)\right]^{N}}
$$

The joint likelihood for all eight choice sets is the product of the likelihoods

$$
\mathcal{L}_{C}=\prod_{k=1}^{8} L_{k}^{C}
$$

The Breslow likelihood for this example, L_{k}^{B}, for the $k t h$ choice set, is the same as the likelihood for the choice model, except for a multiplicative constant.

$$
L_{k}^{C}=N^{N} L_{k}^{B}=100^{100} L_{k}^{B}
$$

Therefore, the Breslow likelihood for all eight choice sets is

$$
\mathcal{L}_{B}=\prod_{k=1}^{8} L_{k}^{B}=N^{-8 N} \mathcal{L}_{C}=100^{-800} \mathcal{L}_{C}
$$

The two likelihoods are not exactly the same, because each choice set is designated as a separate stratum, instead of each choice set within each subject.

The log likelihood for the choice model is

$$
\begin{aligned}
\log \left(\mathcal{L}_{C}\right) & =800 \times \log (100)+\log \left(\mathcal{L}_{B}\right) \\
\log \left(\mathcal{L}_{C}\right) & =800 \times \log (100)+(-0.5) \times 9793.486 \\
\log \left(\mathcal{L}_{C}\right) & =-1212.607
\end{aligned}
$$

and $-2 \log \left(\mathcal{L}_{C}\right)=2425.214$, which matches the earlier output. However, it is usually not necessary to obtain this value.

Food Product Example with Asymmetry and Availability Cross Effects

This is the choice example from Kuhfeld, Tobias, and Garratt (1994), which starts on page 39. This example discusses the multinomial logit model, number of parameters, choosing the number of choice sets, designing the choice experiment, long design searches, examining the design, examining the subdesigns, examining the aliasing structure, blocking the design, testing the design before data collection, generating artificial data, processing the data, coding, cross effects, availability, multinomial logit model results, modeling subject attributes, results, and interpretation.

Consider the problem of using a discrete choice model to study the effect of introducing a retail food product. This may be useful, for instance, to refine a marketing plan or to optimize a product prior to test market. A typical brand team will have several concerns such as knowing the potential market share for the product, examining the source of volume, and providing guidance for pricing and promotions. The brand team may also want to know what brand attributes have competitive clout and want to identify competitive attributes to which they are vulnerable.

To develop this further, assume our client wishes to introduce a line extension in the category of frozen entrées. The client has one nationally branded competitor, a regional competitor in each of three regions, and a profusion of private label products at the grocery chain level. The product may come in two different forms: stove-top or microwaveable. The client believes that the private labels are very likely to mimic this line extension and to sell it at a lower price. The client suspects that this strategy on the part of private labels may work for the stove-top version but not for the microwaveable, where they have the edge on perceived quality. They also want to test the effect of a shelf-talker that will draw attention to their product.

The Multinomial Logit Model

This problem can be set up as a discrete choice model in which a respondent's choice among brands, given choice set C_{a} of available brands, will correspond to the brand with the highest utility. For each brand i, the utility U_{i} is the sum of a systematic component V_{i} and a random component e_{i}. The probability of choosing brand i from choice set C_{a} is therefore:

$$
P\left(i \mid C_{a}\right)=P\left(U_{i}>\max \left(U_{j}\right)\right)=P\left(V_{i}+e_{i}>\max \left(V_{j}+e_{j}\right)\right) \forall(j \neq i) \in C_{a}
$$

Assuming that the e_{i} follow an extreme value type I distribution, the conditional probabilities $P\left(i \mid C_{a}\right)$ can be found using the multinomial logit (MNL) formulation of McFadden (1974).

$$
P\left(i \mid C_{a}\right)=\exp \left(V_{i}\right) / \sum_{j \in C_{a}} \exp \left(V_{j}\right)
$$

One of the consequences of the MNL formulation is the property of independence from irrelevant alternatives (IIA). Under the assumption of IIA, all cross effects are assumed to be equal, so that if a brand gains in utility, it draws share from all other brands in proportion to their current shares. Departures from IIA exist when certain subsets of brands are in more direct competition and tend to draw a disproportionate amount of share from each other than from other members in the category.

IIA is frequently described using a transportation example. Say you have three alternatives for getting to work: bicycle, car, or a blue bus. If a fourth alternative became available, a red bus, then according to IIA the red bus should draw riders from the other alternatives in proportion to their current usage. However, in this case, IIA would be violated, and instead the red bus would draw more riders from the blue bus than from car drivers and bicycle riders.

The mother logit formulation of McFadden (1974) can be used to capture departures from IIA. In a mother logit model, the utility for brand i is a function of both the attributes of brand i and the attributes of other brands. The effect of one brand's attributes on another is termed a cross effect. In the case of designs in which only subsets C_{a} of the full shelf set C appear, the effect of the presence/absence of one brand on the utility of another is termed an availability cross effect. (See pages 213, 219, 354, and 358 for other discussions of IIA.)

Set Up

In the frozen entrée example, there are five alternatives: the client's brand, the client's line extension, a national branded competitor, a regional brand and a private label brand. Several regional and private labels can be tested in each market, then aggregated for the final model. Note that the line extension is treated as a separate alternative rather than as a level of the client brand. This enables us to model the source of volume for the new entry and to quantify any cannibalization that occurs. Each brand is shown at either two or three price points. Additional price points are included so that quadratic models of price elasticity can be tested. The indicator for the presence or absence of a brand in the shelf set is coded using one level of the Price variable. The layout of factors and levels is given in the following table.

Factors and Levels

| Alternative | Factor | Levels | Brand | Description |
| :--- | :--- | :--- | :--- | :--- |
| 1 | X1 | 4 | Client | $1.29,1.69,2.09+$ absent |
| 2 | X2 | 4 | Client Line Extension | $1.39,1.89,2.39,+$ absent
 microwave/stove-top
 shelf-talker yes/no |
| | X3 | 2 | | $1.99,2.49+$ absent |
| | X4 | 2 | | $1.49,2.29$ absent
 microwave/stove-top |
| 4 | X5 | 3 | Regional | $1.99+2.39+$ absent |
| | X6 | 3 | Private Label | |
| | X7 | 2 | | National |

In addition to intercepts and main effects, we also require that all two-way interactions within alternatives be estimable: $x 2 * x 3, x 2 * x 4, x 3 * x 4$ for the line extension and $x 6 * x 7$ for private labels. This will enable us to test for different price elasticities by form (stove-top versus microwaveable) and to see if the promotion works better combined with a low price or with different forms. Using a linear model for $\mathrm{x} 1-\mathrm{x} 8$, the total number of parameters including the intercept, all main effects, and two-way interactions with brand is 25 . This assumes that price is treated as qualitative. The actual number of parameters in the choice model is larger than this because of the inclusion of cross effects. Using indicator variables to code availability, the systematic component of utility for brand i can be expressed as:

$$
V_{i}=a_{i}+\sum_{k}\left(b_{i k} \times x_{i k}\right)+\sum_{j \neq i} z_{j}\left(d_{i j}+\sum_{l}\left(g_{i j l} \times x_{j l}\right)\right)
$$

where
$a_{i} \quad=$ intercept for brand i
$b_{i k}=$ effect of attribute k for brand i, where $k=1, . ., K_{i}$
$x_{i k}=$ level of attribute k for brand i
$d_{i j}=$ availability cross effect of brand j on brand i
$z_{j}=$ availability code $= \begin{cases}1 & \text { if } j \in C_{a}, \\ 0 & \text { otherwise }\end{cases}$
$g_{i j l}=$ cross effect of attribute l for brand j on brand i, where $l=1, \ldots, L_{j}$
$x_{j l}=$ level of attribute l for brand j.

The $x_{i k}$ and $x_{j l}$ could be expanded to include interaction and polynomial terms. In an availability-cross-effects design, each brand is present in only a fraction of the choice sets. The size of this fraction or subdesign is a function of the number of levels of the alternative-specific variable that is used to code availability (usually price). For instance, if price has three valid levels and a fourth zero level to indicate absence, then the brand will appear in only three out of four runs. Following Lazari and Anderson (1994), the size of each subdesign determines how many model equations can be written for each brand in the discrete choice model. If X_{i} is the subdesign matrix corresponding to V_{i}, then each X_{i} must be full rank to ensure that the choice set design provides estimates for all parameters.

To create the design, a full-factorial candidate set is generated consisting of 3456 runs. It is then reduced to 2776 runs that contain between two and four brands so that the respondent is never required to compare more than four brands at a time. In the model specification, we designate all variables as classification variables and require that all main effects and two-way interactions within brands be estimable. The number of runs calculations are based on the number of parameters that we wish to estimate in the various subdesigns \mathbf{X}_{i} of \mathbf{X}. Assuming that there is a None alternative used as a reference level, the numbers of parameters required for various alternatives are shown in the next table along with the sizes of the subdesigns (rounded down) for various numbers of runs. Parameters for quadratic price models are given in parentheses. Note that the effect of private label being in a microwaveable or stove-top form (stove/micro cross effect) is an explicit parameter under the client line extension.

The subdesign sizes are computed by taking the floor of the number of runs from the marginal times the expected proportion of runs in which the alternative will appear. For example, for the client brand which has three prices and not available and 22 runs, floor $(22 \times 3 / 4)=16$; for the competitor and 32 runs, floor $(32 \times 2 / 3)=21$. The number of runs chosen was $n=26$. This number provides adequate degrees of freedom for the linear price model and will also allow estimation of direct quadratic price effects. To estimate quadratic cross effects for price would require 32 runs at the very least. Although the technique of using two-way interactions between nominal level variables will usually guarantee that all direct and cross effects are estimable, it is sometimes necessary and good practice to check the ranks of the subdesigns for more complex models (Lazari and Anderson 1994).

Parameters

| | | Client | | Private | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Effect | Client | Line Extension | Regional | Label | Competitor |
| intercept | 1 | 1 | 1 | 1 | 1 |
| availability cross effects | 4 | 4 | 4 | 4 | 4 |
| direct price effect | $1(2)$ | $1(2)$ | 1 | 1 | 1 |
| price cross effects | $4(8)$ | $4(8)$ | 4 | 4 | 4 |
| stove versus microwave | - | 1 | - | 1 | - |
| stove/micro cross effects | - | 1 | - | - | - |
| shelf-talker | - | 1 | - | - | - |
| price*stove/microwave | - | $1(2)$ | - | 1 | - |
| price*shelf-talker | - | $1(2)$ | - | - | - |
| stove/micro*shelf-talker | - | 1 | - | - | - |
| Total | | | | | |
| | $10(15)$ | $16(23)$ | 10 | 12 | 10 |
| Subdesign size | | | | | |
| | | | | | |
| 22 runs | 16 | 16 | 14 | 14 | 14 |
| 26 runs | 19 | 19 | 17 | 17 | 17 |
| 32 runs | 24 | 24 | 21 | 21 | 21 |

Designing the Choice Experiment

This example originated with Kuhfeld, Tobias, and Garratt (1994), long before the \%MktRuns macro was programmed. At least for now, we will skip the customary step of running the \%MktRuns macro to suggest a design size and instead use the original size of 26 choice sets.

We will use the \%MktEx autocall macro to create the design. (All of the autocall macros used in this book are documented starting on page 479.) To recap, we want to make the design $2^{3} 3^{3} 4^{2}$ in 26 runs, and we want the following interactions to be estimable: $x 2 * x 3 \times 2 * x 4 \times 3 * x 4 \times 6 * x 7$. Furthermore, there are restrictions on the design. Each of the price variables, $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 5, \mathrm{x} 6$, and x 8 , has one level - the maximum level - that indicates the alternative is not available in the choice set. We use this to create choice sets with 2,3 , or 4 alternatives available. If ($x 1<4$) then the first alternative is available, if $(x 2<4)$ then the second alternative is available, if ($x 5<3$) then the third alternative is available, and so on. A Boolean term such as ($\mathrm{x} 1<4$) is one when true and zero otherwise. Hence,

```
((x1<4) + (x2 < 4) + (x5 < 3) + (x6 < 3) + (x8 < 3))
```

is the number of available alternatives. This is simply the sum of some 1's if available and 0's if not available.

We impose restrictions with the \%MktEx macro by writing a macro, with IML statements, that quantifies the badness of each run (or in this case, each choice set). We do this so bad $=0$ is good and values larger than zero are increasingly worse. We write our restrictions using an IML row vector x that contains the levels (integers beginning with 1) of each of the factors in the i th choice set, the one the macro is currently seeking to improve. The j th factor is $\mathrm{x}[\mathrm{j}]$. or we may also use the factor names (for example, x1, x2). (See pages 337 and 566 for other examples of restrictions.)

We must use IML logical operators, which are not as rich as DATA step operators:

| $=$ | equals | not: EQ |
| :--- | :--- | :--- |
| $\wedge=$ or $\neg=$ | not equals | not: NE |
| $<$ | less than | not: LT |
| $<=$ | less than or equal to | not: LE |
| $>$ | greater than | not: GT |
| $>=$ | greater than or equal to | not: GE |
| $\&$ | and | not: AND |
| \mid | or | not: OR |
| \wedge or \neg | not | not: NOT |

To restrict the design, we must specify restrictions=macro-name, in this case restrictions=bad, that names the macro that quantifies badness. The first statement counts up the number of available alternatives. The second sets the actual badness values. If bad (the number available) is less than two or greater than 4, then the Boolean expression ($(\operatorname{bad}<2)$ | (bad $>4)$) is true or 1 . When the expression is true, then bad gets set to the absolute difference between the number available and 3 . Hence, zero available corresponds to bad $=3$, one available corresponds to bad $=2$, two through four available corresponds to bad $=0$, and five available corresponds to bad $=2$. Do not just set bad to zero when everything is fine and one otherwise, but the macro needs to know that when it switches from zero available to one available, it is going in the right direction. For simple restrictions like this, it does not matter very much. However, for complicated sets of restrictions, it is critical that the bad variable is set to a count of the number of current restriction violations. Here is the code.

```
title 'Consumer Food Product Example';
%macro bad;
    bad = (x1 < 4) + (x2 < 4) + (x5 < 3) + (x6 < 3) + (x8 < 3);
    bad = abs(bad - 3) * ((bad < 2) | (bad > 4));
    %mend;
%mktex(4 4 2 2 3 3 2 3, n=26, interact=x2*x3 x2*x4 x3*x4 x6*x7,
    restrictions=bad, seed=377, outr=sasuser.choicdes )
```

Here are the initial messages the macro prints.

```
NOTE: Generating the fractional-factorial design, n=27.
NOTE: Generating the candidate set.
NOTE: Performing 60 searches of 2,776 candidates, full-factorial=3,456.
```

The tabled design initialization part of the coordinate-exchange algorithm iterations will be initialized with the first 26 rows of a 27 run fractional-factorial design. This design has 13 three-level factors, ten of which are used to make $2^{3} 3^{3} 4^{2}$. The initial design will be unbalanced and one row short of orthogonal, so we would expect that other methods would be better for this problem. The macro also tells us that it is performing 60 PROC OPTEX searches of 2776 candidates, and that the full-factorial design has 3456 runs. The macro is searching the full-factorial design minus the excluded choice sets. Since the full-factorial design is not too large (less than 5000), and since there is no tabled design that is very good for this problem, this is the kind of problem where we would expect the PROC OPTEX algorithm to work best. The macro chose 60 OPTEX iterations. In the fabric softener example, the macro did not try any OPTEX iterations, because it knew it could directly make a 100% efficient design. In the vacation examples, it ran the default minimum of 20 OPTEX iterations because the macro's heuristics
concluded that OPTEX would probably not be the best approach for those problems. In this example, the macro's heuristics tried more iterations since this is the kind of example where OPTEX works best.

Here is some of the output.

| | Consumer Food Product Example | | | |
| :---: | :---: | :---: | :---: | :---: |
| | Algorithm Search History | | | |
| | Row, Col | Current D-Efficiency | Best D-Efficiency | Notes |
| Design | | | | |
| 1 | Start | 84.3176 | | Can |
| 1 | 21 | 84.3176 | 84.3176 | Conforms |
| 1 | End | 84.3176 | | |
| 2 | Start | 27.8626 | | Tab, Unb, Ran |
| 2 | 11 | 76.5332 | | Conforms |
| 2 | End | 80.4628 | | |
| - | | | | |
| - | | | | |
| - | | | | |
| 11 | Start | 24.5507 | | Tab, Ran |
| 11 | 261 | 78.6100 | | Conforms |
| 11 | End | 81.8604 | | |
| 12 | Start | 26.3898 | | Ran, Mut, Ann |
| 12 | 11 | 67.0450 | | Conforms |
| 12 | End | 83.0114 | | |
| - | | | | |
| - | | | | |
| - | | | | |
| 21 | Start | 45.9310 | | Ran, Mut, Ann |
| 21 | 151 | 67.1046 | | Conforms |
| 21 | End | 82.1657 | | |
| NOTE: Performing 600 searches of 2,776 candidates. | | | | |

NOTE: Stopping since it appears that no improvement is possible.

| Consumer Food Product Example | | |
| :---: | :---: | :---: |
| The OPTEX Procedure | | |
| Class Level Information | | |
| Class | Levels | - -Values- |
| x1 | 4 | $4 \quad 1234$ |
| x2 | 4 | 41234 |
| x3 | 2 | 212 |
| x4 | 2 | 212 |
| x5 | 3 | 3123 |
| x6 | 3 | 3123 |
| x7 | 2 | 212 |
| Consumer Food Product Example | | |
| The OPTEX Procedure | | |

| | | Average
 Prediction
 Design
 Number | D-Efficiency | A-Efficiency |
| :--- | :---: | :---: | :---: | :---: |
| -24.7548 | G-Efficiency | Error | | |

Design 1 (Can), which was created by the candidate-set search (using PROC OPTEX), had D-efficiency or 84.3176 , and the macro confirms that the design conforms to our restrictions. The tabled, unbalanced, and random initializations do not work as well. For each design, the macro iteration history states the D-efficiency for the initial design (27.8626 in design 2), the D-efficiency when the restrictions are met (76.5332, Conforms), and the D-efficiency for the final design (80.4628). The fully random initialization tends to work a little better than the tabled initialization for this problem, but not as well as PROC OPTEX. At the end of the algorithm search phase, the macro decides to use PROC OPTEX and performs 600 more searches, and it finds a design with 84.7548% D-efficiency. The design refinement step fails to improve on the best design. This step took 3.5 minutes.

When You Have a Long Time to Search for an Efficient Design

With a moderate sized candidate set such as this one (2000 to 6000 runs), we might be able to do better with more iterations. To test this, PROC OPTEX was run 10,000 times over the winter holiday vacation, from December 22 through January 2, creating a total of 200,000 designs, 20 designs on each try. Here is a summary of the results.

| PROC
 OPTEX | | Percent
 Run | | | |
|---|---|---|---|---|---|
| D-Efficiency | | | Improvement | | |
| ---: | ---: |
| 1 | 83.8959 |
| 2 | 83.9890 |

This example is interesting, because it shows the diminishing value of increasing the number of iterations. Six minutes into the search, in the first six passes through PROC OPTEX ($6 \times 20=120$ total iterations), we found a design with reasonably good D-efficiency $=84.7548$. Over an hour into the search, with $(84-6) \times 20=1560$ more iterations, we get a small 0.47% increase in efficiency to 85.1561 . About one day into the search, with $(1535-84) \times 20=29,020$ more iterations, we get another small 0.20% increase in efficiency, 85.3298. Finally, almost a week into the search, with $(9576-1535) \times 20=160,820$ more iterations, we get another small 0.08% increase in efficiency to 85.3985 . Our overall improvement over the best design found in 120 iterations was 0.75952%, about three-quarters of a percent. These numbers will change with other problems and other seeds. However, as these results show, usually the first few iterations will give you a good, efficient design, and usually, subsequent iterations will give you slight improvements but with a cost of much greater run times. Next, we will construct a plot of this table.

```
data; input n e; datalines;
            1 83.8959
            2 83.9890
            3 84.3763
            644.7548
        84 85.1561
    1535 85.3298
    9576 85.3985
;
proc gplot;
    title h=1 'Consumer Food Product Example';
    title2 h=1 'Maximum D-Efficiency Found Over Time';
    plot e * n / vaxis=axis1;
    symbol i=join;
    axis1 order=(0 to 90 by 10);
    run; quit;
title2;
```

The plot of maximum D-efficiency as a function of PROC OPTEX run number clearly shows that the gain in efficiency that comes from a large number of iterations is very slight.
Consumer Food Product Example
Maximum D-Efficiency Found Over Time

If you have a lot of time to search for a good design, you can specify some of the time and maximum number of iteration parameters. Sometimes you will get lucky and find a better design. In this next example, maxtime $=30030060$ was specified. This gives the macro up to 300 minutes for the algorithm search step, 300 minutes for the design search step, and 60 minutes for the refinement step. The option maxiter= increases the number iterations to 10000 for each of the three steps (or the maximum time). With this specification, you would expect the macro to run overnight. See the macro documentation (starting on page 546) for more iteration options. Note that you must increase the number of iterations and the maximum amount of time if you want the macro to run longer. With this specification, the macro performs 1800 OPTEX iterations initially (compared to 60 by default).

```
title 'Consumer Food Product Example';
%macro bad;
    bad = (x1 < 4) + (x2<4) + (x5 < 3) + (x6< 3) + (x8< < );
    bad = abs(bad - 3) * ((bad < 2) | (bad > 4));
    %mend;
%mktex( 4 4 2 2 3 3 2 3, n=26, interact=x2*x3 x2*x4 x3*x4 x6*x7,
    restrictions=bad, seed=151,
    maxtime=300 300 60, maxiter=10000 )
```

The results from this step are not shown.

Examining the Design

We can use the \%MktEval macro to start to evaluate the design.

```
%mkteval(data=sasuser.choicdes);
```

Here are the results.

| | Consumer Food Product Example Canonical Correlations Between the Factors
 There are 4 Canonical Correlations Greater Than 0.316 | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 |
| x 1 | 1 | 0.30 | 0.20 | 0.11 | 0.42 | 0.26 | 0.09 | 0.33 |
| x2 | 0.30 | 1 | 0.10 | 0.10 | 0.13 | 0.17 | 0.51 | 0.18 |
| x3 | 0.20 | 0.10 | 1 | 0.08 | 0.09 | 0.30 | 0 | 0.10 |
| x4 | 0.11 | 0.10 | 0.08 | 1 | 0.09 | 0.10 | 0 | 0.10 |
| x5 | 0.42 | 0.13 | 0.09 | 0.09 | 1 | 0.24 | 0.05 | 0.43 |
| x6 | 0.26 | 0.17 | 0.30 | 0.10 | 0.24 | 1 | 0.14 | 0.13 |
| x7 | 0.09 | 0.51 | 0 | 0 | 0.05 | 0.14 | 1 | 0.14 |
| x8 | 0.33 | 0.18 | 0.10 | 0.10 | 0.43 | 0.13 | 0.14 | 1 |
| Consumer Food Product Example
 Canonical Correlations > 0.316 Between the Factors There are 4 Canonical Correlations Greater Than 0.316 | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| r r Square | | | | | | | | |
| $\begin{array}{llll}\mathrm{x} 2 & \mathrm{x} 7 & 0.51 & 0.26\end{array}$ | | | | | | | | |
| $\begin{array}{llll}\mathrm{x} 5 & \mathrm{x} 8 & 0.43 & 0.18\end{array}$ | | | | | | | | |
| $\begin{array}{lll}\mathrm{x} 1 & \mathrm{x} 5 \quad 0.42 \quad 0.18\end{array}$ | | | | | | | | |
| $\begin{array}{lll}\mathrm{x} 1 & \mathrm{x} 8 & 0.33\end{array}$ | | | | | | | | |
| Consumer Food Product Example Summary of Frequencies | | | | | | | | |
| There are 4 Canonical Correlations Greater Than 0.316
 * - Indicates Unequal Frequencies | | | | | | | | |
| Frequencies | | | | | | | | |
| $\mathrm{x} 1 \quad 7865$ | | | | | | | | |
| | | 6776 | | | | | | |
| $\times 3 \quad 1313$ | | | | | | | | |
| $\mathrm{x} 4 \quad 1313$ | | | | | | | | |
| $\times 5 \quad 989$ | | | | | | | | |
| $\mathrm{x} 6 \quad 7109$ | | | | | | | | |
| $\mathrm{x} 7 \quad 1214$ | | | | | | | | |
| $\mathrm{x} 8 \quad 7910$ | | | | | | | | |

```
* x1 x2 2 2 1 2 2 2 2 2 1 1 2 2 1 2 2 0
* x1 x3 344442 2 3
* x1 x4 4 3443 3 2 3
* x1 x5 4 2 1 2 1 5 2 2 2 1 3 1
* x1 x6 2 3 2 24 2 2 1 3 1 2 2
* x1 x7 34443323
* x1 x8 1 2 4 2 4 2 2 1 3 2 2 1
* x2 x3 3 3 344 3 3 3
* x2 x4 3 3 34433 3
* x2 x5 2 2 2 3 2 2 2 2 3 2 2 2
* x2 x6 2 2 2 2 322 2 3 1 3 2
* x2 x7 1 54 3 2551
* x2 x8 2 2 2 1 3 3 2 2 3 2 2 2
* x3 x4 76667
* x3 x5 5444445
* x3 x6 25655 3
* x3 x7 6 7 67
* x3 x8 4 45355
* x4 x5 445544
* x4 x6 4 54 355
* x4 x7 6767
* x4 x8 445 355
* x5 x6 24 3224342
* x5 x7 454445
* x5 x8 12 6422 25 2
* x6 x7 344654
* x6 x8 2 2 324433 3
* x7 x8 444356
N-Way 
    1111111
```

Some of the canonical correlations are bigger than we would like. They all involve attributes in different alternatives, so they should not pose huge problems. Still, they are large enough to make some researchers uncomfortable. The frequencies are pretty close to balanced. Perfect balance is not possible with 26 choice sets and this design. If we were willing to consider blocking the design, we might do better with more choice sets.

Designing the Choice Experiment, More Choice Sets

Let's run the \%MktRuns macro to see what looks good. For now, we will ignore the interactions.
\%mktruns ($\left.44 \begin{array}{llllll}4 & 2 & 3 & 3 & 3\end{array}\right)$

* - 100\% Efficient Design can be made with the MktEx Macro.

Consumer Food Product Example

| n | Design | | | | | | | | | | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 144 | 2 ** 48 | 3 | ** | 3 | 4 | | 2 | | | | Orthogonal Array |
| 144 | 2 ** 44 | 3 | ** | 3 | 4 | ** | 3 | | | | Orthogonal Array |
| 144 | 2 ** 41 | 3 | ** | 4 | 4 | ** | 2 | | | | Orthogonal Array |
| 144 | 2 ** 39 | 3 | ** | 3 | 4 | ** | 2 | 6 | ** | 1 | Orthogonal Array |
| 144 | 2 ** 37 | 3 | ** | 4 | 4 | ** | 3 | | | | Orthogonal Array |
| 144 | 2 ** 37 | 3 | ** | 3 | 4 | ** | 2 | 12 | ** | 1 | Orthogonal Array |
| 144 | 2 ** 35 | 3 | ** | 3 | 4 | ** | 3 | 6 | ** | 1 | Orthogonal Array |

The smallest suggestion larger than 26 is 36 . With this mix of factor levels, we would have to have 144 runs to get an orthogonal design, so we will definitely want to stick with a nonorthogonal design. Balance will be possible in 36 runs, but 36 cannot be divided by $2 \times 4=8$ and $4 \times 4=16$. With 36 runs, a blocking factor will be required (2 blocks of 18 or 3 blocks of 12). We would like the shelf-talker to appear in half of the choice sets within block, so with two blocks, we will want the number of choice sets to be divisible by $2 \times 2=4$, and 36 can be divided by 4 . The $\% M k t R u n s$ macro cannot provide us with much guidance with the interactions. We "tricked" it in the past by substituting products of levels, like $9=3 \times 3$, but in this case, factors like x 2 , x 3 , and x 4 interact multiple times, so it would not be that simple. We will try making a design in 36 runs, and see how it looks.

```
title 'Consumer Food Product Example';
%macro bad;
    bad = (x1 < 4) + (x2<4) + (x5 < 3) + (x6 < 3) + (x8< 3);
    bad = abs(bad - 3) * ((bad < 2) | (bad > 4));
    %mend;
%mktex( 4 4 2 2 3 3 2 3, n=36, interact=x2*x3 x2*x4 x3*x4 x6*x7,
            restrictions=bad, seed=377, outr=sasuser.choicdes )
%mkteval;
```

Here is the last part of the output from the \%MktEx macro.

Consumer Food Product Example

The OPTEX Procedure

| | | | | Average |
| :---: | :---: | :---: | :---: | :---: |
| | | | | Prediction |
| Design | | | | Standard |
| Number | D-Efficiency | A-Efficiency | G-Efficiency | Error |
| 1 | 94.3544 | 88.6147 | 92.8475 | 0.8333 |

D-efficiency at 94.68% looks good. Here is part of the $\%$ MktEval results.

The correlations are better, however the balance is worse than we might like. We can run the macro again, this time specifying balance=2, which forces better balance. The specification of 2 allows the maximum frequency for a level in a factor to be no more than two greater than the minimum frequency.

```
%mktex( 4 4 2 2 3 3 2 3, n=36, interact=x2*x3 x2*x4 x3*x4 x6*x7,
    restrictions=bad, seed=377, outr=sasuser.choicdes, balance=2 )
%mkteval;
```

Here is the last part of the output from the \%MktEx macro.

| Consumer Food Product Example | | | | |
| :---: | :---: | :---: | :---: | :---: |
| The OPTEX Procedure | | | | |
| Design Number | D-Efficiency | A-Efficiency | G-Efficiency | Average Prediction Standard Error |
| 1 | 93.8799 | 87.7982 | 93.4280 | 0.8333 |

The D-efficiency looks good. It is a little lower than before, but not much. Here is the first part of the output from the \%MktEval macro.

Consumer Food Product Example
Canonical Correlations Between the Factors
There are O Canonical Correlations Greater Than 0.316

| | x 1 | x 2 | x 3 | x 4 | x 5 | x 6 | x 7 | x 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| x 1 | 1 | 0.13 | 0.06 | 0.13 | 0.16 | 0.22 | 0.18 | 0.07 |
| x 2 | 0.13 | 1 | 0.10 | 0.11 | 0.17 | 0.29 | 0.11 | 0.21 |
| x3 | 0.06 | 0.10 | 1 | 0.06 | 0.15 | 0.08 | 0.06 | 0.04 |
| x4 | 0.13 | 0.11 | 0.06 | 1 | 0.12 | 0.14 | 0 | 0.12 |
| x5 | 0.16 | 0.17 | 0.15 | 0.12 | 1 | 0.17 | 0.07 | 0.18 |
| x6 | 0.22 | 0.29 | 0.08 | 0.14 | 0.17 | 1 | 0 | 0.10 |
| x7 | 0.18 | 0.11 | 0.06 | 0 | 0.07 | 0 | 1 | 0.07 |
| x8 | 0.07 | 0.21 | 0.04 | 0.12 | 0.18 | 0.10 | 0.07 | 1 |

The canonical correlations look good. Here is the last part of the output from the \%MktEval macro.

Consumer Food Product Example
 Summary of Frequencies

There are 0 Canonical Correlations Greater Than 0.316

* - Indicates Unequal Frequencies

Frequencies

* $\mathrm{x} 1 \quad 89910$
$\mathrm{x} 2 \quad 9999$
* $\mathrm{x} 3 \quad 1719$
$\mathrm{x} 4 \quad 1818$
* $x 5 \quad 111213$
$\mathrm{x} 6 \quad 121212$
$x 7 \quad 1818$
* $\quad \mathrm{x} 8 \quad 11 \quad 1312$

```
* x1 x2 2 2 2 2 2 2 3 2 2 2 2 3 3 3 2 2
* x1 x3 44454555
* x1 x4 44454564
* x1 x5 2 24333243433
* x1 x6 32342 3243343
* x1 x7 5 3544546
* x1 x8 2 3 3 3 3 3 3 3 3 3 4 3
* x2 x3 54454545
* x2 x4 54544545
* x2 x5 3 3 3 3 2 4 3 3 324 3
* x2 x6 2 34333324441
* x2 x7 45545445
* x2 x8 243432234333
* x3 x4 9 8 9 10
* x3 x5 4 67766
* x3 x6 566766
* x3 x7 8 9 109
* x3 x8 5 666676
* x4 x5 5 76657
* x4 x6 6 75657
    x4 x7 9 9 9 9
    x4 x8 56 7 6 7 5
* x5 x6 4 3434555 3
* x5 x7 566676
* x5 x8 4 34345463
    x6 x7 666666
* x6 x8 444 3 544444
* x7 x8 5 76666
    N-Way 
    1
```

This design looks much better. It is possible to get designs with better balance by specifying balance=1, but for this problem, the price in efficiency is too high. We do want to ensure that $x 4$, the shelf talker factor is balanced, since we will be dividing the design into two parts, depending on whether the shelf talker is there or not. It is balanced in this design. If it had not been, we could have switched it with another two-level factor or tried again with a different seed. If nothing else worked, we could have added it after the fact by blocking (running the \%MktBlock macro as if we were adding a blocking factor).

The balance= option in the $\% M k t E x$ macro works by adding restrictions to the design. The approach it uses often works quite well, but sometimes it does not. Forcing balance gives the macro much less freedom in its search, and makes it easy for the macro to get stuck in suboptimal designs. Most of our restrictions are imposed within each row. Those kinds of restrictions do not pose a problem for the macro. Balance restrictions are imposed across rows within a column. We know of better ways to impose balance, but they tend to be very slow. This is an area where more research is needed, and the way this option works will quite likely be different in future releases. If perfect balance is critical, try the \%MktBal macro.

Examining the Subdesigns

As we mentioned previously, "it is sometimes necessary and good practice to check the ranks of the subdesigns for more complex models (Lazari and Anderson 1994)." Here is a way to do that with PROC OPTEX. This is the only usage of PROC OPTEX in this book that is too specialized to be run from one of the \%Mkt macros (because not all variables are designated as class variables). For convenience, we call PROC OPTEX from an ad hoc macro, since it must be run five times, once per alternative, with only a change in the where statement. We need to evaluate the design when the client's alternative is available (x 1 ne 4), when the client line extension alternative is available (x 2 ne 4), when the regional competitor is available (x 5 ne 3), when the private label competitor is available (x 6 ne 3), and when the national competitor is available (x 8 ne 3). We need to use a model statement that lists all of the main effects and interactions. We do not designate all of the variables on the class statement because we only have enough runs to consider linear price effects within each availability group. The statement generate method=sequential initdesign=desv specifies that we will be evaluating the initial design desv, using the sequential algorithm, which ensures no swaps between the candidate set and the initial design. The other option of note here appears on the class statement, and that is param=orthref. This specifies an orthogonal parameterization of the effects that gives us a nice 0 to 100 scale for the D-efficiencies.

```
%macro evaleff(where);
data desv / view=desv; set sasuser.choicdes(where=(&where)); run;
proc optex data=desv;
    class x3 x4 x7 / param=orthref;
    model x1-x8 x2*x3 x2*x4 x3*x4 x6*x7;
    generate method=sequential initdesign=desv;
    run; quit;
%mkteval(data=desv)
%mend;
%evaleff(x1 ne 4)
%evaleff(x2 ne 4)
%evaleff(x5 ne 3)
%evaleff(x6 ne 3)
%evaleff(x8 ne 3)
```

Each step took just over two seconds. We hope to not see any efficiencies of zero, and we hope to not get the message WARNING: Can't estimate model parameters in the final design. Here are some of the results.

Consumer Food Product Example
The OPTEX Procedure

| | | | | Average |
| :---: | :---: | :---: | :---: | :---: |
| | | | | Prediction |
| Design | | | | Standard |
| Number | D-Efficiency | A-Efficiency | G-Efficiency | Error |
| 1 | 67.3274 | 57.4665 | 83.6185 | 0.7071 |

Examining the Aliasing Structure

It is also good to look at the aliasing structure of the design. We use PROC GLM to do this, so we must create a dependent variable. We will use a constant $y=1$. The first PROC GLM step just checks the model to make sure none of the specified effects are aliased with each other. This step is not necessary since our D-efficiency value greater than zero already guarantees this.

```
data temp;
    set sasuser.choicdes;
    y = 1;
    run;
proc glm data=temp;
    model y = x1-x8 x2*x3 x2*x4 x3*x4 x6*x7 / e aliasing;
    run; quit;
```

Here are the results, ignoring the ANOVA and regression tables, which are not of interest. Each of these lines is a linear combination that is estimable. It is simply a list of the effects.

| | Intercept |
| :--- | :--- |
| x 1 | |
| x 2 | |
| x 3 | |
| x 4 | |
| $\mathrm{x5}$ | |
| x 6 | |
| x 7 | |
| x 8 | |
| $\mathrm{x} 2 * \mathrm{x} 3$ | |
| $\mathrm{x} 2 * \mathrm{x} 4$ | |
| $\mathrm{x} 3 * \mathrm{x} 4$ | |
| $\mathrm{x} 6 * \mathrm{x} 7$ | |
| | |

Contrast this with a specification that includes all simple effects and two-way and three-way interactions. We specify the model of interest first, $x 1-x 8 \times 2 * x 3 x 2 * x 4 \times 3 * x 4 \times 6 * x 7$, so all of those terms will be listed first, then we specify all main effects and two-way and three-way interactions using the notation $\mathrm{x} 1|\mathrm{x} 2| \mathrm{x} 3|\mathrm{x} 4| \mathrm{x} 5|\mathrm{x} 6| \mathrm{x} 7 \mid \mathrm{x} 8 @ 3$. It is not a problem that some of the terms were both explicitly specified and also generated by the $\mathrm{x} 1|\mathrm{x} 2| \mathrm{x} 3|\mathrm{x} 4| \mathrm{x} 5|\mathrm{x} 6| \mathrm{x} 7 \mid \mathrm{x} 8$ @ list since PROC GLM automatically eliminates duplicate terms.

```
proc glm data=temp;
    model y = x1-x8 x2*x3 x2*x4 x3*x4 x6*x7
        x1|x2|x3|x4|x5|x6|x7|x8@3 / e aliasing;
    run; quit;
```

```
Intercept + 19.841*x4*x6 + 92.073*x1*x4*x6 + 77.513*x2*x4*x6 + 33.148*x3*x4*x6 -
56.771*x5*x6 - 99.617*x1*x5*x6 - 202.92*x2*x5*x6 - 86.937*x3*x5*x6 -
58.893*x4*x5*x6 - 54.98*x1*x7 + 34.901*x2*x7 - 75.033*x1*x2*x7 - 27.184*x3*x7 -
195.12*x1*x3*x7 - 29.802*x2*x3*x7 - 4.7757*x4*x7 - 114.1*x1*x4*x7 +
59.836*x2*x4*x7 - 25.33*x3*x4*x7 + 26.719*x5*x7 - 44.435*x1*x5*x7 +
153.6*x2*x5*x7 + 11.575*x3*x5*x7 + 43.714*x4*x5*x7 - 61.007*x1*x6*x7 +
55.783*x2*x6*x7 - 65.069*x3*x6*x7 + 31.255*x4*x6*x7 - 3.375*x5*x6*x7 +
44.572*x1*x8 + 97.812*x2*x8 + 371.54*x1*x2*x8 + 8.5783*x3*x8 + 88.885*x1*x3*x8 +
205.6*x2*x3*x8 - 62.399*x4*x8 - 110.69*x1*x4*x8 - 7.1257*x2*x4*x8 -
107.69*x3*x4*x8 - 30.287*x5*x8 + 6.4007*x1*x5*x8 + 132.7*x2*x5*x8 -
20.893*x3*x5*x8 - 143.95*x4*x5*x8 - 98.515*x6*x8 - 160.95*x1*x6*x8 +
26.253*x2*x6*x8 - 73.35*x3*x6*x8 - 170.62*x4*x6*x8 - 366.07*x5*x6*x8 +
8.8425*x7*x8 - 42.501*x1*x7*x8 + 269.69*x2*x7*x8 - 51.733*x3*x7*x8 -
92.401*x4*x7*x8 + 21.357*x5*x7*x8 - 127.07*x6*x7*x8
```

```
x1 - 29.027*x4*x6 - 83.628*x1*x4*x6 - 72.701*x2*x4*x6 - 44.896*x3*x4*x6 +
5.2367*x5*x6 + 22.835*x1*x5*x6 + 28.119*x2*x5*x6 + 10.102*x3*x5*x6 -
56.162*x4*x5*x6 + 20.701*x1*x7 - 8.8641*x2*x7 + 20.33*x1*x2*x7 - 2.5242*x3*x7 +
32.551*x1*x3*x7 - 14.5*x2*x3*x7 + 3.7689*x4*x7 + 33.213*x1*x4*x7 -
13.188*x2*x4*x7 + 3.7564*x3*x4*x7 - 13.69*x5*x7 + 2.5647*x1*x5*x7 -
55.758*x2*x5*x7 - 31.65*x3*x5*x7 - 17.662*x4*x5*x7 + 37.267*x1*x6*x7 -
17.642*x2*x6*x7 - 2.1979*x3*x6*x7 - 38.7*x4*x6*x7 - 20.918*x5*x6*x7 +
32.967*x1*x8 - 42.314*x2*x8 - 62.836*x1*x2*x8 + 9.0633*x3*x8 + 61.14*x1*x3*x8 -
63.984*x2*x3*x8 + 8.2713*x4*x8 + 78.112*x1*x4*x8 - 41.884*x2*x4*x8 +
33.735*x3*x4*x8 + 26.387*x5*x8 + 124.95*x1*x5*x8 - 27.697*x2*x5*x8 +
63.499*x3*x5*x8 + 49.955*x4*x5*x8 + 4.8752*x6*x8 + 105.91*x1*x6*x8 -
76.88*x2*x6*x8 + 24.902*x3*x6*x8 - 37.29*x4*x6*x8 + 80.345*x5*x6*x8 +
7.1641*x7*x8 + 104.12*x1*x7*x8 - 82.917*x2*x7*x8 + 22.174*x3*x7*x8 +
39.304*x4*x7*x8 + 38.632*x5*x7*x8 + 20.425*x6*x7*x8
```

Again, we have a list of linear combinations that are estimable. This shows that the Intercept cannot be estimated independently of the $\mathrm{x} 4 * \mathrm{x} 6$ interaction and a bunch of others including four-way though eight-way interactions which were not specified and hence not shown. Similarly, x1 is confounded with a bunch of interactions, and so on. This is why we want to be estimable the two-way interactions between factors that are combined to create an alternative. We did not want something like $\mathrm{x} 2 * \mathrm{x} 3$, the client-line extension's price and microwave/stove top interaction to be confounded with say another brand's price.

Blocking the Design

At 36 choice sets, this design is a bit large, so we will block it into two blocks of 18 choice sets. Within each block we will want the shelf talker to be on half the time.

```
%mktblock(data=sasuser.choicdes, out=sasuser.blockdes, nblocks=2, seed=289)
```

The first attempt (not shown) produced a design where $x 4$, the shelf talker did not occur equally often within each block. Changing the seed took care of the problem. Here are the canonical correlations.

The blocking variable is not highly correlated with any of the factors. Here are some of the frequencies.

```
                        Consumer Food Product Example
            Summary of Frequencies
There are O Canonical Correlations Greater Than 0.316
            * - Indicates Unequal Frequencies
                        Frequencies
            Block 18 18
* x1 8 9 9 10
            x2 9 9 9 9
            * x3 17 19
            x4 18 18
* x5 11 12 13
            x6 12 12 12
            x7 18 18
* x8 11 13 12
* Block x1 4 5 4 5 4 4 5 5
* Block x2 4 5 5 4 5 4 4 5
* Block x3 8 10 9 9
    Block x4 9 9 9 9
* Block x5 6 6 6 5 6 7
    Block x6 6 6 6 6 6 6
    Block x7 9 9 9 9
* Block x8 6 6 6 5 7 6
```

The blocking variable is perfectly balanced, as it is guaranteed to be if the number of blocks divides the number of runs. Balance within blocks, that is the cross-tabulations of the factors with the blocking variable, looks good. The macro also prints canonical correlations within blocking variables. These can sometimes be quite high, even 1.0, but that is not a problem. ${ }^{\S}$ Here is the design, as it is printed by the \%MktBlock macro.

| Block | Run | Consumer Food Product Example | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | x 1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 |
| 1 | 1 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 3 |
| | 2 | 1 | 1 | 1 | 2 | 2 | 3 | 1 | 3 |
| | 3 | 4 | 2 | 2 | 1 | 1 | 2 | 1 | 1 |
| | 4 | 1 | 4 | 1 | 1 | 3 | 1 | 1 | 3 |
| | 5 | 2 | 2 | 2 | 1 | 3 | 1 | 2 | 1 |
| | 6 | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 3 |
| | 7 | 3 | 3 | 2 | 1 | 2 | 2 | 1 | 3 |
| | 8 | 2 | 2 | 1 | 2 | 3 | 1 | 1 | 1 |
| | 9 | 4 | 2 | 2 | 2 | 1 | 3 | 1 | 2 |
| | 10 | 2 | 1 | 2 | 1 | 2 | 3 | 1 | 2 |
| | 11 | 1 | 4 | 2 | 2 | 3 | 2 | 1 | 2 |
| | 12 | 2 | 3 | 1 | 1 | 1 | 1 | 2 | 3 |
| | 13 | 2 | 3 | 2 | 2 | 1 | 3 | 1 | 1 |
| | 14 | 3 | 4 | 1 | 2 | 1 | 1 | 2 | 2 |
| | 15 | 4 | 1 | 1 | 1 | 2 | 1 | 2 | 1 |
| | 16 | 4 | 4 | 1 | 2 | 3 | 2 | 2 | 1 |
| | 17 | 4 | 3 | 2 | 1 | 3 | 3 | 2 | 2 |
| | 18 | 3 | 3 | 1 | 2 | 2 | 3 | 2 | 2 |

[^28]| Consumer Food Product Example | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Block | Run | x1 | x 2 | x3 | x 4 | x5 | x6 | x7 | x8 |
| 2 | 1 | 1 | 2 | 1 | 2 | 1 | 3 | 2 | 1 |
| | 2 | 3 | 1 | 2 | 2 | 3 | 3 | 2 | 1 |
| | 3 | 1 | 3 | 2 | 2 | 3 | 1 | 2 | 2 |
| | 4 | 2 | 1 | 1 | 2 | 3 | 2 | 2 | 2 |
| | 5 | 4 | 1 | 1 | 1 | 1 | 3 | 2 | 3 |
| | 6 | 2 | 4 | 2 | 2 | 2 | 3 | 2 | 3 |
| | 7 | 4 | 2 | 1 | 1 | 2 | 2 | 2 | 2 |
| | 8 | 4 | 1 | 2 | 2 | 1 | 1 | 1 | 2 |
| | 9 | 2 | 4 | 1 | 1 | 2 | 2 | 1 | 2 |
| | 10 | 3 | 4 | 2 | 1 | 1 | 2 | 2 | 1 |
| | 11 | 1 | 3 | 1 | 1 | 2 | 3 | 1 | 1 |
| | 12 | 3 | 4 | 2 | 2 | 2 | 1 | 1 | 1 |
| | 13 | 4 | 4 | 2 | 1 | 2 | 1 | 2 | 3 |
| | 14 | 4 | 3 | 1 | 2 | 3 | 2 | 1 | 3 |
| | 15 | 3 | 2 | 1 | 1 | 3 | 3 | 1 | 3 |
| | 16 | 3 | 1 | 1 | 1 | 3 | 2 | 1 | 2 |
| | 17 | 1 | 2 | 2 | 1 | 3 | 1 | 1 | 2 |
| | 18 | 2 | 3 | 2 | 2 | 1 | 1 | 1 | 3 |

The Final Design

The following code creates the final choice design, stored in SASUSER.FINCHDES, sorted by the blocking and shelf-talker variable. We will use the \%MktLab macro to assign values, formats, and labels to the design. Previously, we have used the \%MktLab macro to reassign factor names when we wanted something more descriptive than the default, x 1 , x 2 , and so on, and when we wanted to reassign the names of two m-level factors to minimize the problems associated with correlated factors. This time, we will use the \%MktLab macro primarily to deal with the asymmetry in the price factors. Recall our factor levels.

Factors and Levels

| Alternative | Factor | Levels | Brand | Description |
| :--- | :--- | :--- | :--- | :--- |
| 1 | X1 | 4 | Client | $1.29,1.69,2.09+$ absent |
| 2 | X2 | 4 | Client Line Extension | $1.39,1.89,2.39,+$ absent
 microwave/stove-top
 shelf-talker yes/no |
| | X3 | 2 | | $1.99,2.49+$ absent |
| 3 | X4 | 2 | | $1.49,2.29$ absent |
| 4 | X5 | 3 | Regional | microwave/stove-top |
| | X6 | 3 | Private Label | $1.99+2.39+$ absent |
| | X7 | 2 | | |

The choice design will need a quantitative price factor, make from all five of the linear price factors, that contains the prices of each of the alternatives. At this point, our factor x1 contains $1,2,3,4$, and not $1.29,1.69,2.09$, and absent, which is different from x 2 and from all of the other factors. A 1 in x 1 will need to become a price of 1.29 in the choice design, a 1 in $\times 2$ will need to become a price of 1.39 in the choice design, a 1 in x3 will need to become a price of 1.99 in the choice design, and so on. Before we use the \%MktRoll macro to turn the linear design into a choice design, we need to use the \%MktLab macro to assign the actual prices to the price factors.

The \%MktLab macro is like the \%MktRoll macro in the sense that it can use as input a key= data set that contains the rules for customizing a design for our particular usage. In the \%MktRoll macro, the key= data set provides the rules for turning a linear design into a choice design. In contrast, in the \%MktLab macro, the key= data set contains the rules for turning a linear design into another linear design, changing one or more of the following: factor names, factor levels, factor types (numeric to character), level formats, and factor labels.

We could use the \%MktLab macro to change the names of the variables and their types, but we will not do that for this example. Ultimately, we will use the $\% \mathrm{MktRoll}$ macro to assign all of the price factors to a variable called Price and similarly provide meaningful names for all of the factors in the choice design, just as we have in previous examples. We could also change a variable like x3 with values of 1 and 2 to something like Stove with values 'Stove' and 'Micro'. We will not do that because we want to make a design with a simple list of numeric factors, with simple names like $\mathrm{x} 1-\mathrm{x} 8$ that we can run through the \%MktRoll macro to get the final choice design. We will assign formats and labels, so we can print the design in a meaningful way, but ultimately, our only goal at this step is to handle the price asymmetries by assigning the actual price values to the factors.

The key= data set contains the rules for customizing our design. The data set has as many rows as the maximum number of levels, in this case four. Each variable is one of the factors in the design, and the values are the factor levels that we want in the final design. The first factor, x 1 , is the price factor for the client brand. Its levels are 1.29, 1.69, and 2.09. In addition, one level is 'not available', which is flagged by the SAS special missing value .N. In order to read special missing values in an input data set, you must use the missing statement and name the expected missing values. The factor x 2 has the same structure as x 1 , but with different levels. The factor x 3 has two levels, hence the key= data set has missing values in the third and fourth row. Since the design has only 1's and 2's for x3, this missing values will never be used. Notice that we are keeping x3 as a numeric variable with values 1 and 2 using a format to supply the character levels 'micro' and 'stove'. The other factors are created in a similar fashion. By default, ordinary missing values '.' are not permitted as levels. By default, you may only use ordinary missing values as place holders for factors that have fewer levels than the maximum. If you want missing values in the levels, you must use one of the special missing values .A, .B, $\ldots, . Z$, and . ${ }^{\text {I }}$ or the cfill= or nfill= options.

The \%MktLab macro specification names the input SAS data set with the design and the key data set. By default, it creates an output SAS data set called FINAL. The data set is sorted by block and shelf talker and printed.

```
proc format;
    value yn 1 = 'No' 2 = 'Talker';
    value micro 1 = 'Micro' 2 = 'Stove';
    run;
```

[^29]```
data key;
 missing N;
 input x1-x8;
 format x1 x2 x5 x6 x8 dollar5.2
 x4 yn. x3 x7 micro.;
 label x1 = 'Client Brand'
 x2 = 'Client Line Extension'
 x3 = 'Client Micro/Stove'
 x4 = 'Shelf Talker'
 x5 = 'Regional Brand'
 x6 = 'Private Label'
 x7 = 'Private Micro/Stove'
 x8 = 'National Competitor';
 datalines;
1.29 1.39 1 1 1.99 1.49 1 1.99
1.69 1.89 2 2 2.49 2.29 2 2.39
2.09 2.39 . . N N . N
N N
;
%mktlab(data=sasuser.blockdes, key=key)
proc sort out=sasuser.finchdes(drop=run); by block x4; run;
proc print label; id block x4; by block x4; run;
```

The \%MktLab macro prints the variable mapping that it uses, old names followed by new names. In this case, none of the names change, but it is good to make sure that you have the expected correspondence.

```
Variable Mapping:
 x1 : x1
 x2 : x2
 x3 : x3
 x4 : x4
 x5 : x5
 x6 : x6
 x7 : x7
 x8 : x8
```

Here is the design.

Consumer Food Product Example								
Block			Client	Client			Private	
	Shelf	Client	Line	Micro/	Regional	Private	Micro/	National
	Talker	Brand	Extension	Stove	Brand	Label	Stove	Competitor
1	No	N	\$1.89	Stove	\$1.99	\$2.29	Micro	\$1.99
		\$1.29	N	Micro	N	\$1.49	Micro	N
		\$1.69	\$1.89	Stove	N	\$1.49	Stove	\$1.99
		\$1.29	\$1.39	Stove	\$1.99	\$2.29	Stove	N
		\$2.09	\$2.39	Stove	\$2.49	\$2.29	Micro	N
		\$1.69	\$1.39	Stove	\$2.49	N	Micro	\$2.39
		\$1.69	\$2.39	Micro	\$1.99	\$1.49	Stove	N
		N	\$1.39	Micro	\$2.49	\$1.49	Stove	\$1.99
		N	\$2.39	Stove	N	N	Stove	\$2.39
1	Talker	\$2.09	\$1.89	Stove	\$2.49	\$2. 29	Stove	N
		\$1.29	\$1.39	Micro	\$2.49	N	Micro	N
		\$1.69	\$1.89	Micro	N	\$1.49	Micro	\$1.99
		N	\$1.89	Stove	\$1.99	N	Micro	\$2.39
		\$1.29	N	Stove	N	\$2.29	Micro	\$2.39
		\$1.69	\$2.39	Stove	\$1.99	N	Micro	\$1.99
		\$2.09	N	Micro	\$1.99	\$1.49	Stove	\$2.39
		N	N	Micro	N	\$2.29	Stove	\$1.99
		\$2.09	\$2.39	Micro	\$2.49	N	Stove	\$2.39
2	No	N	\$1.39	Micro	\$1.99	N	Stove	N
		N	\$1.89	Micro	\$2.49	\$2.29	Stove	\$2.39
		\$1.69	N	Micro	\$2.49	\$2.29	Micro	\$2.39
		\$2.09	N	Stove	\$1.99	\$2.29	Stove	\$1.99
		\$1.29	\$2.39	Micro	\$2.49	N	Micro	\$1.99
		N	N	Stove	\$2.49	\$1.49	Stove	N
		\$2.09	\$1.89	Micro	N	N	Micro	N
		\$2.09	\$1.39	Micro	N	\$2.29	Micro	\$2.39
		\$1.29	\$1.89	Stove	N	\$1.49	Micro	\$2.39
2	Talker	\$1.29	\$1.89	Micro	\$1.99	N	Stove	\$1.99
		\$2.09	\$1.39	Stove	N	N	Stove	\$1.99
		\$1.29	\$2.39	Stove	N	\$1.49	Stove	\$2.39
		\$1.69	\$1.39	Micro	N	\$2.29	Stove	\$2.39
		\$1.69	N	Stove	\$2.49	N	Stove	N
		N	\$1.39	Stove	\$1.99	\$1.49	Micro	\$2.39
		\$2.09	N	Stove	\$2.49	\$1.49	Micro	\$1.99
		N	\$2.39	Micro	N	\$2.29	Micro	N
		\$1.69	\$2.39	Stove	\$1.99	\$1.49	Micro	N

In contrast, here are the actual values without formats and labels.

```
proc print data=sasuser.finchdes; format _numeric_; run;
```

Consumer Food Product Example									
Obs	x1	x2	x3	x4	x5	x6	x7	x8	Block
1	N	1.89	2	1	1.99	2.29	1	1.99	1
2	1.29	N	1	1	N	1.49	1	N	1
3	1.69	1.89	2	1	N	1.49	2	1.99	1
4	1.29	1.39	2	1	1.99	2.29	2	N	1
5	2.09	2.39	2	1	2.49	2.29	1	N	1
6	1.69	1.39	2	1	2.49	N	1	2.39	1
7	1.69	2.39	1	1	1.99	1.49	2	N	1
8	N	1.39	1	1	2.49	1.49	2	1.99	1
9	N	2.39	2	1	N	N	2	2.39	1
10	2.09	1.89	2	2	2.49	2.29	2	N	1
11	1.29	1.39	1	2	2.49	N	1	N	1
12	1.69	1.89	1	2	N	1.49	1	1.99	1
13	N	1.89	2	2	1.99	N	1	2.39	1
14	1.29	N	2	2	N	2.29	1	2.39	1
15	1.69	2.39	2	2	1.99	N	1	1.99	1
16	2.09	N	1	2	1.99	1.49	2	2.39	1
17	N	N	1	2	N	2.29	2	1.99	1
18	2.09	2.39	1	2	2.49	N	2	2.39	1
19	N	1.39	1	1	1.99	N	2	N	2
20	N	1.89	1	1	2.49	2.29	2	2.39	2
21	1.69	N	1	1	2.49	2.29	1	2.39	2
22	2.09	N	2	1	1.99	2.29	2	1.99	2
23	1.29	2.39	1	1	2.49	N	1	1.99	2
24	N	N	2	1	2.49	1.49	2	N	2
25	2.09	1.89	1	1	N	N	1	N	2
26	2.09	1.39	1	1	N	2.29	1	2.39	2
27	1.29	1.89	2	1	N	1.49	1	2.39	2
28	1.29	1.89	1	2	1.99	N	2	1.99	2
29	2.09	1.39	2	2	N	N	2	1.99	2
30	1.29	2.39	2	2	N	1.49	2	2.39	2
31	1.69	1.39	1	2	N	2.29	2	2.39	2
32	1.69	N	2	2	2.49	N	2	N	2
33	N	1.39	2	2	1.99	1.49	1	2.39	2
34	2.09	N	2	2	2.49	1.49	1	1.99	2
35	N	2.39	1	2	N	2.29	1	N	2
36	1.69	2.39	2	2	1.99	1.49	1	N	2

One issue remains to be resolved regarding this design and that concerns the role of the shelf-talker when the client line extension is not available. The second part of each block of the design consists of choice sets in which the shelf-talker is present and calls attention to the client line extension. However, in five of those choice sets, the client line extension is unavailable. This problem can be handled in several ways. Here are a few:

- Rerun the design creation and evaluation programs excluding all choice sets with shelf-talker present and client line extension unavailable. However, this requires changing the model because the excluded cell will make inestimable the interaction between client-line-extension price and shelf-talker. Furthermore, the shelf-talker variable will almost certainly no longer be balanced.
- Move the choice sets with client line extension unavailable to the no-shelf-talker block and rerandomize. The shelf-talker is then on for all of the last nine choice sets.
- Let the shelf-talker go on and off as needed.
- Let the shelf-talker call attention to a brand that happens to be out of stock. It is easy to imagine this happening in a real store.

Other options are available as well. No one approach is obviously superior to the alternatives. For this example, we will take the latter approach and allow the shelf-talker to be on even when the client line extension is not available. Note that if the shelf-talker is turned off when the client line extension is not available then the design must be manually modified to reflect this fact.

## Testing the Design Before Data Collection

This is a complicated design that will be used to fit a complicated model with alternative specific and availability cross effects. Collecting data is time consuming and expensive. It is good practice, particularly when there are cross effects, to make sure that the design will work with the most complicated model that we anticipate fitting. We saw, starting on page 195, an example of generating artificial data to test the design before collecting real data. Here, we will explore an alternative approach. Before we collect any data, we will convert the linear design to a choice design* and use the \%ChoicEff macro to evaluate its efficiency for a multinomial logit model with availability cross effects.

For analysis, the design will have four factors, Brand, Price, Micro, Shelf. We will use the \%MktRoll macro and a key= data set (although not the same one as before) to make the choice design. Brand is the alternative name; its values are directly read from the key=KEY in-stream data. Price is an attribute whose values will be constructed from the factors $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 5, \mathrm{x} 6$, and x 8 in SASUSER.FINCHDES data set. Micro, the microwave factor, is constructed from x3 for the client line extension and $x 7$ for the private label. Shelf, the shelf talker factor, is created from $x 4$ for the extension. The keep= option on the \%MktRoll macro is used to keep the original price factors in the design, since we will need them for the price effects. Normally, they would be dropped.

[^30]```
data key;
    input Brand $ 1-10 (Price Micro Shelf) ($);
    datalines;
Client x1 . .
Extension x2 x3 x4
Regional x5 . .
Private x6 x7 .
National x8 . .
None
;
%mktroll(design=sasuser.finchdes, key=key, alt=brand, out=rolled,
    keep=x1 x2 x5 x6 x8)
proc print data=sasuser.finchdes(obs=2); run;
proc print data=rolled(obs=12);
    format price dollar5.2 shelf yn. micro micro.;
    id set; by set;
    run;
```

Consider the first two choice sets in the linear design.

| Obs | x1 | Consumer Food Product Example | | | | | | x8 | Block |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | x2 | x3 | x4 | x5 | x6 | x7 | | |
| 1 | N | \$1.89 | Stove | No | \$1.99 | \$2.29 | Micro | \$1.99 | 1 |
| 2 | \$1.29 | N | Micro | No | N | \$1.49 | Micro | N | 1 |

Here they are in the rolled out choice design.

| Consumer Food Product Example | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Set | Brand | Price | Micro | Shelf | x1 | x 2 | x5 | x6 | x8 |
| 1 | Client | N | - | - | N | \$1.89 | \$1.99 | \$2. 29 | \$1.99 |
| | Extension | \$1.89 | Stove | No | N | \$1.89 | \$1.99 | \$2.29 | \$1.99 |
| | Regional | \$1.99 | - | . | N | \$1.89 | \$1.99 | \$2.29 | \$1.99 |
| | Private | \$2.29 | Micro | | N | \$1.89 | \$1.99 | \$2.29 | \$1.99 |
| | National | \$1.99 | . | . | N | \$1.89 | \$1.99 | \$2.29 | \$1.99 |
| | None | . | | | N | \$1.89 | \$1.99 | \$2.29 | \$1.99 |

| 2 | Client | \$1.29 | . | | \$1.29 | N | N | \$1.49 | N |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Extension | N | Micro | No | \$1.29 | N | N | \$1.49 | N |
| | Regional | N | . | | \$1.29 | N | N | \$1.49 | N |
| | Private | \$1.49 | Micro | | \$1.29 | N | N | \$1.49 | N |
| | National | N | . | | \$1.29 | N | N | \$1.49 | N |
| | None | | | | \$1.29 | N | N | \$1.49 | N |

Set 1, Alternative 1

| Brand | $=$ 'Client' | |
| :--- | :--- | :--- |
| the brand for this alternative | | |
| Price | $=\mathrm{x} 1=\mathrm{N}$ | |
| the price of this alternative | | |
| Micro | $=$. | |
| does not apply to this brand | | |
| Shelf | $=$ | |
| does not apply to this brand | | |
| x 1 | $=\mathrm{N}$ | |
| client brand unavailable in this choice set | | |
| x 2 | $=\$ 1.89$ | |
| the price of the extension in this choice set | | |
| x 5 | $=\$ 1.99$ | |
| the price of the regional competitor in this choice set | | |
| x 6 | $=\$ 2.29$ | the price of the private label in this choice set |
| x 8 | $=\$ 1.99$ | |

Set 1, Alternative 2

| Brand | $='$ 'Extension' | the brand for this alternative |
| :--- | :--- | :--- |
| Price | $=\mathrm{x} 2=\$ 1.89$ | |
| the price of this alternative | | |
| Micro | $=$ Stove | |
| Stove top version | | |
| Shelf | $=$ No | |
| Shelf Talker, No | | |
| x 1 | $=\mathrm{N}$ | |
| client brand unavailable in this choice set | | |
| x 2 | $=\$ 1.89$ | |
| the price of the extension in this choice set | | |
| x 5 | $=\$ 1.99$ | the price of the regional competitor in this choice set |
| x 6 | $=\$ 2.29$ | the price of the private label in this choice set |
| x 8 | $=\$ 1.99$ | |

Notice that x 1 through x 8 are constant within each choice set. The variable x 1 is the price of alternative one, which is the same no matter which alternative it is stored with.

We need to do a few more things to this design before we are ready to use it. Since we will be treating all of the price factors as a quantitative (not as class variables), we need to convert the missing prices to zero. We also need to convert the missings for when Micro and Shelf do not apply to 2 for 'Stove' and 1 for 'No'. We also need to assign formats. Eventually, we will also need to output just the alternatives that are available (those with a nonzero price and also the none alternative). For now, we will just make a variable w that flags the available alternatives ($\mathrm{w}=1$).

```
data sasuser.choicedes(drop=i);
    set rolled;
    array x[6] price x1 -- x8;
    do i = 1 to 6; if nmiss(x[i]) then x[i] = 0; end;
    if nmiss(micro) then micro = 2;
    if nmiss(shelf) then shelf = 1;
    w = brand eq 'None' or price ne 0;
    format price dollar5.2 shelf yn. micro micro.;
    run;
```

proc print data=sasuser.choicedes(obs=12); by set; id set; run;

Here are the first two choice sets.

Consumer Food Product Example

| Set | Brand | Price | Micro | Shelf | x1 | x2 | x5 | x6 | x8 | w |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | | | | |
| 1 | Client | $\$ 0.00$ | Stove | No | $\$ 0.00$ | $\$ 1.89$ | $\$ 1.99$ | $\$ 2.29$ | $\$ 1.99$ | 0 |
| | Extension | $\$ 1.89$ | Stove | No | $\$ 0.00$ | $\$ 1.89$ | $\$ 1.99$ | $\$ 2.29$ | $\$ 1.99$ | 1 |
| | Regional | $\$ 1.99$ | Stove | No | $\$ 0.00$ | $\$ 1.89$ | $\$ 1.99$ | $\$ 2.29$ | $\$ 1.99$ | 1 |
| | Private | $\$ 2.29$ | Micro | No | $\$ 0.00$ | $\$ 1.89$ | $\$ 1.99$ | $\$ 2.29$ | $\$ 1.99$ | 1 |
| | National | $\$ 1.99$ | Stove | No | $\$ 0.00$ | $\$ 1.89$ | $\$ 1.99$ | $\$ 2.29$ | $\$ 1.99$ | 1 |
| | None | $\$ 0.00$ | Stove | No | $\$ 0.00$ | $\$ 1.89$ | $\$ 1.99$ | $\$ 2.29$ | $\$ 1.99$ | 1 |
| 2 | | | | | | | | | | |
| | Client | $\$ 1.29$ | Stove | No | $\$ 1.29$ | $\$ 0.00$ | $\$ 0.00$ | $\$ 1.49$ | $\$ 0.00$ | 1 |
| | Extension | $\$ 0.00$ | Micro | No | $\$ 1.29$ | $\$ 0.00$ | $\$ 0.00$ | $\$ 1.49$ | $\$ 0.00$ | 0 |
| | Regional | $\$ 0.00$ | Stove | No | $\$ 1.29$ | $\$ 0.00$ | $\$ 0.00$ | $\$ 1.49$ | $\$ 0.00$ | 0 |
| | Private | $\$ 1.49$ | Micro | No | $\$ 1.29$ | $\$ 0.00$ | $\$ 0.00$ | $\$ 1.49$ | $\$ 0.00$ | 1 |
| | National | $\$ 0.00$ | Stove | No | $\$ 1.29$ | $\$ 0.00$ | $\$ 0.00$ | $\$ 1.49$ | $\$ 0.00$ | 0 |
| | None | $\$ 0.00$ | Stove | No | $\$ 1.29$ | $\$ 0.00$ | $\$ 0.00$ | $\$ 1.49$ | $\$ 0.00$ | 1 |

Now our choice design is done except for the final coding for the analysis. We can now use the \%ChoicEff macro to evaluate our choice design. Normally, you would use this macro to search a candidate set for an efficient choice design. You can also use it to evaluate a design created by other means. Here is some sample code, omitting for now the details of the model (indicated by model= ...). The complicated part of this is the model due to the alternative-specific price effects and cross effects. For now, let's concentrate on everything else.

```
%choiceff(data=sasuser.choicedes,
    model= ..., /* model specification skipped for now */
    nsets=36, nalts=6, weight=w,
    beta=zero, init=sasuser.choicedes(keep=set),
    intiter=0);
```

The way you check the efficiency of a design like this is to first name it on the data= option. This will be the candidate set that contains all of the choice sets that we will consider. In addition, the same design is named on the init= option. The full specification is init=sasuser.choicedes (keep=set). Just the variable Set is kept. It will be used to bring in just the indicated choice sets from the data= design, which in this case is all of them. The option nsets $=36$ specifies the number of choice sets, and
nalts $=6$ specifies the number of alternatives. This macro requires a constant number of alternatives in each choice set for ease of data management. However, not all of the alternatives have to be used. In this case, we have an availability study. We need to keep the unavailable alternatives in the design for this step, but we do not want them to contribute to the analysis, so we specify a weight variable with weight=w and flag the available alternatives with $\mathrm{w}=1$ and the unavailable alternatives with $\mathrm{w}=0$. The option beta=zero specifies that we are assuming for design evaluation purpose all zero betas. We can specify other values and get other results for the variances and standard errors. Finally, we specify intiter $=0$ which specifies zero internal iterations. We use zero internal iterations when we want to evaluate an initial design, but not attempt to improve it. Here is the actual specification we will use, complete with the model specification.

```
%choiceff(data=sasuser.choicedes,
    model=class(brand / zero='None')
    class(brand / zero='None' separators=', ' ') *
            identity(price)
        class(shelf micro / lprefix=5 0 zero='No' 'Stove')
        identity(x1 x2 x5 x6 x8) *
            class(brand / zero='None' separators=' ' ' on ') /
        lprefix=0 order=data,
nsets=36, nalts=6, weight=w,
beta=zero, init=sasuser.choicedes(keep=set),
intiter=0);
```

The specification class(brand / zero='None') specifies the brand effects. This specification will create indicator variables for brand with the constant alternative being the reference brand. The option zero='None' ensures that the reference level will be 'None' instead of the default last sorted level ('Regional'). Indicator variables will be created for the brands Client, Extension, Regional, Private, and National, but not None. The zero='None' option, like zero='Home' and other zero='literal-string' options we have used in previous examples, names the actual formatted value of the class variable that should be excluded from the coded variables because the coefficient will be zero. Do not confuse zero=none and zero='None'. The zero=none option specifies that you want all indicator variables to be created, even including one for the last level. In contrast, the option zero='None' (or zero= any quoted string) names a specific formatted value, in this case 'None', for which indicator variables are not to be created.

The specification class (brand / ...) * identity (price) creates the alternative-specific price effects. They are specified as an interaction between a categorical variable Brand and a quantitative factor Price. The separators=', , ' option in the class specification specifies the separators that are used to construct the labels for the main effect and interaction terms. The main-effects separator, which is the first separators= value, '', is ignored since lprefix=0. Specifying ' ' as the second value creates labels of the form brand-blank-price instead of the default brand-blank-asterisk-blank-price.

The specification class(shelf micro / ...) names the shelf talker and microwave variables as categorical variables and creates indicator variables for the 'Talker' category, not the ' No ' category and the 'Micro' category not the 'Stove' category. In zero=' No ' 'Stove', the 'No' applies to the first variable, Shelf and the second value, 'Stove', applies to second variable, Micro.
The specification identity (x 1 x 2 x 5 x 6 x 8) * class (brand / ...) creates the cross effects. The separators $=$ option is specified with a second value of ' on ' to create cross effect labels like 'Client on Extension'. More will be said on the cross effects when we look at the actual coded values in the next few pages.

Note that PROC TRANSREG produces the following warning twice.

```
WARNING: This usage of \(*\) sets one group's slope to zero. Specify |
    to allow all slopes and intercepts to vary. Alternatively,
    specify CLASS(vars) * identity (vars) identity(vars) for
    separate within group functions and a common intercept.
    This is a change from Version 6.
```

This is because on two occasions class was interacted with identity using the asterisk instead of the vertical bar. In a linear model, this may be a sign of a coding error, so the procedure prints a warning. If you get this warning while coding a choice model specifying zero='constant-alternative-level', you can safely ignore it. Still, it is always good to print out one or more coded choice sets to check the coding as we will do later. Here is the last part of the output from the \%ChoicEff macro.

Consumer Food Product Example

| | | Standard | | |
| :---: | :---: | :---: | :---: | :---: |
| n Variable Name | Label | Variance | DF | Error |
| 1 BrandClient | Client | 9.0879 | 1 | 3.01462 |
| 2 BrandExtension | Extension | 9.0029 | 1 | 3.00049 |
| 3 BrandRegional | Regional | 27.1773 | 1 | 5.21319 |
| 4 BrandPrivate | Private | 8.9994 | 1 | 2.99991 |
| 5 BrandNational | National | 36.4079 | 1 | 6.03389 |
| 6 BrandClientPrice | Client Price | 2.3795 | 1 | 1.54256 |
| 7 BrandExtensionPrice | Extension Price | 1.4509 | 1 | 1.20452 |
| 8 BrandRegionalPrice | Regional Price | 4.5531 | 1 | 2.13381 |
| 9 BrandPrivatePrice | Private Price | 1.6487 | 1 | 1.28403 |
| 10 BrandNationalPrice | National Price | 6.4858 | 1 | 2.54672 |
| 11 ShelfTalker | Shelf Talker | 0.9072 | 1 | 0.95249 |
| 12 MicroMicro | Micro | 0.4957 | 1 | 0.70408 |
| 13 x1BrandClient | Client Brand on Client | . | 0 | |
| 14 x1BrandExtension | Client Brand on Extension | 0.4377 | 1 | 0.66156 |
| 15 x1BrandRegional | Client Brand on Regional | 0.4908 | 1 | 0.70054 |
| 16 x1BrandPrivate | Client Brand on Private | 0.4724 | 1 | 0.68730 |
| 17 x1BrandNational | Client Brand on National | 0.5053 | 1 | 0.71082 |
| 18 x2BrandClient | Client Line Extension on Client | 0.3856 | 1 | 0.62097 |
| 19 x2BrandExtension | Client Line Extension on Extension | | 0 | |
| 20 x2BrandRegional | Client Line Extension on Regional | 0.4397 | 1 | 0.66310 |
| 21 x2BrandPrivate | Client Line Extension on Private | 0.3720 | 1 | 0.60990 |
| 22 x2BrandNational | Client Line Extension on National | 0.6656 | 1 | 0.81587 |
| 23 x5BrandClient | Regional Brand on Client | 0.2677 | 1 | 0.51741 |
| 24 x5BrandExtension | Regional Brand on Extension | 0.2617 | 1 | 0.51158 |
| 25 x5BrandRegional | Regional Brand on Regional | . | 0 | |
| 26 x5BrandPrivate | Regional Brand on Private | 0.2742 | 1 | 0.52365 |
| 27 x5BrandNational | Regional Brand on National | 0.2877 | 1 | 0.53639 |

| 28 | x6BrandClient | Private Label on Client | 0.3785 | 1 |
| :--- | :--- | :--- | :--- | :---: |
| 29 x6BrandExtension | Private Label on Extension | 0.61521 | | |
| 30 x6BrandRegional | Private Label on Regional | 0.3242 | 1 | 0.56938 |
| 31 x6BrandPrivate | Private Label on Private | 1 | 0.61729 | |
| 32 x6BrandNational | Private Label on National | 0.5760 | 1 | 0.75893 |
| 33 x8BrandClient | National Competitor on Client | 0.2777 | 1 | 0.52695 |
| 34 x8BrandExtension | National Competitor on Extension | 0.2806 | 1 | 0.52976 |
| 35 x8BrandRegional | National Competitor on Regional | 0.2904 | 1 | 0.53887 |
| 36 x8BrandPrivate | National Competitor on Private | 0.3066 | 1 | 0.55372 |
| 37 x8BrandNational | National Competitor on National | . | 0 | . |

First we see estimable brand effects for each of the five brands, excluding the constant alternative 'None'. Next we see quantitative alternative-specific price effects for each of the brands. The next two effects that are single $d f$ effects for the shelf talker and the microwave option. Then we see five sets of cross effects, each consisting of four effects of a brand on another brand, plus one more zero $d f$ cross effect of a brand on itself. The zero $d f$ and missing variances and standard errors are correct since the cross effect of an alternative on itself is perfectly aliased with its alternative-specific price effect. These results look fine. Everything that should be estimable is estimable, and everything that should not be estimable is not.

Next, we will run some further checks by looking at the coded design. Before we look at the coded design, recall that the design for the first five choice sets is as follows.

| Consumer Food Product Example | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | Client | Client | | | Private | |
| | Shelf | Client | Line | Micro/ | Regional | Private | Micro/ | National |
| Block | Talker | Brand | Extension | Stove | Brand | Label | Stove | Competitor |
| 1 | No | N | \$1.89 | Stove | \$1.99 | \$2.29 | Micro | \$1.99 |
| | | \$1.29 | N | Micro | N | \$1.49 | Micro | N |
| | | \$1.69 | \$1.89 | Stove | N | \$1.49 | Stove | \$1.99 |
| | | \$1.29 | \$1.39 | Stove | \$1.99 | \$2.29 | Stove | N |
| | | \$2.09 | \$2.39 | Stove | \$2.49 | \$2.29 | Micro | N |

The coded design that the \%ChoicEff macro creates is called TMP_CAND. We will look at the coded data set in several ways. First, here are the Brand, Price, microwave and shelf talker factors, for just the available alternatives for the first five choice sets.

```
proc print data=tmp_cand(obs=23) label;
    var Brand Price Shelf Micro;
    where w;
    run;
```

| | Consumer Food Product Example | | | |
| ---: | :--- | :--- | :--- | :--- |
| | | | | |
| Obs | Brand | Price | Shelf | Micro |
| | | | | |
| 2 | Extension | $\$ 1.89$ | No | Stove |
| 3 | Regional | $\$ 1.99$ | No | Stove |
| 4 | Private | $\$ 2.29$ | No | Micro |
| 5 | National | $\$ 1.99$ | No | Stove |
| 6 | None | $\$ 0.00$ | No | Stove |
| 7 | Client | $\$ 1.29$ | No | Stove |
| 10 | Private | $\$ 1.49$ | No | Micro |
| 12 | None | $\$ 0.00$ | No | Stove |
| 13 | Client | $\$ 1.69$ | No | Stove |
| 14 | Extension | $\$ 1.89$ | No | Stove |
| 16 | Private | $\$ 1.49$ | No | Stove |
| 17 | National | $\$ 1.99$ | No | Stove |
| 18 | None | $\$ 0.00$ | No | Stove |
| 19 | Client | $\$ 1.29$ | No | Stove |
| 20 | Extension | $\$ 1.39$ | No | Stove |
| 21 | Regional | $\$ 1.99$ | No | Stove |
| 22 | Private | $\$ 2.29$ | No | Stove |
| 24 | None | $\$ 0.00$ | No | Stove |
| 25 | Client | $\$ 2.09$ | No | Stove |
| 26 | Extension | $\$ 2.39$ | No | Stove |
| 27 | Regional | $\$ 2.49$ | No | Stove |
| 28 | Private | $\$ 2.29$ | No | Micro |
| 30 | None | $\$ 0.00$ | No | Stove |

Unlike all previous examples, the number of alternatives is not the same in all of the choice sets. The first choice set consists of five alternatives including 'None'. The client brand is not available in this choice set. The second choice set consists of three alternatives including 'None'. The extension, regional, and national competitors are not available in this choice set. The third choice set consists of five alternatives including 'None', and so on.

Here are the coded factors for the brand effects and alternative-specific price effects for the first choice set.

```
proc print data=tmp_cand(obs=5) label;
    id Brand;
    var BrandClient -- BrandNational;
    where w;
    run;
```

```
proc format; value zer 0 = , 0'; run;
proc print data=tmp_cand(obs=5) label;
    id Brand Price;
    var BrandClientPrice -- BrandNationalPrice;
    format BrandClientPrice -- BrandNationalPrice zer5.2;
    where w;
    run;
```


The brand effects and alternative-specific price effect codings are similar to those we have used previously. The difference is the presence of all zero columns for unavailable alternatives, in this case the client brand. Note that Brand Price are just ID variables and do not enter into the analysis.

Here are the shelf talker and microwave coded factors (along with the Brand, Price, Shelf, and Micro factors).

```
proc print data=tmp_cand(obs=5) label;
    id Brand Price Shelf Micro;
    var shelftalker micromicro;
    where w;
    run;
```

| Brand | Consumer Food Product Example | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | Shelf | |
| | Price | Shelf | Micro | Talker | Micro |
| Extension | \$1.89 | No | Stove | 0 | 0 |
| Regional | \$1.99 | No | Stove | 0 | 0 |
| Private | \$2.29 | No | Micro | 0 | 1 |
| National | \$1.99 | No | Stove | 0 | 0 |
| None | \$0.00 | No | Stove | 0 | 0 |

The following code prints the cross effects along with Brand and Price for the first choice set.

```
proc print data=tmp_cand(obs=5) label;
    id Brand Price;
    var x1Brand:; format x1Brand: zer5.2;
    where w;
    run;
proc print data=tmp_cand(obs=5) label;
    id Brand Price;
    var x2Brand:; format x2Brand: zer5.2;
    where w;
    run;
proc print data=tmp_cand(obs=5) label;
    id Brand Price;
    var x5Brand:; format x5Brand: zer5.2;
    where w;
    run;
proc print data=tmp_cand(obs=5) label;
    id Brand Price;
    var x6Brand:; format x6Brand: zer5.2;
    where w;
    run;
proc print data=tmp_cand(obs=5) label;
    id Brand Price;
    var x8Brand:; format x8Brand: zer5.2;
    where w;
    run;
```

The cross effects are printed in panels. This first panel shows the terms that capture the effect of the client brand, which is unavailable, on the utility of the other brands. An unavailable brand has no effect on any other brand's utility in that choice set. The second panel shows the terms that capture the effect of the line extension being available at $\$ 1.89$ on the other available alternatives. Subsequent panels shows the terms that capture the effect of each available alternative on the other available alternatives.

| Consumer Food Product Example | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Brand | Price | Client
 Brand on Client | Client
 Brand on Extension | Client
 Brand on Regional | Client
 Brand on Private | Client
 Brand on National |
| Extension | \$1.89 | 90 | 0 | 0 | 0 | 0 |
| Regional | \$1.99 | 90 | 0 | 0 | 0 | 0 |
| Private | \$2.29 | 90 | 0 | 0 | 0 | 0 |
| National | \$1.99 | 90 | 0 | 0 | 0 | 0 |
| None | \$0.00 | 0 | 0 | 0 | 0 | 0 |
| Consumer Food Product Example | | | | | | |
| | | | | | | |
| Extension | \$1.89 | 0 | 1.89 | 0 | 0 | 0 |
| Regional | \$1.99 | 0 | 0 | 1.89 | 0 | 0 |
| Private | \$2.29 | 0 | 0 | 0 | 1.89 | 0 |
| National | \$1.99 | 0 | 0 | 0 | 0 | 1.89 |
| None | \$0.00 | 0 | 0 | 0 | 0 | 0 |

| | Consumer Food Product Example | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Brand | PriceNational
 Competitor
 on Client | National
 Competitor
 on Extension | National
 Competitor
 on Regional | National
 Competitor
 on Private | National
 Competitor
 on National | | |
| Extension | $\$ 1.89$ | 0 | 1.99 | 0 | 0 | 0 | |
| Regional | $\$ 1.99$ | 0 | 0 | 1.99 | 0 | 0 | |
| Private | $\$ 2.29$ | 0 | 0 | 0 | 1.99 | 0 | |
| National | $\$ 1.99$ | 0 | 0 | 0 | 0 | 1.99 | |
| None | $\$ 0.00$ | 0 | 0 | 0 | 0 | 0 | |

A column like 'Private Label on Extension' in the second last panel, for example captures the effect of the private label brand being available at $\$ 2.29$ on the utility of the extension. In the previous panel, 'Regional Brand on Extension' captures the effect of the regional brand being available at $\$ 1.99$ on the utility of the extension.

The design looks good, it has reasonably good balance and correlations, it can be used to estimate all of the effects of interest, and we have shown we know how to specify the model to get all the right codings. We are ready to collect data.

Generating Artificial Data

We will not illustrate questionnaire generation for this example since we have done it several times before in previous examples. Instead we will go straight to data processing and analysis. This DATA step generates some artificial data. Creating artificial data and trying the analysis before collecting data is another way to test the design before going to the expense of data collection.

```
%let m = 6;
%let mm1 = %eval(&m - 1);
%let n = 36;
```

```
proc format;
    value yn \(1=\) 'No' \(2=\) 'Talker';
    value micro 1 = 'Micro' 2 = 'Stove';
    run;
data _null_;
    array brands[\&m] _temporary_( \(\left.\begin{array}{llllll}5 & 7 & 1 & 2 & 3 & -2\end{array}\right)\);
    array u[\&m];
    array \(x[\& m m 1]\) x1 x2 x5 x6 x8;
    do \(\mathrm{rep}=1\) to 300 ;
        if mod(rep, 2) then put;
        put rep 3. +2 @@;
        do \(j=1\) to \&n;
            set sasuser.finchdes point=j;
            do brand \(=1\) to \(\& m\); u[brand] = brands[brand] +2 * normal(17); end;
            do brand = 1 to \&mm1;
                if \(n(x[b r a n d])\) then \(u[b r a n d]+-x[b r a n d] ;\) else \(u[b r a n d]=\).;
                end;
            if \(\mathrm{n}(\mathrm{u} 2)\) and \(\mathrm{x} 4=2\) then \(\mathrm{u} 2+1 ; / *\) shelf-talker */
            if \(\mathrm{n}(\mathrm{u} 2)\) and \(\mathrm{x} 3=1\) then \(\mathrm{u} 2+1 ; / *\) microwave \(* /\)
            if \(\mathrm{n}(\mathrm{u} 4)\) and \(\mathrm{x} 7=1\) then \(u 4+1 ; / *\) microwave \(* /\)
            * Choose the most preferred alternative.;
            \(\mathrm{m}=\max (\mathrm{of} \mathrm{u} 1-\mathrm{u} \& \mathrm{~m}\) ) ;
            do brand = 1 to \&m;
                if \(n(u[b r a n d])\) then if abs(u[brand] - m) \(<1 e-4\) then \(c=\) brand;
                    end;
            put +(-1) c @@;
            end;
        end;
    stop;
    run;
```

This DATA step reads the data.

```
data results;
    input Subj (choose1-choose&n) (1.) @@;
    datalines;
    1412222252222212552225124222222212122 2 212222222222212142221113222221212424
    3 211222222221241152221126221122112522 4 212112222222212152225123221222212121
    512225222222242162221414222222212422 6 242122222122212152224124222211212422
297 212242222222212452254124222222232122 298 212222222222552452221524222221214522
299 212221222222212441225126212214212622 300 212242122222211142221414222122212322
;
```


Processing the Data

The analysis proceeds in a fashion similar to before. We have already made the choice design, so we just have to merge it with the data. The data and design are merged in the usual way using the $\% \mathrm{MktMerge}$ macro. Notice at this point that the unavailable alternatives are still in the design. The \%MktMerge macro has an nalts= alternative and expects a constant number of alternatives in each choice set.

```
%mktmerge(design=sasuser.choicedes, data=results, out=res2,
    nsets=&n, nalts=&m, setvars=choose1-choose&n)
proc print data=res2(obs=12); id subj set; by subj set; run;
```

Here are the data and design for the first two choice sets for the first subject, including the unavailable alternatives.

| Consumer Food Product Example | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Subj | Set | Brand | Price | Micro | Shelf | x1 | x 2 | x5 | x6 | x8 | w C |
| 1 | 1 | Client | \$0.00 | Stove | No | \$0.00 | \$1.89 | \$1.99 | \$2.29 | \$1.99 | 02 |
| | | Extension | \$1.89 | Stove | No | \$0.00 | \$1.89 | \$1.99 | \$2.29 | \$1.99 | 12 |
| | | Regional | \$1.99 | Stove | No | \$0.00 | \$1.89 | \$1.99 | \$2.29 | \$1.99 | 12 |
| | | Private | \$2.29 | Micro | No | \$0.00 | \$1.89 | \$1.99 | \$2.29 | \$1.99 | 11 |
| | | National | \$1.99 | Stove | No | \$0.00 | \$1.89 | \$1.99 | \$2.29 | \$1.99 | 12 |
| | | None | \$0.00 | Stove | No | \$0.00 | \$1.89 | \$1.99 | \$2.29 | \$1.99 | 12 |
| 1 | 2 | Client | \$1.29 | Stove | No | \$1.29 | \$0.00 | \$0.00 | \$1.49 | \$0.00 | 11 |
| | | Extension | \$0.00 | Micro | | \$1.29 | \$0.00 | \$0.00 | \$1.49 | \$0.00 | 02 |
| | | Regional | \$0.00 | Stove | | \$1.29 | \$0.00 | \$0.00 | \$1.49 | \$0.00 | 02 |
| | | Private | \$1.49 | Micro | | \$1.29 | \$0.00 | \$0.00 | \$1.49 | \$0.00 | 12 |
| | | National | \$0.00 | Stove | | \$1.29 | \$0.00 | \$0.00 | \$1.49 | \$0.00 | 02 |
| | | None | \$0.00 | Stove | No | \$1.29 | \$0.00 | \$0.00 | \$1.49 | \$0.00 | 12 |

These next steps aggregate the data. The data set is fairly large at 64,800 observations, and aggregating greatly reduces its size, which makes both the TRANSREG and the PHREG steps run in just a few seconds. This step also excludes the unavailable alternatives. When w is 1 (true) the alternative is available and counted, otherwise when w is 0 (false) the alternative is unavailable and excluded by the where clause and not counted. There is nothing in subsequent steps that assumes a fixed number of alternatives.

```
proc summary data=res2 nway;
    class set brand price shelf micro x1 x2 x5 x6 x8 c;
    output out=agg(drop=_type_);
    where w; /* exclude unavailable, w = 0 */
    run;
proc print; where set = 1; run;
```

All of the variables used in the analysis are named as class variables in PROC SUMMARY, which reduces the data set from 64,800 observations to 286 . Here are the aggregated data for the first choice set.

| Consumer Food Product Example | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Obs | Set | Brand | Price | Shelf | Micro | x1 | x2 | x5 | x6 | x8 | c | _FREQ_ |
| 1 | 1 | Extension | \$1.89 | No | Stove | \$0.00 | \$1.89 | \$1.99 | \$2.29 | \$1.99 | 1 | 257 |
| 2 | 1 | Extension | \$1.89 | No | Stove | \$0.00 | \$1.89 | \$1.99 | \$2.29 | \$1.99 | 2 | 43 |
| 3 | 1 | National | \$1.99 | No | Stove | \$0.00 | \$1.89 | \$1.99 | \$2.29 | \$1.99 | 1 | 20 |
| 4 | 1 | National | \$1.99 | No | Stove | \$0.00 | \$1.89 | \$1.99 | \$2.29 | \$1.99 | 2 | 280 |
| 5 | 1 | None | \$0.00 | No | Stove | \$0.00 | \$1.89 | \$1.99 | \$2.29 | \$1.99 | 1 | 1 |
| 6 | 1 | None | \$0.00 | | Stove | \$0.00 | \$1.89 | \$1.99 | \$2.29 | \$1.99 | 2 | 299 |
| 7 | 1 | Private | \$2.29 | | Micro | \$0.00 | \$1.89 | \$1.99 | \$2.29 | \$1.99 | 1 | 22 |
| 8 | 1 | Private | \$2.29 | No | Micro | \$0.00 | \$1.89 | \$1.99 | \$2.29 | \$1.99 | 2 | 278 |
| 9 | 1 | Regional | \$1.99 | | Stove | \$0.00 | \$1.89 | \$1.99 | \$2.29 | \$1.99 | 2 | 300 |

In the first choice set, the extension was chosen $(c=1)$ a total of freq- $=257$ times and not chosen $(c=2)$ a total of freq- $=43$ times. Each alternative was chosen and not chosen a total of 300 times, which is the number of subjects. These next steps code and run the analysis.

Cross Effects

This next step codes the design for analysis. This coding was discussed on page 260. PROC TRANSREG is run like before, except now the data set AGG is specified and the ID variable includes _freq_ (the frequency variable) but not Subj (the subject number variable).

```
proc transreg data=agg design=5000 nozeroconstant norestoremissing;
    model class(brand / zero='None')
        class(brand / zero='None' separators='' , ') * identity(price)
        class(shelf micro / lprefix=5 O zero='No' 'Stove')
        identity(x1 x2 x5 x6 x8) *
            class(brand / zero='None' separators=' , ' on ') /
        lprefix=0;
    output out=coded(drop=_type_ _name_ intercept);
    id set c _freq_;
    label x1 = 'CE, Client'
            x2 = 'CE, Extension'
            x5 = 'CE, Regional'
            x6 = 'CE, Private'
            x8 = 'CE, National'
            shelf = 'Shelf Talker'
            micro = 'Microwave';
    run;
```

Note that like we saw in the \%ChoicEff macro, PROC TRANSREG produces the following warning twice.

```
WARNING: This usage of * sets one group's slope to zero. Specify |
    to allow all slopes and intercepts to vary. Alternatively,
    specify CLASS(vars) * identity(vars) identity(vars) for
    separate within group functions and a common intercept.
    This is a change from Version 6.
```

This is because on two occasions class was interacted with identity using the asterisk instead of the vertical bar. In a linear model, this may be a sign of a coding error, so the procedure prints a warning. If you get this warning while coding a choice model specifying zero= 'constant-alternative-level', you can safely ignore it.

The analysis is the same as we have done previously with aggregate data. PROC PHREG is run to fit the mother logit model, complete with availability cross effects.

```
proc phreg data=coded;
    strata set;
    model c*c(2) = &_trgind / ties=breslow;
    freq _freq_;
    run;
```


Multinomial Logit Model Results

These steps produced the following results. (Recall that we used \%phchoice(on) on page 95 to customize the output from PROC PHREG.)

| The PHREG Procedure | |
| :---: | :---: |
| Model Information | |
| Data Set | WORK. CODED |
| Dependent Variable | c |
| Censoring Variable | c |
| Censoring Value(s) | 2 |
| Frequency Variable | _FREQ_ |
| Ties Handling | BRESLOW |
| Number of Observations Read | 286 |
| Number of Observations Used | 286 |
| Sum of Frequencies Read | 48000 |
| Sum of Frequencies Used | 48000 |

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

| Stratum | Set | Number of Alternatives | Chosen Alternatives | Chosen |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1500 | 300 | 1200 |
| 2 | 2 | 900 | 300 | 600 |
| 3 | 3 | 1500 | 300 | 1200 |
| 4 | 4 | 1500 | 300 | 1200 |
| 5 | 5 | 1500 | 300 | 1200 |
| 6 | 6 | 1500 | 300 | 1200 |
| 7 | 7 | 1500 | 300 | 1200 |
| 8 | 8 | 1500 | 300 | 1200 |
| 9 | 9 | 900 | 300 | 600 |
| 10 | 10 | 1500 | 300 | 1200 |
| 11 | 11 | 1200 | 300 | 900 |
| 12 | 12 | 1500 | 300 | 1200 |
| 13 | 13 | 1200 | 300 | 900 |
| 14 | 14 | 1200 | 300 | 900 |
| 15 | 15 | 1500 | 300 | 1200 |
| 16 | 16 | 1500 | 300 | 1200 |
| 17 | 17 | 900 | 300 | 600 |
| 18 | 18 | 1500 | 300 | 1200 |
| 19 | 19 | 900 | 300 | 600 |
| 20 | 20 | 1500 | 300 | 1200 |
| 21 | 21 | 1500 | 300 | 1200 |
| 22 | 22 | 1500 | 300 | 1200 |
| 23 | 23 | 1500 | 300 | 1200 |
| 24 | 24 | 900 | 300 | 600 |
| 25 | 25 | 900 | 300 | 600 |
| 26 | 26 | 1500 | 300 | 1200 |
| 27 | 27 | 1500 | 300 | 1200 |
| 28 | 28 | 1500 | 300 | 1200 |
| 29 | 29 | 1200 | 300 | 900 |
| 30 | 30 | 1500 | 300 | 1200 |
| 31 | 31 | 1500 | 300 | 1200 |
| 32 | 32 | 900 | 300 | 600 |
| 33 | 33 | 1500 | 300 | 1200 |
| 34 | 34 | 1500 | 300 | 1200 |
| 35 | 35 | 900 | 300 | 600 |
| 36 | 36 | 1500 | 300 | 1200 |
| Total | | 48000 | 10800 | 37200 |

Model Fit Statistics

| Criterion | Without
 Covariates | With
 Covariates |
| :--- | ---: | ---: |
| -2 LOG L | 154978.05 | 134843.82 |
| AIC | 154978.05 | 134907.82 |
| SBC | 154978.05 | 135141.01 |

Testing Global Null Hypothesis: BETA=0

| Test | Chi-Square | DF | Pr > ChiSq |
| :--- | ---: | ---: | ---: |
| | | | |
| Likelihood Ratio | 20134.2372 | 32 | $<.0001$ |
| Score | 22265.5761 | 32 | $<.0001$ |
| Wald | 6639.0479 | 32 | $<.0001$ |

Multinomial Logit Parameter Estimates

| | DF | Parameter
 Estimate | Standard Error | Chi-Square | Pr > ChiSq |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Client | 1 | 3.79393 | 0.49306 | 59.2081 | $<.0001$ |
| Extension | 1 | 5.12295 | 0.52452 | 95.3934 | <. 0001 |
| National | 1 | 3.23179 | 0.81642 | 15.6697 | $<.0001$ |
| Private | 1 | 1.31050 | 0.54937 | 5.6905 | 0.0171 |
| Regional | 1 | -0.10024 | 1.58232 | 0.0040 | 0.9495 |
| Client Price | 1 | -0.30395 | 0.20501 | 2.1982 | 0.1382 |
| Extension Price | 1 | 0.23579 | 0.28797 | 0.6705 | 0.4129 |
| National Price | 1 | -1.37790 | 0.34576 | 15.8812 | <. 0001 |
| Private Price | 1 | 0.02406 | 0.28896 | 0.0069 | 0.9336 |
| Regional Price | 1 | -0.17397 | 0.59454 | 0.0856 | 0.7698 |
| Shelf Talker | 1 | 0.71515 | 0.06909 | 107.1472 | <.0001 |
| Micro | 1 | 0.76468 | 0.06150 | 154.5960 | <. 0001 |
| CE, Client on Client | 0 | 0 | | | . |
| CE, Client on Extension | 1 | 0.46604 | 0.18222 | 6.5414 | 0.0105 |
| CE, Client on National | 1 | 0.36788 | 0.17994 | 4.1800 | 0.0409 |
| CE, Client on Private | 1 | 0.38018 | 0.16846 | 5.0931 | 0.0240 |
| CE, Client on Regional | 1 | 0.46363 | 0.22151 | 4.3808 | 0.0363 |
| CE, Extension on Client | 1 | 1.19048 | 0.27575 | 18.6385 | <. 0001 |
| CE, Extension on Extension | 0 | 0 | | . | - |
| CE, Extension on National | 1 | 1.06140 | 0.28152 | 14.2152 | 0.0002 |
| CE, Extension on Private | 1 | 0.95278 | 0.27909 | 11.6544 | 0.0006 |
| CE, Extension on Regional | 1 | 0.68052 | 0.32046 | 4.5097 | 0.0337 |
| CE, Regional on Client | 1 | 0.08894 | 0.12876 | 0.4771 | 0.4897 |
| CE, Regional on Extension | 1 | 0.15695 | 0.13012 | 1.4548 | 0.2278 |
| CE, Regional on National | 1 | 0.10450 | 0.13716 | 0.5805 | 0.4461 |
| CE, Regional on Private | 1 | 0.06719 | 0.12210 | 0.3028 | 0.5821 |
| CE, Regional on Regional | 0 | 0 | | . | . |

| CE, Private on Client | 1 | 0.45727 | 0.24562 | 3.4660 | 0.0626 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| CE, Private on Extension | 1 | 0.42913 | 0.24719 | 3.0138 | 0.0826 |
| CE, Private on National | 1 | 0.55401 | 0.26339 | 4.4242 | 0.0354 |
| CE, Private on Private | 0 | 0 | . | . | . |
| CE, Private on Regional | 1 | 0.45098 | 0.29187 | 2.3874 | 0.1223 |
| CE, National on Client | 1 | -0.20225 | 0.17594 | 1.3216 | 0.2503 |
| CE, National on Extension | 1 | -0.14792 | 0.18001 | 0.6753 | 0.4112 |
| CE, National on National | 0 | 0 | . | . | . |
| CE, National on Private | 1 | -0.15185 | 0.17687 | 0.7371 | 0.3906 |
| CE, National on Regional | 1 | -0.27439 | 0.22642 | 1.4687 | 0.2256 |

Since the number of alternatives is not constant within each choice set, the summary table has nonconstant numbers of alternatives and numbers of alternatives not chosen. The number chosen, 300 (or one per subject per choice set), is constant, since each subject always chooses one alternative from each choice set regardless of the number of alternatives. The first choice set has 1500 alternatives, 5 available times 300 subjects; whereas the second choice set has 900 alternatives, 3 available times 300 subjects.

The most to least preferred brands are: client line extension, client brand, national brand, private label, the none alternative (with an implicit part-worth utility of zero), and regional competitor. The price effects are mostly negative, and the positive effects are nonsignificant. Both the shelf-talker and the microwaveable option have positive utility. The cross effects are mostly nonsignificant. The most significant cross effect is the effect of the extension on the original client brand.

Modeling Subject Attributes

This example uses the same design and data as we just saw, but this time we have some demographic information about our respondents that we wish to model. The following DATA step reads a subject number, the choices, and respondent age and income (in thousands of dollars).

```
data results;
    input Subj (choose1-choose&n) (1.) age income;
    datalines;
    1412222252222212552225124222222212122 33 44
    2 212222222222212142221113222221212424 52 82
    3 211222222221241152221126221122112522 51 136
    4 212112222222212152225123221222212121 60 108
299 212221222222212441225126212214212622 48 49
300 212242122222211142221414222122212322 38 51
;
```

Merging the data and design is no different from what we saw previously.

```
%mktmerge(design=sasuser.choicedes, data=results, out=res2,
    nsets=&n, nalts=&m, setvars=choose1-choose&n)
proc print data=res2;
    by subj set; id subj set;
    where (subj = 1 and set = 1) or
            (subj = 2 and set = 2) or
            (subj = 3 and set = 3) or
            (subj = 300 and set = 36);
    run;
```

Here is a small sample of the data. Note that like before, the unavailable alternatives are required for the merge step.

| Subj | Set | Age | Income | Brand | Price | Micro | Shelf | x 1 | x2 | x5 | x6 | x8 | w |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 33 | 44 | Client | \$0.00 | Stove | No | \$0.00 | \$1.89 | \$1.99 | \$2.29 | \$1.99 | 0 |
| | | 33 | 44 | Extension | \$1.89 | Stove | No | \$0.00 | \$1.89 | \$1.99 | \$2.29 | \$1.99 | 12 |
| | | 33 | 44 | Regional | \$1.99 | Stove | No | \$0.00 | \$1.89 | \$1.99 | \$2.29 | \$1.99 | 12 |
| | | 33 | 44 | Private | \$2.29 | Micro | No | \$0.00 | \$1.89 | \$1.99 | \$2.29 | \$1.99 | 1 |
| | | 33 | 44 | National | \$1.99 | Stove | No | \$0.00 | \$1.89 | \$1.99 | \$2.29 | \$1.99 | 12 |
| | | 33 | 44 | None | \$0.00 | Stove | No | \$0.00 | \$1.89 | \$1.99 | \$2.29 | \$1.99 | 12 |
| 2 | 2 | 52 | 82 | Client | \$1.29 | Stove | No | \$1.29 | \$0.00 | \$0.00 | \$1.49 | \$0.00 | 11 |
| | | 52 | 82 | Extension | \$0.00 | Micro | No | \$1.29 | \$0.00 | \$0.00 | \$1.49 | \$0.00 | 02 |
| | | 52 | 82 | Regional | \$0.00 | Stove | No | \$1.29 | \$0.00 | \$0.00 | \$1.49 | \$0.00 | 02 |
| | | 52 | 82 | Private | \$1.49 | Micro | No | \$1.29 | \$0.00 | \$0.00 | \$1.49 | \$0.00 | 12 |
| | | 52 | 82 | National | \$0.00 | Stove | No | \$1.29 | \$0.00 | \$0.00 | \$1.49 | \$0.00 | 02 |
| | | 52 | 82 | None | \$0.00 | Stove | No | \$1.29 | \$0.00 | \$0.00 | \$1.49 | \$0.00 | 12 |
| 3 | 3 | 51 | 136 | Client | \$1.69 | Stove | No | \$1.69 | \$1.89 | \$0.00 | \$1.49 | \$1.99 | 11 |
| | | 51 | 136 | Extension | \$1.89 | Stove | No | \$1.69 | \$1.89 | \$0.00 | \$1.49 | \$1.99 | 12 |
| | | 51 | 136 | Regional | \$0.00 | Stove | No | \$1.69 | \$1.89 | \$0.00 | \$1.49 | \$1.99 | 02 |
| | | 51 | 136 | Private | \$1.49 | Stove | No | \$1.69 | \$1.89 | \$0.00 | \$1.49 | \$1.99 | 12 |
| | | 51 | 136 | National | \$1.99 | Stove | No | \$1.69 | \$1.89 | \$0.00 | \$1.49 | \$1.99 | 12 |
| | | 51 | 136 | None | \$0.00 | Stove | No | \$1.69 | \$1.89 | \$0.00 | \$1.49 | \$1.99 | |
| 300 | 36 | 38 | 51 | Client | \$1.69 | Stove | No | \$1.69 | \$2.39 | \$1.99 | \$1.49 | \$0.00 | |
| | | 38 | 51 | Extension | \$2.39 | Stove | Talker | \$1.69 | \$2.39 | \$1.99 | \$1.49 | \$0.00 | 11 |
| | | 38 | 51 | Regional | \$1.99 | Stove | No | \$1.69 | \$2.39 | \$1.99 | \$1.49 | \$0.00 | 12 |
| | | 38 | 51 | Private | \$1.49 | Micro | No | \$1.69 | \$2.39 | \$1.99 | \$1.49 | \$0.00 | 12 |
| | | 38 | 51 | National | \$0.00 | Stove | No | \$1.69 | \$2.39 | \$1.99 | \$1.49 | \$0.00 | 02 |
| | | 38 | 51 | None | \$0.00 | Stove | No | \$1.69 | \$2.39 | \$1.99 | \$1.49 | \$0.00 | 12 |

You can see that the demographic information matches the raw data and is constant within each subject. The rest of the data processing is virtually the same as well. Since we have demographic information, we will not aggregate. There would have to be ties in both the demographics and choice for aggregation to have any effect.

We use PROC TRANSREG to code, adding Age and Income to the analysis.

```
proc transreg data=res2 design=5000 nozeroconstant norestoremissing;
    model class(brand / zero='None')
        identity(age income) * class(brand / zero='None' separators=', ', ')
        class(brand / zero='None' separators=', ',') * identity(price)
        class(shelf micro / lprefix=5 0 zero='No' 'Stove')
        identity(x1 x2 x5 x6 x8) *
            class(brand / zero='None' separators=' ' ' on ') /
            lprefix=0 order=data;
    output out=code(drop=_type_ _name_ intercept);
    id subj set c w;
    label x1 = 'CE, Client'
            x2 = 'CE, Extension'
            x5 = 'CE, Regional'
            x6 = 'CE, Private'
            x8 = 'CE, National'
            shelf = 'Shelf Talker'
            micro = 'Microwave';
    run;
data coded(drop=w); set code; where w; run; /* exclude unavailable */
```

The Age and Income variables are incorporated into the analysis by interacting them with Brand. Demographic variables must be interacted with attributes to have any effect. If identity (age income) had been specified instead of identity (age income) * class (brand / ...) the coefficients for age and income would be zero. This is because age and income are constant within each choice set and subject combination, which means they are constant within each stratum. The second separator ', ' is used to create names for the brand/demographic interaction terms like 'Age, Client'.

These next steps print the first coded choice set.

```
proc print data=coded(obs=5) label;
    id brand price;
    var BrandClient -- BrandPrivate Shelf Micro c;
    run;
proc print data=coded(obs=5 drop=Age) label;
    id brand price;
    var Age:;
    run;
proc print data=coded(obs=5 drop=Income) label;
    id brand price;
    var Income:;
    run;
```

```
proc print data=coded(obs=5) label;
    id brand price;
    var BrandClientPrice -- BrandPrivatePrice;
    format BrandClientPrice -- BrandPrivatePrice best4.;
    run;
proc print data=coded(obs=5 drop=x1) label;
    id brand price; var x1:; format x1: best4.;
    run;
proc print data=coded(obs=5 drop=x2) label;
    id brand price; var x2:; format x2: best4.;
    run;
proc print data=coded(obs=5 drop=x5) label;
    id brand price; var x5:; format x5: best4.;
    run;
proc print data=coded(obs=5 drop=x6) label;
    id brand price; var x6:; format x6: best4.;
    run;
proc print data=coded(obs=5 drop=x8) label;
    id brand price; var x8:; format x8: best4.;
    run;
```

Here is the coded data set for the first subject and choice set. The part that is new is the second and third panel, which will be used to capture the brand by age and brand by income effects.

Here are the attributes and the brand effects.

| Brand | Price | Client | Consumer Food Product Example | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | Extension | Regional | Private | Shelf
 Talker | Microwave | c |
| Extension | \$1.89 | 0 | 1 | 0 | 0 | No | Stove | 2 |
| Regional | \$1.99 | 0 | 0 | 1 | 0 | No | Stove | 2 |
| Private | \$2.29 | 0 | 0 | 0 | 1 | No | Micro | 1 |
| National | \$1.99 | 0 | 0 | 0 | 0 | No | Stove | 2 |
| None | \$0.00 | 0 | 0 | 0 | 0 | No | Stove | 2 |

Here are the age by brand effects.

| | | Consumer Food Product Example |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |

Here are the income by brand effects.

\left.| | Consumer Food Product Example | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |$\right)$

Here are the alternative-specific price effects.

| Brand | Consumer Food Product Example | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Price | Client
 Price | Extension Price | Regional Price | Private Price |
| Extension | \$1.89 | 0 | 1.89 | 0 | 0 |
| Regional | \$1.99 | 0 | 0 | 1.99 | 0 |
| Private | \$2.29 | 0 | 0 | 0 | 2.29 |
| National | \$1.99 | 0 | 0 | 0 | 0 |
| None | \$0.00 | 0 | 0 | 0 | 0 |

Here are the client cross effects.

| Brand | Price | Consum
 CE, Client on Client | er Food Prod | ct Example | CE, Client on Private | CE, Client
 on
 National |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | CE, Client
 on
 Extension | CE, Client
 on Regional | | |
| Extension | \$1.89 | 0 | 0 | 0 | 0 | 0 |
| Regional | \$1.99 | 0 | 0 | 0 | 0 | 0 |
| Private | \$2.29 | 0 | 0 | 0 | 0 | 0 |
| National | \$1.99 | 0 | 0 | 0 | 0 | 0 |
| None | \$0.00 | 0 | 0 | 0 | 0 | 0 |

Here are the extension cross effects.

| Brand | Price | Consumer Food Product Example | | | CE,
 Extension on Private | CE,
 Extension on National |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | CE,
 Extension on Client | ```CE, Extension on Extension``` | CE,
 Extension on Regional | | |
| Extension | \$1.89 | 0 | 1.89 | 0 | 0 | 0 |
| Regional | \$1.99 | 0 | 0 | 1.89 | 0 | 0 |
| Private | \$2.29 | 0 | 0 | 0 | 1.89 | 0 |
| National | \$1.99 | 0 | 0 | 0 | 0 | 1.89 |
| None | \$0.00 | 0 | 0 | 0 | 0 | 0 |

Here are the regional competitor cross effects.

| Brand | Price | Consumer Food Product Example | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | CE, Regional on Client | ```CE, Regional on Extension``` | CE,
 Regional
 on
 Regional | CE, Regional on Private | ```CE, Regional on National``` |
| Extension | \$1.89 | 0 | 1.99 | 0 | 0 | 0 |
| Regional | \$1.99 | 0 | 0 | 1.99 | 0 | 0 |
| Private | \$2.29 | 0 | 0 | 0 | 1.99 | 0 |
| National | \$1.99 | 0 | 0 | 0 | 0 | 1.99 |
| None | \$0.00 | 0 | 0 | 0 | 0 | 0 |

Here are the private label cross effects.

| Brand | Price | Consumer Food Product Example | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | CE, Private on Client | CE,
 Private on Extension | CE, Private on Regional | CE, Private on Private | CE, Private on National |
| Extension | \$1.89 | 0 | 2.29 | 0 | 0 | 0 |
| Regional | \$1.99 | 0 | 0 | 2.29 | 0 | 0 |
| Private | \$2.29 | 0 | 0 | 0 | 2.29 | 0 |
| National | \$1.99 | 0 | 0 | 0 | 0 | 2.29 |
| None | \$0.00 | 0 | 0 | 0 | 0 | 0 |

Here are the national competitor cross effects.

| Brand | Price | Consumer Food Product Example | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | CE,
 National
 on Client | $\begin{gathered} \text { CE, } \\ \text { National } \\ \text { on } \\ \text { Extension } \end{gathered}$ | $\begin{aligned} & \text { CE, } \\ & \text { National } \\ & \text { on } \\ & \text { Regional } \end{aligned}$ | CE, National on Private | $\begin{aligned} & \text { CE, } \\ & \text { National } \\ & \text { on } \\ & \text { National } \end{aligned}$ |
| Extension | \$1.89 | 0 | 1.99 | 0 | 0 | 0 |
| Regional | \$1.99 | 0 | 0 | 1.99 | 0 | 0 |
| Private | \$2.29 | 0 | 0 | 0 | 1.99 | 0 |
| National | \$1.99 | 0 | 0 | 0 | 0 | 1.99 |
| None | \$0.00 | 0 | 0 | 0 | 0 | 0 |

The PROC PHREG specification is the same as we have used before with nonaggregated data.
proc phreg data=coded brief;
model c*c(2) = \&_trgind / ties=breslow;
strata subj set;
run;
This step took just about one minute and produced the following results.

Multinomial Logit Parameter Estimates

| | DF | Parameter
 Estimate | Standard Error | Chi-Square | Pr > ChiSq |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Client | 1 | 3.47166 | 0.59909 | 33.5805 | $<.0001$ |
| Extension | 1 | 4.98005 | 0.63031 | 62.4251 | $<.0001$ |
| Regional | 1 | -0.68856 | 1.64851 | 0.1745 | 0.6762 |
| Private | 1 | 1.25265 | 0.64553 | 3.7655 | 0.0523 |
| National | 1 | 2.62920 | 0.89165 | 8.6947 | 0.0032 |
| Age, Client | 1 | 0.00833 | 0.01304 | 0.4086 | 0.5227 |
| Age, Extension | 1 | 0.00128 | 0.01333 | 0.0092 | 0.9237 |
| Age, Regional | 1 | 0.01362 | 0.01690 | 0.6495 | 0.4203 |
| Age, Private | 1 | 0.00318 | 0.01298 | 0.0601 | 0.8063 |
| Age, National | 1 | 0.02564 | 0.01366 | 3.5224 | 0.0605 |
| Income, Client | 1 | -0.0003997 | 0.00518 | 0.0060 | 0.9385 |
| Income, Extension | 1 | 0.00150 | 0.00530 | 0.0797 | 0.7777 |
| Income, Regional | 1 | 0.0000957 | 0.00672 | 0.0002 | 0.9886 |
| Income, Private | 1 | -0.00112 | 0.00515 | 0.0472 | 0.8281 |
| Income, National | 1 | -0.00723 | 0.00545 | 1.7623 | 0.1843 |
| Client Price | 1 | -0.30497 | 0.20503 | 2.2124 | 0.1369 |
| Extension Price | 1 | 0.23198 | 0.28780 | 0.6497 | 0.4202 |
| Regional Price | 1 | -0.17593 | 0.59465 | 0.0875 | 0.7673 |
| Private Price | 1 | 0.02219 | 0.28887 | 0.0059 | 0.9388 |
| National Price | 1 | -1.38361 | 0.34604 | 15.9877 | <. 0001 |
| Shelf Talker | 1 | 0.71563 | 0.06911 | 107.2177 | <. 0001 |
| Micro | 1 | 0.76531 | 0.06152 | 154.7423 | <. 0001 |
| CE, Client on Client | 0 | 0 | | | |
| CE, Client on Extension | 1 | 0.46507 | 0.18224 | 6.5123 | 0.0107 |
| CE, Client on Regional | 1 | 0.46621 | 0.22160 | 4.4260 | 0.0354 |
| CE, Client on Private | 1 | 0.37948 | 0.16846 | 5.0744 | 0.0243 |
| CE, Client on National | 1 | 0.36584 | 0.18002 | 4.1300 | 0.0421 |
| CE, Extension on Client | 1 | 1.18750 | 0.27558 | 18.5687 | <. 0001 |
| CE, Extension on Extension | 0 | 0 | | . | |
| CE, Extension on Regional | 1 | 0.67797 | 0.32030 | 4.4803 | 0.0343 |
| CE, Extension on Private | 1 | 0.95072 | 0.27892 | 11.6182 | 0.0007 |
| CE, Extension on National | 1 | 1.05294 | 0.28142 | 13.9988 | 0.0002 |
| CE, Regional on Client | 1 | 0.08818 | 0.12882 | 0.4685 | 0.4937 |
| CE, Regional on Extension | 1 | 0.15624 | 0.13018 | 1.4404 | 0.2301 |
| CE, Regional on Regional | 0 | 0 | | . | . |
| CE, Regional on Private | 1 | 0.06658 | 0.12215 | 0.2971 | 0.5857 |
| CE, Regional on National | 1 | 0.10271 | 0.13723 | 0.5602 | 0.4542 |
| CE, Private on Client | 1 | 0.45631 | 0.24549 | 3.4550 | 0.0631 |
| CE, Private on Extension | 1 | 0.42821 | 0.24707 | 3.0039 | 0.0831 |
| CE, Private on Regional | 1 | 0.44903 | 0.29180 | 2.3680 | 0.1238 |
| CE, Private on Private | 0 | 0 | | . | - |
| CE, Private on National | 1 | 0.55255 | 0.26330 | 4.4039 | 0.0359 |

| CE, National on Client | 1 | -0.20108 | 0.17594 | 1.3062 | 0.2531 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| CE, National on Extension | 1 | -0.14686 | 0.18001 | 0.6656 | 0.4146 |
| CE, National on Regional | 1 | -0.27254 | 0.22645 | 1.4485 | 0.2288 |
| CE, National on Private | 1 | -0.15075 | 0.17688 | 0.7264 | 0.3941 |
| CE, National on National | 0 | 0 | . | . | . |

In previous examples, when we used the brief option to produce a brief summary of the strata, the table had only one line. In this case, since our choice sets have 3 , 4 , or 5 alternatives, we have three rows, one for each choice set size. The coefficients for the age and income variables are generally not very significant in this analysis.

Allocation of Prescription Drugs

This example discusses an allocation study, which is a technique often used in the area of prescription drug marketing research. This example discusses designing the allocation experiment, processing the data, analyzing frequencies, analyzing proportions, coding, analysis, and results. The principles of designing an allocation study are the same as for designing a first-choice experiment, as is the coding and final analysis. However, processing the data before analysis is different.

The previous examples have all modeled simple choice. However, sometimes the response of interest is not simple first choice. For example, in prescription drug marketing, researchers often use allocation studies where multiple, not single choices are made. Physicians are asked questions like "For the next ten prescriptions you write for a particular condition, how many would you write for each of these drugs?" The response, for example, could be " 5 for drug 1 , none for drug 2,3 for drug 3 , and 2 for drug 4."

Designing the Allocation Experiment

In this study, physicians were asked to specify which of ten drugs they would prescribe to their next ten patients. In this study, ten drugs, Drug 1 - Drug 10, were available each at three different prices, $\$ 50, \$ 75$, and $\$ 100$. In real studies, real brand names would be used and there would probably be more attributes. Since experimental design has been covered in some detail in other examples, we chose a simple design for this experiment so that we could concentrate on data processing. First, we use the \%MktRuns autocall macro to suggest a design size. (All of the autocall macros used in this book are documented starting on page 479.) We specify $3 * * 10$ for the 10 three-level factors.

```
title 'Allocation of Prescription Drugs';
%mktruns( 3 ** 10 )
```

```
Allocation of Prescription Drugs
    Design Summary
    Number of
    Levels Frequency

Allocation of Prescription Drugs
\begin{tabular}{lll} 
Saturated & \(=21\) \\
Full Factorial & \(=59,049\) & \\
\begin{tabular}{rl} 
Some Reasonable \\
Design Sizes
\end{tabular}\(\quad\) Violations & \begin{tabular}{l} 
Cannot Be \\
Divided By
\end{tabular}
\end{tabular}
\begin{tabular}{lrl}
\(27 *\) & 0 & \\
\(36 *\) & 0 & \\
\(45 *\) & 0 & \\
\(54 *\) & 0 & \\
21 & 45 & 9 \\
24 & 45 & 9 \\
30 & 45 & 9 \\
33 & 45 & 9 \\
39 & 45 & 9 \\
42 & 45 & 9
\end{tabular}
* - \(100 \%\) Efficient Design can be made with the MktEx Macro.

Allocation of Prescription Drugs
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline n & \multicolumn{7}{|l|}{Design} & & Reference \\
\hline 27 & & 3 & ** & 13 & & & & & Fractional-Factorial \\
\hline 36 & 2 ** 11 & 3 & ** & 12 & & & & & Orthogonal Array \\
\hline 36 & 2 ** 4 & 3 & ** & 13 & & & & & Orthogonal Array \\
\hline 36 & 2 ** 2 & 3 & ** & 126 & ** & 1 & & & Orthogonal Array \\
\hline 36 & & 3 & ** & 134 & ** & 1 & & & Orthogonal Array \\
\hline 36 & & 3 & ** & 1212 & ** & 1 & & & Orthogonal Array \\
\hline 45 & & 3 & ** & 105 & ** & 1 & & & Orthogonal Array \\
\hline 54 & 2 ** 1 & 3 & ** & 25 & & & & & Orthogonal Array \\
\hline 54 & 2 ** 1 & 3 & ** & 219 & ** & 1 & & & Orthogonal Array \\
\hline 54 & & 3 & ** & 246 & ** & 1 & & & Orthogonal Array \\
\hline 54 & & 3 & ** & 206 & ** & 1 & \(9 * *\) & 1 & Orthogonal Array \\
\hline 54 & & 3 & ** & 1818 & ** & 1 & & & Orthogonal Array \\
\hline
\end{tabular}

We need at least 21 choice sets and we see the optimal sizes are all divisible by nine. We will use 27 choice sets, which can give us up to 13 three-level factors.

Next, we use the \%MktEx macro to create the design. In addition, one more factor is added to the design. This factor will be used to block the design into three blocks of size 9 .
```

%let nalts = 10;
%mktex(3 ** \&nalts 3, n=27, seed=396)

```

The macro finds a \(100 \% D\)-efficient design.


The \(\%\) MktEx macro always creates factor names of \(\mathrm{x} 1, \mathrm{x} 2\), and so on with values of \(1,2, \ldots\) You can create a data set with the names and values you want and use it to rename the factors and reset the levels. This first step creates a data set with 11 variables, Block and Brand1 - Brand10. Block has values 1,2 , and 3 , and the brand variables have values of 50,75 , and 100 with a dollar format. The \%MktLab macro takes the data=Randomized design data set and uses the names, values, and formats
in the key=Key data set to make the out=Final data set. This data set is sorted by block and printed. The \%MktEval macro is called to check the results.
```

data key(drop=i);
input Block Brand1;
array Brand[10];
do i = 2 to 10; brand[i] = brand1; end;
format brand: dollar4.;
datalines;
1 50
2 75
3100
;
proc print; run;
%mktlab(key=key);
proc sort out=sasuser.allocdes; by block; run;
proc print; id block; by block; run;
%mkteval(blocks=block)

```

Here is the key= data set.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{Allocation of Prescription Drugs} \\
\hline \multicolumn{12}{|l|}{Obs Block Brand1 Brand2 Brand3 Brand4 Brand5 Brand6 Brand7 Brand8 Brand9 Brand10} \\
\hline 1 & 1 & \$50 & \$50 & \$50 & \$50 & \$50 & \$50 & \$50 & \$50 & \$50 & \$50 \\
\hline 2 & 2 & \$75 & \$75 & \$75 & \$75 & \$75 & \$75 & \$75 & \$75 & \$75 & \$75 \\
\hline 3 & 3 & \$100 & \$100 & \$100 & \$100 & \$100 & \$100 & \$100 & \$100 & \$100 & \$100 \\
\hline
\end{tabular}

The \%MktLab macro prints the following mapping information.
```

Variable Mapping:
x1 : Block
x2 : Brand1
x3 : Brand2
x4 : Brand3
x5 : Brand4
x6 : Brand5
x7 : Brand6
x8 : Brand7
x9 : Brand8
x10 : Brand9
x11 : Brand10

```

Here is the design.

Allocation of Prescription Drugs

Block Brand1 Brand2 Brand3 Brand4 Brand5 Brand6 Brand7 Brand8 Brand9 Brand10
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & \$50 & \$75 & \$50 & \$75 & \$100 & \$100 & \$100 & \$100 & \$50 & \$100 \\
\hline & \$100 & \$50 & \$100 & \$75 & \$75 & \$75 & \$100 & \$50 & \$100 & \$75 \\
\hline & \$50 & \$50 & \$75 & \$100 & \$50 & \$75 & \$50 & \$75 & \$50 & \$75 \\
\hline & \$75 & \$50 & \$50 & \$50 & \$100 & \$75 & \$75 & \$100 & \$75 & \$75 \\
\hline & \$75 & \$75 & \$100 & \$100 & \$75 & \$100 & \$50 & \$50 & \$75 & \$100 \\
\hline & \$50 & \$100 & \$100 & \$50 & \$75 & \$50 & \$75 & \$50 & \$50 & \$50 \\
\hline & \$100 & \$75 & \$75 & \$50 & \$50 & \$100 & \$75 & \$75 & \$100 & \$100 \\
\hline & \$100 & \$100 & \$50 & \$100 & \$100 & \$50 & \$50 & \$100 & \$100 & \$50 \\
\hline & \$75 & \$100 & \$75 & \$75 & \$50 & \$50 & \$100 & \$75 & \$75 & \$50 \\
\hline 2 & \$100 & \$75 & \$50 & \$100 & \$75 & \$50 & \$100 & \$75 & \$75 & \$75 \\
\hline & \$100 & \$100 & \$100 & \$75 & \$50 & \$75 & \$75 & \$100 & \$75 & \$100 \\
\hline & \$50 & \$75 & \$100 & \$50 & \$50 & \$50 & \$50 & \$100 & \$100 & \$75 \\
\hline & \$75 & \$50 & \$100 & \$100 & \$50 & \$100 & \$100 & \$100 & \$50 & \$50 \\
\hline & \$50 & \$100 & \$75 & \$100 & \$100 & \$75 & \$100 & \$50 & \$100 & \$100 \\
\hline & \$100 & \$50 & \$75 & \$50 & \$100 & \$100 & \$50 & \$50 & \$75 & \$50 \\
\hline & \$50 & \$50 & \$50 & \$75 & \$75 & \$100 & \$75 & \$75 & \$100 & \$50 \\
\hline & \$75 & \$75 & \$75 & \$75 & \$100 & \$50 & \$75 & \$50 & \$50 & \$75 \\
\hline & \$75 & \$100 & \$50 & \$50 & \$75 & \$75 & \$50 & \$75 & \$50 & \$100 \\
\hline 3 & \$100 & \$75 & \$100 & \$75 & \$100 & \$75 & \$50 & \$75 & \$50 & \$50 \\
\hline & \$75 & \$75 & \$50 & \$50 & \$50 & \$75 & \$100 & \$50 & \$100 & \$50 \\
\hline & \$50 & \$75 & \$75 & \$100 & \$75 & \$75 & \$75 & \$100 & \$75 & \$50 \\
\hline & \$50 & \$100 & \$50 & \$75 & \$50 & \$100 & \$50 & \$50 & \$75 & \$75 \\
\hline & \$50 & \$50 & \$100 & \$50 & \$100 & \$50 & \$100 & \$75 & \$75 & \$100 \\
\hline & \$75 & \$50 & \$75 & \$75 & \$75 & \$50 & \$50 & \$100 & \$100 & \$100 \\
\hline & \$75 & \$100 & \$100 & \$100 & \$100 & \$100 & \$75 & \$75 & \$100 & \$75 \\
\hline & \$100 & \$50 & \$50 & \$100 & \$50 & \$50 & \$75 & \$50 & \$50 & \$100 \\
\hline & \$100 & \$100 & \$75 & \$50 & \$75 & \$100 & \$100 & \$100 & \$50 & \$7 \\
\hline
\end{tabular}

Here are some of the evaluation results.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{11}{|c|}{There are 0 Canonical Correlations Greater Than 0.316} \\
\hline & \multicolumn{11}{|l|}{Block Brand1 Brand2 Brand3 Brand4 Brand5 Brand6 Brand7 Brand8 Brand9 Brand10} \\
\hline Block & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Brand1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Brand2 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Brand3 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Brand4 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Brand5 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
\hline Brand6 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
\hline Brand7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\hline Brand8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
\hline Brand9 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
\hline Brand10 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline \multicolumn{12}{|c|}{\begin{tabular}{l}
Allocation of Prescription Drugs \\
Summary of Frequencies
\end{tabular}} \\
\hline & & er & - & noni & Cor & tio & rea & Tha & & & \\
\hline
\end{tabular}

Frequencies
\begin{tabular}{llll} 
Block & 999 \\
Brand1 & 9999 \\
Brand2 & 999 & 9 \\
Brand3 & 999 & 9 \\
Brand4 & 9999 \\
Brand5 & 999 & 9 \\
Brand6 & 999 & 9 \\
Brand7 & 9999 \\
Brand8 & 999 & 9 \\
Brand9 & 999 \\
Brand10 & 9999
\end{tabular}


\section*{Processing the Data}

Questionnaires are generated and data collected using a minor modification of the methods discussed in earlier examples. The difference is instead of asking for first choice data, allocation data are collected instead. Each row of the input data set contains a block, subject, and set number, followed by the number of times each of the ten alternatives was chosen. If all of the choice frequencies are zero, then the constant alternative was chosen. The if statement is used to check data entry. For convenience, choice set number is recoded to run from 1 to 27 instead of consisting of three blocks of nine sets. This gives us one fewer variable on which to stratify.
```

data results;
input Block Subject Set @9 (freq1-freq\&nalts) (2.);
if not (sum(of freq:) in (0, \&nalts)) then put _all_;
set = (block - 1) * 9 + set;
datalines;
1}111100008002000000
11420}00800002000
1}1130000000000010
1}14441000143 3 0 0 2 0,
1}105120080000000000
1}1060013 1 1 0 0 0 0 1 4 4
1}10710013141220012
1}1018000130002210004
1}11900255000000030
2
2 2 2 1 0 3 1 0 11 1 0 2 1

```

In the first step, in creating an analysis data set for an allocation study, we reformat the data from one row per choice set per block per subject ( \(9 \times 3 \times 100=2700\) observations) to one per alternative (including the constant) per choice set per block per subject ( \((10+1) \times 9 \times 3 \times 100=29700\) observations). For each choice set, 11 observations are written storing the choice frequency in the variable Count and the brand in the variable Brand. If no alternative is chosen, then the constant alternative is chosen ten times, otherwise it is chosen zero times.
```

data allocs(keep=block set brand count);
set results;
array freq[\&nalts];
* Handle the \&nalts alternatives;
do b = 1 to \&nalts;
Brand = 'Brand ' || put(b, 2.);
Count = freq[b];
output;
end;
* Constant alt choice is implied if nothing else is chosen.
brand = , , is used to flag the constant alternative.;
brand = , ';
count = 10 * (sum(of freq:) = 0);
output;
run;
proc print data=results(obs=3) label noobs; run;
proc print data=allocs(obs=33); id block set; by block set; run;

```

The PROC PRINT steps show how the first three observations of the RESULTS data set are transposed into the first 33 observations of the ALLOCS data set.

\section*{Allocation of Prescription Drugs}

Block Subject Set Freq1 Freq2 Freq3 Freq4 Freq5 Freq6 Freq7 Freq8 Freq9 Freq10
\begin{tabular}{rrrrrrrrrrrrr}
1 & 1 & 1 & 0 & 0 & 8 & 0 & 2 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 & 0 & 8 & 0 & 0 & 0 & 2 & 0 & 0 & 0 \\
1 & 1 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 10 & 0
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Block & Set & Brand & Count \\
\hline \multirow[t]{11}{*}{1} & \multirow[t]{11}{*}{1} & Brand 1 & 0 \\
\hline & & Brand 2 & 0 \\
\hline & & Brand 3 & 8 \\
\hline & & Brand 4 & 0 \\
\hline & & Brand 5 & 2 \\
\hline & & Brand 6 & 0 \\
\hline & & Brand 7 & 0 \\
\hline & & Brand 8 & 0 \\
\hline & & Brand 9 & 0 \\
\hline & & Brand 10 & 0 \\
\hline & & & 0 \\
\hline \multirow[t]{11}{*}{1} & \multirow[t]{11}{*}{2} & Brand 1 & 0 \\
\hline & & Brand 2 & 0 \\
\hline & & Brand 3 & 8 \\
\hline & & Brand 4 & 0 \\
\hline & & Brand 5 & 0 \\
\hline & & Brand 6 & 0 \\
\hline & & Brand 7 & 2 \\
\hline & & Brand 8 & 0 \\
\hline & & Brand 9 & 0 \\
\hline & & Brand 10 & 0 \\
\hline & & & 0 \\
\hline \multirow[t]{11}{*}{1} & \multirow[t]{11}{*}{3} & Brand 1 & 0 \\
\hline & & Brand 2 & 0 \\
\hline & & Brand 3 & 0 \\
\hline & & Brand 4 & 0 \\
\hline & & Brand 5 & 0 \\
\hline & & Brand 6 & 0 \\
\hline & & Brand 7 & 0 \\
\hline & & Brand 8 & 0 \\
\hline & & Brand 9 & 10 \\
\hline & & Brand 10 & 0 \\
\hline & & & 0 \\
\hline
\end{tabular}

The next step aggregates the data. It stores in the variable Count the number of times each alternative of each choice set was chosen. This creates a data set with 297 observations ( 3 blocks \(\times 9\) sets \(\times 11\) alternatives \(=297\) ).
* Aggregate, store the results back in count.;
proc summary data=allocs nway missing;
class set brand;
output sum(count)=Count out=allocs(drop=_type_ _freq_);
run;
These next steps prepare the design for analysis. We need to create a data set KEY that describes how the factors in our design will be used for analysis. It will contain all of the factor names, Brand1, Brand2, ..., Brand10. We can run the \%MktKey macro to get these names in the SAS log for cutting and pasting into the program without typing them.
\%mktkey (Brand1-Brand10)
The \%MktKey macro produced the following line.
Brand1 Brand2 Brand3 Brand4 Brand5 Brand6 Brand7 Brand8 Brand9 Brand10
The next step rolls out the experimental design data set to match the choice allocations data set. The data set is transposed from one row per choice set to one row per alternative per choice set. This data set also has 297 observations. As we saw in many previous examples, the \%MktRoll macro can be used to process the design.
```

data key(keep=Brand Price);
input Brand \$ 1-8 Price \$;
datalines;
Brand 1 Brand1
Brand 2 Brand2
Brand 3 Brand3
Brand 4 Brand4
Brand 5 Brand5
Brand 6 Brand6
Brand 7 Brand7
Brand 8 Brand8
Brand 9 Brand9
Brand 10 Brand10
. .
;
%mktroll(design=sasuser.allocdes, key=key, alt=brand, out=rolled)
proc print data=rolled(obs=11); format price dollar4.; run;

```
\begin{tabular}{rrrrr} 
Allocation of & \multicolumn{3}{l}{ Prescription Drugs } \\
Obs & Set & Brand & Price \\
& & & \\
1 & 1 & Brand & 1 & \(\$ 50\) \\
2 & 1 & Brand & 2 & \(\$ 75\) \\
3 & 1 & Brand & 3 & \(\$ 50\) \\
4 & 1 & Brand & 4 & \(\$ 75\) \\
5 & 1 & Brand & 5 & \(\$ 100\) \\
6 & 1 & Brand & 6 & \(\$ 100\) \\
7 & 1 & Brand & 7 & \(\$ 100\) \\
8 & 1 & Brand & 8 & \(\$ 100\) \\
9 & 1 & Brand & 9 & \(\$ 50\) \\
10 & 1 & Brand 10 & \(\$ 100\) \\
11 & 1 & & &.
\end{tabular}

Both data sets must be sorted the same way before they can be merged. The constant alternative, indicated by a missing brand, is last in the design choice set and hence is out of order. Missing must come before nonmissing for the merge. The order is correct in the ALLOCS data set since it was created by PROC SUMMARY with Brand as a class variable.
```

proc sort data=rolled; by set brand; run;

```

The data are merged along with error checking to ensure that the merge proceeded properly. Both data sets should have the same observations and Set and Brand variables, so the merge should be one to one.
```

data allocs2;
merge allocs(in=flag1) rolled(in=flag2);
by set brand;
if flag1 ne flag2 then put 'ERROR: Merge is not 1 to 1.';
format price dollar4.;
run;
proc print data=allocs2(obs=22);
var brand price count;
sum count;
by notsorted set;
id set;
run;

```

In the aggregate and combined data set, we see how often each alternative was chosen for each choice set. For example, in the first choice set, the constant alternative was chosen zero times, Brand 1 at \(\$ 100\) was chosen 103 times, and so on. The 11 alternatives were chosen a total of 1000 times, 100 subjects times 10 choices each.
\begin{tabular}{|c|c|c|c|c|}
\hline Set & Brand & & Price & Count \\
\hline \multirow[t]{11}{*}{1} & & & . & 0 \\
\hline & Brand & 1 & \$50 & 103 \\
\hline & Brand & 2 & \$75 & 58 \\
\hline & Brand & 3 & \$50 & 318 \\
\hline & Brand & 4 & \$75 & 99 \\
\hline & Brand & 5 & \$100 & 54 \\
\hline & Brand & 6 & \$100 & 83 \\
\hline & Brand & 7 & \$100 & 71 \\
\hline & Brand & 8 & \$100 & 58 \\
\hline & Brand & 9 & \$50 & 100 \\
\hline & Brand & 10 & \$100 & 56 \\
\hline 1 & & & & 1000 \\
\hline \multirow[t]{11}{*}{2} & & & & 10 \\
\hline & Brand & 1 & \$100 & 73 \\
\hline & Brand & 2 & \$50 & 76 \\
\hline & Brand & 3 & \$100 & 342 \\
\hline & Brand & 4 & \$75 & 55 \\
\hline & Brand & 5 & \$75 & 50 \\
\hline & Brand & 6 & \$75 & 77 \\
\hline & Brand & 7 & \$100 & 95 \\
\hline & Brand & 8 & \$50 & 71 \\
\hline & Brand & 9 & \$100 & 72 \\
\hline & Brand & & \$75 & 79 \\
\hline 2 & & & & 1000 \\
\hline
\end{tabular}

At this point, the data set contains 297 observations ( 27 choice sets times 11 alternatives) showing the number of times each alternative was chosen. This data set must be augmented to also include the number of times each alternative was not chosen. For example, in the first choice set, brand 1 was chosen 103 times, which means it was not chosen \(0+58+318+99+54+83+71+58+100+56=897\) times. We use a macro, \(\% \mathrm{MktAllo}\) for "marketing allocation study" to process the data. We specify the input data=allocs2 data set, the output out=allocs3 data set, the number of alternatives including the constant (nalts=\%eval (\&nalts + 1)), the variables in the data set except the frequency variable (vars=set brand price), and the frequency variable (freq=Count). The macro counts how many times each alternative was chosen and not chosen and writes the results to the out= data set along with the usual \(\mathrm{c}=1\) for chosen and \(\mathrm{c}=2\) for unchosen.
```

%mktallo(data=allocs2, out=allocs3, nalts=%eval(\&nalts + 1),
vars=set brand price, freq=Count)
proc print data=allocs3(obs=22);
var set brand price count c;
run;

```

The first 22 records of the allocation data set are shown next.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Obs} & \multicolumn{6}{|l|}{Allocation of Prescription Drugs} \\
\hline & Set & Brand & & Price & Count & c \\
\hline 1 & 1 & & & . & 0 & 1 \\
\hline 2 & 1 & & & . & 1000 & 2 \\
\hline 3 & 1 & Brand & 1 & \$50 & 103 & 1 \\
\hline 4 & 1 & Brand & 1 & \$50 & 897 & 2 \\
\hline 5 & 1 & Brand & 2 & \$75 & 58 & 1 \\
\hline 6 & 1 & Brand & 2 & \$75 & 942 & 2 \\
\hline 7 & 1 & Brand & 3 & \$50 & 318 & 1 \\
\hline 8 & 1 & Brand & 3 & \$50 & 682 & 2 \\
\hline 9 & 1 & Brand & 4 & \$75 & 99 & 1 \\
\hline 10 & 1 & Brand & 4 & \$75 & 901 & 2 \\
\hline 11 & 1 & Brand & 5 & \$100 & 54 & 1 \\
\hline 12 & 1 & Brand & 5 & \$100 & 946 & 2 \\
\hline 13 & 1 & Brand & 6 & \$100 & 83 & 1 \\
\hline 14 & 1 & Brand & 6 & \$100 & 917 & 2 \\
\hline 15 & 1 & Brand & 7 & \$100 & 71 & 1 \\
\hline 16 & 1 & Brand & 7 & \$100 & 929 & 2 \\
\hline 17 & 1 & Brand & 8 & \$100 & 58 & 1 \\
\hline 18 & 1 & Brand & 8 & \$100 & 942 & 2 \\
\hline 19 & 1 & Brand & 9 & \$50 & 100 & 1 \\
\hline 20 & 1 & Brand & 9 & \$50 & 900 & 2 \\
\hline 21 & 1 & Brand 10 & & \$100 & 56 & 1 \\
\hline 22 & 1 & Brand 10 & 10 & \$100 & 944 & 2 \\
\hline
\end{tabular}

In the first choice set, the constant alternative is chosen zero times and not chosen 1000 times, Brand 1 is chosen 103 times and not chosen \(1000-103=897\) times, Brand 2 is chosen 58 times and not chosen \(1000-58=942\) times, and so on. Note that allocation studies do not always have fixed sums, so it is important to use the \%MktAllo macro or some other approach that actually counts the number of times each alternative was not chosen. It is not always sufficient to simply subtract from a fixed constant (in this case 1000).

\section*{Coding and Analysis}

The next step codes the design for analysis. Indicator variables are created for Brand and Price. All of the PROC TRANSREG options have been discussed in other examples.
```

proc transreg design data=allocs3 nozeroconstant norestoremissing;
model class(brand price / zero=none) / lprefix=0;
output out=coded(drop=_type_ _name_ intercept);
id set c count;
run;

```

Analysis proceeds like it has in all other examples. We stratify by choice set number. We do not need to stratify by Block since choice set number does not repeat within block.
```

proc phreg data=coded;
where count > 0;
model c*c(2) = \&_trgind / ties=breslow;
freq count;
strata set;
run;

```

We used the where statement to exclude observations with zero frequency; otherwise PROC PHREG complains about them.

\section*{Multinomial Logit Model Results}

Here are the results. Recall that we used \%phchoice(on) on page 95 to customize the output from PROC PHREG.

\section*{Allocation of Prescription Drugs}

The PHREG Procedure

Model Information
\begin{tabular}{ll} 
Data Set & WORK.CODED \\
Dependent Variable & \(c\) \\
Censoring Variable & \(c\) \\
Censoring Value(s) & 2 \\
Frequency Variable & Count \\
Ties Handling & BRESLOW
\end{tabular}
\begin{tabular}{lr} 
Number of Observations Read & 583 \\
Number of Observations Used & 583 \\
Sum of Frequencies Read & 297000 \\
Sum of Frequencies Used & 297000
\end{tabular}

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives
\begin{tabular}{|c|c|c|c|c|}
\hline Stratum & Set & Number of Alternatives & Chosen Alternatives & \begin{tabular}{l}
Not \\
Chosen
\end{tabular} \\
\hline 1 & 1 & 11000 & 1000 & 10000 \\
\hline 2 & 2 & 11000 & 1000 & 10000 \\
\hline 3 & 3 & 11000 & 1000 & 10000 \\
\hline 4 & 4 & 11000 & 1000 & 10000 \\
\hline 5 & 5 & 11000 & 1000 & 10000 \\
\hline 6 & 6 & 11000 & 1000 & 10000 \\
\hline 7 & 7 & 11000 & 1000 & 10000 \\
\hline 8 & 8 & 11000 & 1000 & 10000 \\
\hline 9 & 9 & 11000 & 1000 & 10000 \\
\hline 10 & 10 & 11000 & 1000 & 10000 \\
\hline 11 & 11 & 11000 & 1000 & 10000 \\
\hline 12 & 12 & 11000 & 1000 & 10000 \\
\hline 13 & 13 & 11000 & 1000 & 10000 \\
\hline 14 & 14 & 11000 & 1000 & 10000 \\
\hline 15 & 15 & 11000 & 1000 & 10000 \\
\hline 16 & 16 & 11000 & 1000 & 10000 \\
\hline 17 & 17 & 11000 & 1000 & 10000 \\
\hline 18 & 18 & 11000 & 1000 & 10000 \\
\hline 19 & 19 & 11000 & 1000 & 10000 \\
\hline 20 & 20 & 11000 & 1000 & 10000 \\
\hline 21 & 21 & 11000 & 1000 & 10000 \\
\hline 22 & 22 & 11000 & 1000 & 10000 \\
\hline 23 & 23 & 11000 & 1000 & 10000 \\
\hline 24 & 24 & 11000 & 1000 & 10000 \\
\hline 25 & 25 & 11000 & 1000 & 10000 \\
\hline 26 & 26 & 11000 & 1000 & 10000 \\
\hline 27 & 27 & 11000 & 1000 & 10000 \\
\hline Total & & 297000 & 27000 & 270000 \\
\hline
\end{tabular}
Convergence criterion (GCONV=1E-8) satisfie
Model Fit Statistics
Without


The output shows that there are 27 strata, one per choice set, each consisting of 1000 chosen alternatives ( 10 choices by 100 subjects) and 10,000 unchosen alternatives. All of the brand coefficients are "significant," with the Brand 3 effect being by far the strongest. (We will soon see that statistical significance should be ignored with allocation studies.) There is no price effect.

\section*{Analyzing Proportions}

Recall that we collected data by asking physicians to report which brands they would prescribe the next ten times they write prescriptions. Alternatively, we could ask them to report the proportion of time they would prescribe each brand. We can simulate having proportion data by dividing our count data by 10 . This means our frequency variable will no longer contain integers, so we need to specify the notruncate option on PROC PHREG freq statement to allow noninteger "frequencies."
```

data coded2;
set coded;
count = count / 10;
run;

```
```

proc phreg data=coded2;
where count > 0;
model c*c(2) = \&_trgind / ties=breslow;
freq count / notruncate;
strata set;
run;

```

When we do this, we see the number of alternatives and the number chosen and not chosen decrease by a factor of 10 as do all of the Chi-Square tests. The coefficients are unchanged. This implies that market share calculations are invariant to the different scalings of the frequencies. However, the \(p\) values are not invariant. The sample size is artificially inflated when counts are used so \(p\)-values are not interpretable in an allocation study. When proportions are used, each subject is contributing 1 to the number chosen instead of 10 , just like a normal choice study, so \(p\)-values have meaning.

\begin{tabular}{|c|c|c|c|c|}
\hline 11 & 11 & 1100.0 & 100.0 & 1000.0 \\
\hline 12 & 12 & 1100.0 & 100.0 & 1000.0 \\
\hline 13 & 13 & 1100.0 & 100.0 & 1000.0 \\
\hline 14 & 14 & 1100.0 & 100.0 & 1000.0 \\
\hline 15 & 15 & 1100.0 & 100.0 & 1000.0 \\
\hline 16 & 16 & 1100.0 & 100.0 & 1000.0 \\
\hline 17 & 17 & 1100.0 & 100.0 & 1000.0 \\
\hline 18 & 18 & 1100.0 & 100.0 & 1000.0 \\
\hline 19 & 19 & 1100.0 & 100.0 & 1000.0 \\
\hline 20 & 20 & 1100.0 & 100.0 & 1000.0 \\
\hline 21 & 21 & 1100.0 & 100.0 & 1000.0 \\
\hline 22 & 22 & 1100.0 & 100.0 & 1000.0 \\
\hline 23 & 23 & 1100.0 & 100.0 & 1000.0 \\
\hline 24 & 24 & 1100.0 & 100.0 & 1000.0 \\
\hline 25 & 25 & 1100.0 & 100.0 & 1000.0 \\
\hline 26 & 26 & 1100.0 & 100.0 & 1000.0 \\
\hline 27 & 27 & 1100.0 & 100.0 & 1000.0 \\
\hline Total & & 29700.0 & 2700.0 & 27000.0 \\
\hline \multicolumn{5}{|c|}{Convergence Status} \\
\hline
\end{tabular}

Model Fit Statistics
\begin{tabular}{lrr} 
Criterion & \begin{tabular}{r} 
Without \\
Covariates
\end{tabular} & \begin{tabular}{r} 
With \\
Covariates
\end{tabular} \\
-2 LOG L & 37816.553 & 36472.307 \\
AIC & 37816.553 & 36496.307 \\
SBC & 37816.553 & 36567.119
\end{tabular}

Testing Global Null Hypothesis: BETA=0
\begin{tabular}{lccr} 
Test & Chi-Square & DF & Pr \(>\) ChiSq \\
Likelihood Ratio & 1344.2468 & 12 & \(<.0001\) \\
Score & 1834.0841 & 12 & \(<.0001\) \\
Wald & 1408.7678 & 12 & \(<.0001\)
\end{tabular}

Multinomial Logit Parameter Estimates
\begin{tabular}{lrrrrrr} 
& & DF & \begin{tabular}{r} 
Parameter \\
Estimate
\end{tabular} & \begin{tabular}{c} 
Standard \\
Error
\end{tabular} & Chi-Square & Pr \\
& & 1 & 2.09906 & 0.21395 & 96.2530 & \(<.0001\) \\
Brand & 1 & 1 & 2.09118 & 0.21404 & 95.4511 & \(<.0001\) \\
Brand & 2 & 1 & 3.54204 & 0.20503 & 298.4470 & \(<.0001\) \\
Brand & 3 & 1 & 2.09710 & 0.21398 & 96.0528 & \(<.0001\) \\
Brand & 4 & 1 & 2.08523 & 0.21411 & 94.8479 & \(<.0001\) \\
Brand & 5 & 1 & 2.03530 & 0.21470 & 89.8622 & \(<.0001\) \\
Brand & 6 & 1 & 2.06920 & 0.21430 & 93.2315 & \(<.0001\) \\
Brand & 7 & 1 & 2.08573 & 0.21411 & 94.8982 & \(<.0001\) \\
Brand & 8 & 1 & 2.11705 & 0.21375 & 98.0964 & \(<.0001\) \\
Brand & 9 & 1 & 2.06363 & 0.21436 & 92.6733 & \(<.0001\) \\
Brand 10 & 1 & 0.00529 & 0.05148 & 0.0106 & 0.9181 \\
\(\$ 50\) & 1 & 0 & 0.0005304 & 0.05152 & 0.0001 & 0.9918 \\
\(\$ 75\) & 1 & 0 & & &. &.
\end{tabular}

\section*{Chair Design with Generic Attributes}

This study illustrates creating an experimental design for a purely generic choice model. This example discusses generic attributes, alternative swapping, choice set swapping, and constant alternatives. In a purely generic study, there are no brands, just bundles of attributes. Say a manufacturer is interested in designing one or more new chairs. The manufacturer can vary the attributes of the chairs, present subjects with competing chair designs, and model the effects of the attributes on choice. Here are the attributes of interest.
\begin{tabular}{|lll|}
\hline Factor & Attribute & Levels \\
\hline X1 & Color & 3 Colors \\
X2 & Back & 3 Styles \\
X3 & Seat & 3 Styles \\
X4 & Arm Rest & 3 Styles \\
X5 & Material & 3 Materials \\
\hline
\end{tabular}

Since seeing descriptions of chairs is not the same as seeing and sitting in the actual chairs, the manufacturer is going to actually make sample chairs for people to try and choose from. Subjects will be shown groups of three chairs at a time. If we were to make our design using the approach discussed in previous examples, we would use the \(\% \mathrm{MktEx}\) autocall macro to create a design with 15 factors, five for the first chair, five for the second chair, and five for the third chair. This design would have to have at least \(15 \times(3-1)+1=31\) runs and 93 sample chairs. Here is how we could have made the design.
```

title 'Generic Chair Attributes';

* This design will not be used;
%mktex(3 ** 15, n=36, seed=238)
data key;
input (x1-x5) (\$) @@;
datalines;
x1 x2 x3 x4 x5
x6 x7 x8 x9 x10
x11 x12 x13 x14 x15
;

```
\%mktroll(design=randomized, key=key, out=cand);

The \%MktEx approach to designing an experiment like this allows you to fit very general models including models with alternative-specific effects and even mother logit models. However, at analysis time for this purely generic model, we will fit a model with 10 parameters, two for each of the five factors, class ( \(\mathrm{x} 1-\mathrm{x} 5\) ). Creating a design with over \(31 \times 3=93\) chairs is way too expensive. In ordinary linear designs, we need at least as many runs as parameters. In choice designs, we need to count the total number of alternatives across all choice sets, subtract the number the number of choice sets, and this number must be at least as large as the number of parameters. Equivalently, each choice set allows us to estimate \(m-1\) parameters, where \(m\) is the number of alternatives in that choice set. In this case, we could fit our purely generic model with as few as \(10 /(3-1)=5\) choice sets.

Since we only need a simple generic model for this example, and since our chair manufacturing for our research will be expensive, we will not use the \(\% \mathrm{MktEx}\) approach for designing our choice experiment. Instead, we will use a different approach that will allow us to get a smaller design that is adequate for our model and budget. Recall the discussion of linear design efficiency, choice model design efficiency,
and using linear design efficiency as a surrogate for choice design goodness starting on page 86. Instead of using linear design efficiency as a surrogate for choice design goodness, we can directly optimize choice design efficiency given an assumed model and parameter vector \(\boldsymbol{\beta}\). This approach uses the \%ChoicEff macro.

\section*{Generic Attributes, Alternative Swapping, Large Candidate Set}

This part of the example illustrates using the \%ChoicEff macro for efficient choice designs, using its algorithm that builds a design from candidate alternatives (as opposed to candidates consisting of entire choice sets). First, we will use the \%MktRuns macro to suggest a candidate-set size.
```

%mktruns(3 ** 5)

```

Here are some of the results.
```

 Generic Chair Attributes
 Design Summary
 Number of
 Levels Frequency
 3 5
 Saturated = 11
 Full Factorial = 243
 Some Reasonable
 18* 0
 27* 0
 36* 0
 12 10 9
 15 10 9
 21 10 9
 24 10 9
 30 10 9
 33 10 9
 11 15 39
 * - 100% Efficient Design can be made with the MktEx Macro.
    ```

Generic Chair Attributes


We could use candidate sets of size: 18,27 or 36 . Additionally, since this problem is small, we could try an 81 -run fractional-factorial design or the 243 -run full-factorial design. We will choose the 243 -run full-factorial design, since it is reasonably small and it will give the macro the most freedom to find a good design. \({ }^{\dagger}\)

We will use the \(\% \mathrm{MktEx}\) macro to create a candidate set. The candidate set will consist of 5 three-level factors, one for each of the five generic attributes. We will add three flag variables to the candidate set, \(\mathrm{f} 1-\mathrm{f} 3\), one for each alternative. Since there are three alternatives, the candidate set must contain those observations that may be used for alternative 1 , those observations that may be used for alternative 2 , and those observations that may be used for alternative 3. The flag variable for each alternative consists of ones for those candidates that may be included for that alternative and zeros or missings for those candidates that may not be included for that alternative. The candidates for the different alternatives may be all different, all the same, or something in between depending on the problem. For example, the candidate set may contain one observation that is only used for the last, constant alternative. In this purely generic case, each flag variable consists entirely of ones indicating that any candidate can appear in any alternative. The \%MktEx macro will not allow you to create constant or one-level factors. We can instead use the \%MktLab macro to add the flag variables, essentially by specifying that we have multiple intercepts. The option int=f1-f3 creates three variables with values all one. The default output data set is called FINAL. The following code creates the candidates.
```

%mktex(3 ** 5, n=243)
%mktlab(data=design, int=f1-f3)
proc print data=final(obs=27); run;

```

\footnotetext{
\({ }^{\dagger}\) Later, we will see we could have chosen 18.
}

The columns \(\mathrm{f} 1-\mathrm{f} 3\) are the flags, and \(\mathrm{x} 1-\mathrm{x} 5\) are the generic attributes. Here is part of the candidate set.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{Generic Chair Attributes} \\
\hline Obs & f1 & f2 & f3 & x 1 & x 2 & x3 & x4 & x5 \\
\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 2 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 3 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 3 \\
\hline 4 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 5 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline 6 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 3 \\
\hline 7 & 1 & 1 & 1 & 1 & 1 & 1 & 3 & 1 \\
\hline 8 & 1 & 1 & 1 & 1 & 1 & 1 & 3 & 2 \\
\hline 9 & 1 & 1 & 1 & 1 & 1 & 1 & 3 & 3 \\
\hline 10 & 1 & 1 & 1 & 1 & 1 & 2 & 1 & 1 \\
\hline 11 & 1 & 1 & 1 & 1 & 1 & 2 & 1 & 2 \\
\hline 12 & 1 & 1 & 1 & 1 & 1 & 2 & 1 & 3 \\
\hline 13 & 1 & 1 & 1 & 1 & 1 & 2 & 2 & 1 \\
\hline 14 & 1 & 1 & 1 & 1 & 1 & 2 & 2 & 2 \\
\hline 15 & 1 & 1 & 1 & 1 & 1 & 2 & 2 & 3 \\
\hline 16 & 1 & 1 & 1 & 1 & 1 & 2 & 3 & 1 \\
\hline 17 & 1 & 1 & 1 & 1 & 1 & 2 & 3 & 2 \\
\hline 18 & 1 & 1 & 1 & 1 & 1 & 2 & 3 & 3 \\
\hline 19 & 1 & 1 & 1 & 1 & 1 & 3 & 1 & 1 \\
\hline 20 & 1 & 1 & 1 & 1 & 1 & 3 & 1 & 2 \\
\hline 21 & 1 & 1 & 1 & 1 & 1 & 3 & 1 & 3 \\
\hline 22 & 1 & 1 & 1 & 1 & 1 & 3 & 2 & 1 \\
\hline 23 & 1 & 1 & 1 & 1 & 1 & 3 & 2 & 2 \\
\hline 24 & 1 & 1 & 1 & 1 & 1 & 3 & 2 & 3 \\
\hline 25 & 1 & 1 & 1 & 1 & 1 & 3 & 3 & 1 \\
\hline 26 & 1 & 1 & 1 & 1 & 1 & 3 & 3 & 2 \\
\hline 27 & 1 & 1 & 1 & 1 & 1 & 3 & 3 & 3 \\
\hline
\end{tabular}

Next, we will search that candidate set for an efficient design for the model specification class ( \(\mathrm{x} 1-\mathrm{x} 5\) ) and the assumption \(\boldsymbol{\beta}=\mathbf{0}\). We will use the \%ChoicEff autocall macro to do this. (All of the autocall macros used in this book are documented starting on page 479.) This approach is based on the work of Huber and Zwerina (1996) who proposed constructing efficient experimental designs for choice experiments under an assumed model and \(\boldsymbol{\beta}\). The \%ChoicEff macro uses a modified Fedorov algorithm (Fedorov, 1972; Cook and Nachtsheim, 1980) to optimize the choice model variance matrix. We will be using the largest possible candidate set for this problem, the full-factorial design, and we will ask for more than the default number of iterations, so run time will be slower than it could be. However, we will be requesting a very small number of choice sets. Building the chairs will be expensive, so we want to get a really good but small design. This specification requests a generic design with six choice sets each consisting of three alternatives.
```

%choiceff(data=final, model=class(x1-x5), nsets=6, maxiter=100,
seed=121, flags=f1-f3, beta=zero);

```

The data=final option names the input data set of candidates. The model=class(x1-x5) option specifies the most general model that will be considered at analysis time. The nsets=6 option specifies the number of choice sets. Note that this is considerably smaller than the minimum of 31 that would be required if we were just using the \%MktEx linear-design approach ( \(6 \times 3=18\) chairs instead of \(31 \times 3=93\) chairs). The maxiter=100 option requests 100 designs based on 100 random initial designs (by default, maxiter=2). The seed=121 option specifies the random number seed. The flags=f1-f3 specifies the flag variables for alternatives 1 to 3 . Implicitly, this option also specifies the fact that there are three alternatives since three flag variables were specified. The beta=zero option specifies the assumption \(\boldsymbol{\beta}=\mathbf{0}\). A vector of numbers like beta=-1 0 -1 \(00-100-10-10-10\) could be specified. (See page 489 for an example of this.) When you wish to assume all parameters are zero, you can specify beta=zero instead of typing a vector of the zeros. You can also omit the beta= option if you just want the macro to list the parameters. You can use this list to ensure that you specify the parameters in the right order.

The first part of the output from the macro is a list of all of the effects generated and the assumed values of \(\boldsymbol{\beta}\). It is very important to check this list and make sure it is correct. In particular, when you are explicitly specifying the \(\boldsymbol{\beta}\) vector, you need to make sure you specified all of the values in the right order.
\begin{tabular}{ccccc}
\multicolumn{4}{c}{ Generic Chair Attributes } \\
n & Name & Beta & Label \\
1 & & & \\
2 & x11 & 0 & x1 & 1 \\
2 & x21 & 0 & x1 & 2 \\
4 & x22 & 0 & x2 & 1 \\
5 & x31 & 0 & x3 & 2 \\
6 & x32 & 0 & x3 & 2 \\
7 & x41 & 0 & x4 & 1 \\
8 & x42 & 0 & x4 & 2 \\
9 & x51 & 0 & x5 & 1 \\
10 & x52 & 0 & x5 & 2
\end{tabular}

Next, the macro produces the iteration history, which is different from the iteration histories we are used to seeing in the \%MktEx macro. The \%ChoicEff macro uses PROC IML and a modified Fedorov algorithm to iteratively improve the efficiency of the choice design given the specified candidates, model, and \(\boldsymbol{\beta}\). Note that these efficiencies are not on a 0 to 100 scale. This step took about 12 minutes. Here are some of the results.

Generic Chair Attributes
\begin{tabular}{|c|c|c|c|}
\hline Design & Iteration & D-Efficiency & D-Error \\
\hline \multirow[t]{5}{*}{1} & 0 & 0.352304 & 2.838455 \\
\hline & 1 & 0.946001 & 1.057081 \\
\hline & 2 & 1.001164 & 0.998838 \\
\hline & 3 & 1.041130 & 0.960494 \\
\hline & 4 & 1.044343 & 0.957540 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Design & Iteration & D-Efficiency & D-Error \\
\hline \multirow[t]{5}{*}{34} & 0 & 0.469771 & 2.128698 \\
\hline & 1 & 0.919074 & 1.088051 \\
\hline & 2 & 1.058235 & 0.944970 \\
\hline & 3 & 1.154701 & 0.866025 \\
\hline & 4 & 1.154701 & 0.866025 \\
\hline Design & Iteration & D-Efficiency & D-Error \\
\hline \multirow[t]{4}{*}{100} & 0 & 0.456308 & 2.191501 \\
\hline & , & 1.006320 & 0.993719 \\
\hline & 2 & 1.042702 & 0.959046 \\
\hline & 3 & 1.042702 & 0.959046 \\
\hline
\end{tabular}

Next, the macro shows which design it chose and the final efficiency and \(D\)-Error ( \(D\)-Efficiency \(=1 /\) \(D\)-Error).
\begin{tabular}{ll}
\hline \multicolumn{2}{c}{ Final Results } \\
& \\
Design & 34 \\
Choice Sets & 6 \\
Alternatives & 3 \\
D-Efficiency & 1.154701 \\
D-Error & 0.866025 \\
& \\
\hline
\end{tabular}

Next, it shows the variance, standard error, and \(d f\) for each effect. It is important to ensure that each effect is estimable: \((d f=1)\). Usually, when all of the variances are constant, like we see in this table, it means that the macro has found the optimal design.


The data set BEST contains the final, best design found.
proc print; by set; id set; run;
The data set contains: Design - the number of the design with the maximum efficiency, Efficiency the efficiency of this design, Index - the candidate set observation number, Set - the choice set number, Prob - the probability that this alternative will be chosen given \(\boldsymbol{\beta}, \mathrm{n}\) - the observation number, x1-x5 - the design, and f1-f3 - the flags.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{14}{|c|}{Generic Chair Attributes} \\
\hline Set & Design & Efficiency & Index & Prob & n & f1 & f2 & f3 & x1 & x2 & x3 & x4 & x5 \\
\hline 1 & 34 & 1.15470 & 183 & 0.33333 & 595 & 1 & 1 & 1 & 3 & 1 & 3 & 1 & 3 \\
\hline & 34 & 1.15470 & 62 & 0.33333 & 596 & 1 & 1 & 1 & 1 & 3 & 1 & 3 & 2 \\
\hline & 34 & 1.15470 & 121 & 0.33333 & 597 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 1 \\
\hline 2 & 34 & 1.15470 & 217 & 0.33333 & 598 & 1 & 1 & 1 & 3 & 3 & 1 & 1 & 1 \\
\hline & 34 & 1.15470 & 45 & 0.33333 & 599 & 1 & 1 & 1 & 1 & 2 & 2 & 3 & 3 \\
\hline & 34 & 1.15470 & 104 & 0.33333 & 600 & 1 & 1 & 1 & 2 & 1 & 3 & 2 & 2 \\
\hline 3 & 34 & 1.15470 & 215 & 0.33333 & 601 & 1 & 1 & 1 & 3 & 2 & 3 & 3 & 2 \\
\hline & 34 & 1.15470 & 147 & 0.33333 & 602 & 1 & 1 & 1 & 2 & 3 & 2 & 1 & 3 \\
\hline & 34 & 1.15470 & 4 & 0.33333 & 603 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\
\hline 4 & 34 & 1.15470 & 78 & 0.33333 & 604 & 1 & 1 & 1 & 1 & 3 & 3 & 2 & 3 \\
\hline & 34 & 1.15470 & 178 & 0.33333 & 605 & 1 & 1 & 1 & 3 & 1 & 2 & 3 & 1 \\
\hline & 34 & 1.15470 & 110 & 0.33333 & 606 & 1 & 1 & 1 & 2 & 2 & 1 & 1 & 2 \\
\hline 5 & 34 & 1.15470 & 90 & 0.33333 & 607 & 1 & 1 & 1 & 2 & 1 & 1 & 3 & 3 \\
\hline & 34 & 1.15470 & 46 & 0.33333 & 608 & 1 & 1 & 1 & 1 & 2 & 3 & 1 & 1 \\
\hline & 34 & 1.15470 & 230 & 0.33333 & 609 & 1 & 1 & 1 & 3 & 3 & 2 & 2 & 2 \\
\hline
\end{tabular}
6 \begin{tabular}{rrrrrrrrrrrrr}
34 & 1.15470 & 195 & 0.33333 & 610 & 1 & 1 & 1 & 3 & 2 & 1 & 2 & 3 \\
34 & 1.15470 & 11 & 0.33333 & 611 & 1 & 1 & 1 & 1 & 1 & 2 & 1 & 2 \\
34 & 1.15470 & 160 & 0.33333 & 612 & 1 & 1 & 1 & 2 & 3 & 3 & 3 & 1
\end{tabular}

This design has 18 runs ( 6 choice sets \(\times 3\) alternatives). Notice that in this design, each level occurs exactly once in each factor and each choice set. To use this design for analysis, you would only need the variables Set and \(\mathrm{x} 1-\mathrm{x} 5\). Since it is already in choice design format, it would not need to be processed using the \%MktRoll macro. Since data collection, processing, and analysis have already been covered in detail in other examples, this example will concentrate solely on experimental design.

\section*{Generic Attributes, Alternative Swapping, Small Candidate Set}

In this part of this example, we will try to make an equivalent design to the one we just made, only this time using a smaller candidate set. Here is the code.
```

%mktex(3 ** 5, n=18)
%mktlab(data=design, int=f1-f3)
%choiceff(data=final, model=class(x1-x5), nsets=6, maxiter=20,
seed=121, flags=f1-f3, beta=zero);
proc print; run;

```

This time, instead of creating a full-factorial candidate set, we asked for 5 three-level factors from the \(L_{18}\), an orthogonal tabled design in 18 runs. We also asked for fewer iterations in the \%ChoicEff macro. Since the candidate set is much smaller, the macro should be able to find the best design available in this candidate set fairly easily. Here are some of the results.
\begin{tabular}{rcccc}
\multicolumn{4}{c}{ Generic Chair Attributes } \\
n & Name & Beta & Label \\
1 & & & \\
2 & x11 & 0 & x1 & 1 \\
3 & x21 & 0 & x1 & 2 \\
4 & x22 & 0 & x2 & 1 \\
5 & x31 & 0 & x2 & 2 \\
6 & x32 & 0 & x3 & 2 \\
7 & x41 & 0 & x4 & 1 \\
8 & x42 & 0 & x4 & 2 \\
9 & x51 & 0 & x5 & 1 \\
10 & x52 & 0 & x5 & 2
\end{tabular}

\section*{Generic Chair Attributes}
\begin{tabular}{|c|c|c|c|}
\hline Design & Iteration & D-Efficiency & D-Error \\
\hline \multirow[t]{6}{*}{1} & 0 & 0 & \\
\hline & 1 & 0.913290 & 1.094943 \\
\hline & 2 & 1.008888 & 0.991191 \\
\hline & 3 & 1.042878 & 0.958885 \\
\hline & 4 & 1.154701 & 0.866025 \\
\hline & 5 & 1.154701 & 0.866025 \\
\hline Design & Iteration & D-Efficiency & D-Error \\
\hline \multirow[t]{6}{*}{20} & 0 & 0.364703 & 2.741954 \\
\hline & 1 & 0.851038 & 1.175036 \\
\hline & 2 & 1.008888 & 0.991191 \\
\hline & 3 & 1.042878 & 0.958885 \\
\hline & 4 & 1.154701 & 0.866025 \\
\hline & 5 & 1.154701 & 0.866025 \\
\hline
\end{tabular}

Final Results
\begin{tabular}{lr} 
Design & 1 \\
Choice Sets & 6 \\
Alternatives & 3 \\
D-Efficiency & 1.154701 \\
D-Error & 0.866025 \\
& \\
Generic Chair Attributes
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{15}{|c|}{Generic Chair Attributes} \\
\hline Obs & Design & Efficiency & Index & Set & Prob & n & f1 & f2 & f3 & x1 & x2 & x3 & x4 & x5 \\
\hline 1 & 1 & 1.15470 & 11 & 1 & 0.33333 & 1 & 1 & 1 & 1 & 2 & 3 & 1 & 3 & 1 \\
\hline 2 & 1 & 1.15470 & 13 & 1 & 0.33333 & 2 & 1 & 1 & 1 & 3 & 1 & 2 & 1 & 2 \\
\hline 3 & 1 & 1.15470 & 4 & 1 & 0.33333 & 3 & 1 & 1 & 1 & 1 & 2 & 3 & 2 & 3 \\
\hline 4 & 1 & 1.15470 & 3 & 2 & 0.33333 & 4 & 1 & 1 & 1 & 1 & 2 & 1 & 3 & 2 \\
\hline 5 & 1 & 1.15470 & 12 & 2 & 0.33333 & 5 & 1 & 1 & 1 & 2 & 3 & 2 & 1 & 3 \\
\hline 6 & 1 & 1.15470 & 14 & 2 & 0.33333 & 6 & 1 & 1 & 1 & 3 & 1 & 3 & 2 & 1 \\
\hline 7 & 1 & 1.15470 & 5 & 3 & 0.33333 & 7 & 1 & 1 & 1 & 1 & 3 & 2 & 2 & 1 \\
\hline 8 & 1 & 1.15470 & 8 & 3 & 0.33333 & 8 & 1 & 1 & 1 & 2 & 1 & 3 & 3 & 2 \\
\hline 9 & 1 & 1.15470 & 15 & 3 & 0.33333 & 9 & 1 & 1 & 1 & 3 & 2 & 1 & 1 & 3 \\
\hline 10 & 1 & 1.15470 & 9 & 4 & 0.33333 & 10 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 2 \\
\hline 11 & 1 & 1.15470 & 1 & 4 & 0.33333 & 11 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 12 & 1 & 1.15470 & 18 & 4 & 0.33333 & 12 & 1 & 1 & 1 & 3 & 3 & 3 & 3 & 3 \\
\hline 13 & 1 & 1.15470 & 10 & 5 & 0.33333 & 13 & 1 & 1 & 1 & 2 & 2 & 3 & 1 & 1 \\
\hline 14 & 1 & 1.15470 & 17 & 5 & 0.33333 & 14 & 1 & 1 & 1 & 3 & 3 & 1 & 2 & 2 \\
\hline 15 & 1 & 1.15470 & 2 & 5 & 0.33333 & 15 & 1 & 1 & 1 & 1 & 1 & 2 & 3 & 3 \\
\hline 16 & 1 & 1.15470 & 6 & 6 & 0.33333 & 16 & 1 & 1 & 1 & 1 & 3 & 3 & 1 & 2 \\
\hline 17 & 1 & 1.15470 & 7 & 6 & 0.33333 & 17 & 1 & 1 & 1 & 2 & 1 & 1 & 2 & 3 \\
\hline 18 & 1 & 1.15470 & 16 & 6 & 0.33333 & 18 & 1 & 1 & 1 & 3 & 2 & 2 & 3 & 1 \\
\hline
\end{tabular}

Notice we got the same \(D\)-efficiency and variances as before ( \(D\)-efficiency \(=1.1547005384\) and all variances 1). Also notice the Index variable in the design (which is the candidate set row number). Each candidate appears in the design exactly once. We have frequently found for problems like this (all generic attributes, no brands, no constant alternative, total number of alternatives equal to the number of runs in an orthogonal design, all factors available in that orthogonal design, and an assumed \(\boldsymbol{\beta}\) vector of zero) that the optimal design can be created by optimally sorting the rows of an orthogonal design into choice sets, and the \%ChoicEff macro can do this quite well.

Six choice sets is a bit small. If you can afford a larger number, it would be good to try a larger design. In this case, nine choice sets are requested using a fractional-factorial candidate set in 27 runs. Notice that like before, the number of runs in the candidate set was chosen to be the product of the number of choice sets and the number of alternatives in each choice set.
```

%mktex(3 ** 5, n=27, seed=382)
%mktlab(data=design, int=f1-f3)
%choiceff(data=final, model=class(x1-x5), nsets=9, maxiter=20,
seed=121, flags=f1-f3, beta=zero);
proc print; id set; by set; var index prob x:; run;

```

Here are the variances and the design.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{n} & \multicolumn{5}{|c|}{Generic Chair Attributes} \\
\hline & \multicolumn{2}{|l|}{Variable} & & & Standard \\
\hline & Name & Label & Variance & DF & Error \\
\hline 1 & x11 & x 11 & 0.66667 & 1 & 0.81650 \\
\hline 2 & x12 & x12 & 0.66667 & 1 & 0.81650 \\
\hline 3 & x21 & x2 1 & 0.66667 & 1 & 0.81650 \\
\hline 4 & \(\times 22\) & x2 2 & 0.66667 & 1 & 0.81650 \\
\hline 5 & x31 & x3 1 & 0.66667 & 1 & 0.81650 \\
\hline 6 & x32 & x3 2 & 0.66667 & 1 & 0.81650 \\
\hline 7 & x41 & \(\times 41\) & 0.66667 & 1 & 0.81650 \\
\hline 8 & x42 & x42 & 0.66667 & 1 & 0.81650 \\
\hline 9 & \(\times 51\) & \(\times 51\) & 0.66667 & 1 & 0.81650 \\
\hline 10 & x52 & x5 2 & 0.66667 & 1 & 0.81650 \\
\hline & & & & = & \\
\hline & & & & 10 & \\
\hline
\end{tabular}
\begin{tabular}{cccccccc}
\multicolumn{8}{c}{ Generic Chair Attributes } \\
Set & Index & Prob & x 1 & x 2 & x 3 & x 4 & x 5 \\
& & & & & & & \\
1 & 9 & 0.33333 & 1 & 3 & 3 & 1 & 2 \\
& 13 & 0.33333 & 2 & 2 & 1 & 3 & 3 \\
& 20 & 0.33333 & 3 & 1 & 2 & 2 & 1 \\
2 & 25 & 0.33333 & 3 & 3 & 1 & 2 & 2 \\
& 5 & 0.33333 & 1 & 2 & 2 & 1 & 3 \\
& 12 & 0.33333 & 2 & 1 & 3 & 3 & 1 \\
3 & 6 & 0.33333 & 1 & 2 & 3 & 3 & 1 \\
& 26 & 0.33333 & 3 & 3 & 2 & 1 & 3 \\
& 10 & 0.33333 & 2 & 1 & 1 & 2 & 2 \\
4 & 22 & 0.33333 & 3 & 2 & 1 & 1 & 1 \\
& 2 & 0.33333 & 1 & 1 & 2 & 3 & 2 \\
& 18 & 0.33333 & 2 & 3 & 3 & 2 & 3 \\
5 & 11 & 0.33333 & 2 & 1 & 2 & 1 & 3 \\
& 4 & 0.33333 & 1 & 2 & 1 & 2 & 2 \\
& 27 & 0.33333 & 3 & 3 & 3 & 3 & 1 \\
6 & 8 & 0.33333 & 1 & 3 & 2 & 2 & 1 \\
& 19 & 0.33333 & 3 & 1 & 1 & 3 & 3 \\
& 15 & 0.33333 & 2 & 2 & 3 & 1 & 2 \\
7 & 3 & 0.33333 & 1 & 1 & 3 & 2 & 3 \\
& 23 & 0.33333 & 3 & 2 & 2 & 3 & 2 \\
& 16 & 0.33333 & 2 & 3 & 1 & 1 & 1
\end{tabular}
\begin{tabular}{rrrrrrrr}
8 & 17 & 0.33333 & 2 & 3 & 2 & 3 & 2 \\
& 24 & 0.33333 & 3 & 2 & 3 & 2 & 3 \\
& 1 & 0.33333 & 1 & 1 & 1 & 1 & 1 \\
& & & & & & & \\
& 7 & 0.33333 & 1 & 3 & 1 & 3 & 3 \\
& 14 & 0.33333 & 2 & 2 & 2 & 2 & 1 \\
& 21 & 0.33333 & 3 & 1 & 3 & 1 & 2
\end{tabular}

Notice that like before, the variances are constant, but in this case smaller at \(2 / 3\), and each candidate appears once. This appears to be an optimal design in 9 choice sets.

\section*{Generic Attributes, a Constant Alternative, and Alternative Swapping}

Now let's make a design for the same problem but this time with a constant alternative. We will first use the \%MktEx macro just like before to make a design for the nonconstant alternatives. We will then use a DATA step to add the flags and a constant alternative.
```

title 'Generic Chair Attributes';
%mktex(3 ** 5, n=243, seed=306)
data final(drop=i);
set design end=eof;
retain f1-f3 1 f4 0;
output;
if eof then do;
array x[9] x1-x5 f1-f4;
do i = 1 to 9; x[i] = i le 5 or i eq 9; end;
output;
end;
run;
proc print data=final(where=(x1 eq x3 and x2 eq x4 and x3 eq x5 or f4)); run;

```

Here is a sample of the observations in the candidate set.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Obs} & \multirow[b]{2}{*}{x1} & \multirow[b]{2}{*}{x 2} & \multicolumn{7}{|l|}{Generic Chair Attributes} \\
\hline & & & x3 & x4 & x5 & f1 & f2 & f3 & f4 \\
\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
\hline 31 & 1 & 2 & 1 & 2 & 1 & 1 & 1 & 1 & 0 \\
\hline 61 & 1 & 3 & 1 & 3 & 1 & 1 & 1 & 1 & 0 \\
\hline 92 & 2 & 1 & 2 & 1 & 2 & 1 & 1 & 1 & 0 \\
\hline 122 & 2 & 2 & 2 & 2 & 2 & 1 & 1 & 1 & 0 \\
\hline 152 & 2 & 3 & 2 & 3 & 2 & 1 & 1 & 1 & 0 \\
\hline 183 & 3 & 1 & 3 & 1 & 3 & 1 & 1 & 1 & 0 \\
\hline 213 & 3 & 2 & 3 & 2 & 3 & 1 & 1 & 1 & 0 \\
\hline 243 & 3 & 3 & 3 & 3 & 3 & 1 & 1 & 1 & 0 \\
\hline 244 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\
\hline
\end{tabular}

The first 243 observations may be used for any of the first three alternatives and the 244th observation may only be used for fourth or constant alternative. In this example, the constant alternative is composed solely from the first level of each factor. Of course this could be changed depending on the situation. The \%ChoicEff macro invocation is the same as before, except now we have four flags.
```

%choiceff(data=final, model=class(x1-x5), nsets=6, maxiter=100,
seed=121, flags=f1-f4, beta=zero);
proc print; by set; id set; run;

```

You can see in the final design that there are now four alternatives and the last alternative in each choice set is constant and is always flagged by \(f 4=1\). In the interest of space, most of the iteration histories are omitted.
\begin{tabular}{|c|c|c|c|}
\hline n & Name & Beta & Label \\
\hline 1 & x 11 & 0 & x1 1 \\
\hline 2 & x 12 & 0 & x1 2 \\
\hline 3 & x 21 & 0 & x2 1 \\
\hline 4 & x22 & 0 & x2 2 \\
\hline 5 & x31 & 0 & x3 1 \\
\hline 6 & x32 & 0 & x3 2 \\
\hline 7 & x 41 & 0 & x41 \\
\hline 8 & x42 & 0 & x4 2 \\
\hline 9 & x51 & 0 & x5 1 \\
\hline 10 & x52 & 0 & x5 2 \\
\hline
\end{tabular}


\section*{Final Results}
\begin{tabular}{lr} 
Design & 13 \\
Choice Sets & 6 \\
Alternatives & 4 \\
D-Efficiency & 1.003398 \\
D-Error & 0.996614
\end{tabular}

Generic Chair Attributes
\begin{tabular}{rccccc}
\multicolumn{3}{c}{\begin{tabular}{c} 
Variable \\
n
\end{tabular}} & Name & Label & Variance
\end{tabular} \begin{tabular}{c} 
DF
\end{tabular}\(\quad\)\begin{tabular}{c} 
Standard \\
Error
\end{tabular}

Generic Chair Attributes
\begin{tabular}{cccccccccccccccc} 
Set & Design & Efficiency & Index & Prob & n & x 1 & x 2 & x 3 & x 4 & x 5 & f 1 & f 2 & f 3 & f 4 \\
1 & 13 & 1.00340 & 152 & 0.25 & 289 & 2 & 3 & 2 & 3 & 2 & 1 & 1 & 1 & 0 \\
& 13 & 1.00340 & 213 & 0.25 & 290 & 3 & 2 & 3 & 2 & 3 & 1 & 1 & 1 & 0 \\
& 13 & 1.00340 & 15 & 0.25 & 291 & 1 & 1 & 2 & 2 & 3 & 1 & 1 & 1 & 0 \\
& 13 & 1.00340 & 244 & 0.25 & 292 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\
2 & 13 & 1.00340 & 154 & 0.25 & 293 & 2 & 3 & 3 & 1 & 1 & 1 & 1 & 1 & 0 \\
& 13 & 1.00340 & 15 & 0.25 & 294 & 1 & 1 & 2 & 2 & 3 & 1 & 1 & 1 & 0 \\
& 13 & 1.00340 & 197 & 0.25 & 295 & 3 & 2 & 1 & 3 & 2 & 1 & 1 & 1 & 0 \\
& 13 & 1.00340 & 244 & 0.25 & 296 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\
& 13 & 1.00340 & 108 & 0.25 & 297 & 2 & 1 & 3 & 3 & 3 & 1 & 1 & 1 & 0 \\
& 13 & 1.00340 & 220 & 0.25 & 298 & 3 & 3 & 1 & 2 & 1 & 1 & 1 & 1 & 0 \\
& 13 & 1.00340 & 38 & 0.25 & 299 & 1 & 2 & 2 & 1 & 2 & 1 & 1 & 1 & 0 \\
4 & 13 & 1.00340 & 244 & 0.25 & 300 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\
& 13 & 1.00340 & 121 & 0.25 & 301 & 2 & 2 & 2 & 2 & 1 & 1 & 1 & 1 & 0 \\
& 13 & 1.00340 & 182 & 0.25 & 302 & 3 & 1 & 3 & 1 & 2 & 1 & 1 & 1 & 0 \\
& 13 & 1.00340 & 63 & 0.25 & 303 & 1 & 3 & 1 & 3 & 3 & 1 & 1 & 1 & 0 \\
& 13 & 1.00340 & 244 & 0.25 & 304 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1
\end{tabular}
6 \begin{tabular}{rllrllllllllllll}
13 & 1.00340 & 228 & 0.25 & 309 & 3 & 3 & 2 & 1 & 3 & 1 & 1 & 1 & 0 \\
13 & 1.00340 & 52 & 0.25 & 310 & 1 & 2 & 3 & 3 & 1 & 1 & 1 & 1 & 0 \\
13 & 1.00340 & 86 & 0.25 & 311 & 2 & 1 & 1 & 2 & 2 & 1 & 1 & 1 & 0 \\
& 13 & 1.00340 & 244 & 0.25 & 312 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1
\end{tabular}

When there were three alternatives, each alternative had a probability of choice of \(1 / 3\), and now with four alternatives, the probability is \(1 / 4\). They are all equal because of the assumption \(\boldsymbol{\beta}=\mathbf{0}\). With other assumptions about \(\boldsymbol{\beta}\), typically the probabilities will not all be equal. To use this design for analysis, you would only need the variables Set and \(\mathrm{x} 1-\mathrm{x} 5\). Since it is already in choice design format (one row per alternative), it would not need to be processed using the \%MktRoll macro. Note that when you make designs with the \%ChoicEff macro, the model statement in PROC TRANSREG should match or be no more complicated than the model specification that generated the design:
```

model class(x1-x5);

```

A model with fewer degrees of freedom is safe, although the design will be suboptimal. For example, if \(\mathrm{x} 1-\mathrm{x} 5\) are quantitative attributes, this would be safe:
```

model identity(x1-x5);

```

However, specifying interactions, or using this design in a branded study and specifying alternativespecific effects like this could lead to quite a few inestimable parameters.
```

* Bad idea for this design!!;
model class(x1-x5 x1*x2 x4*x5);
* Another bad idea for this design!!;
model class(brand)
class(brand * x1 brand * x2 brand * x3 brand * x4 brand * x5);

```

\section*{Generic Attributes, a Constant Alternative, and Choice Set Swapping}

The \%ChoicEff macro can be used in a very different way. Instead of providing a candidate set of alternatives to swap in and out of the design, you can provide a candidate set of entire choice sets. For this particular example, swapping alternatives will almost certainly be better (see page 322). However, sometimes, if you need to impose restrictions on which alternative can appear with which other alternative, then you must use the set-swapping options. We will start by using the \%MktEx macro to make a candidate design, with one run per choice set and one factor for each attribute of each alternative (just like we did in the vacation, fabric softener, and food examples). We will then process the candidates from one row per choice set to one row per alternative per choice set using the \%MktRoll macro.
```

%mktex(3 ** 15, n=81 * 81, seed=522)
%mktkey(x1-x15)
data key;
input (x1-x5) (\$);
datalines;
x1 x2 x3 x4 x5
x6 x7 x8 x9 x10
x11 x12 x13 x14 x15
;
%mktroll(design=randomized, key=key, out=rolled)

* Code the constant alternative;
data final;
set rolled;
if _alt_ = '4' then do; x1 = 1; x2 = 1; x3 = 1; x4 = 1; x5 = 1; end;
run;
proc print; by set; id set; where set in (1, 100, 1000, 5000, 6561); run;

```

The \%MktKey macro produced the following line, which we copied, pasted, and edited to make the KEY data set.
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15
Here are a few of the candidate choice sets.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Set} & \multicolumn{6}{|l|}{Generic Chair Attributes} \\
\hline & _Alt_ & x1 & x 2 & x3 & x4 & x5 \\
\hline \multirow[t]{4}{*}{1} & 1 & 2 & 1 & 1 & 2 & 3 \\
\hline & 2 & 3 & 3 & 1 & 1 & 1 \\
\hline & 3 & 2 & 2 & 1 & 1 & 3 \\
\hline & 4 & 1 & 1 & 1 & 1 & 1 \\
\hline \multirow[t]{4}{*}{100} & 1 & 1 & 2 & 1 & 2 & 1 \\
\hline & 2 & 2 & 3 & 3 & 2 & 1 \\
\hline & 3 & 2 & 2 & 3 & 3 & 2 \\
\hline & 4 & 1 & 1 & 1 & 1 & 1 \\
\hline \multirow[t]{4}{*}{1000} & 1 & 2 & 1 & 2 & 1 & 3 \\
\hline & 2 & 2 & 1 & 2 & 1 & 2 \\
\hline & 3 & 1 & 3 & 2 & 2 & 2 \\
\hline & 4 & 1 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{lllllll}
5000 & 1 & 3 & 1 & 3 & 2 & 3 \\
& 2 & 3 & 3 & 3 & 3 & 2 \\
& 3 & 1 & 2 & 1 & 2 & 3 \\
& 4 & 1 & 1 & 1 & 1 & 1 \\
& 4561 & 1 & 1 & 3 & 1 & 2 \\
& 2 & 3 & 2 & 2 & 2 & 2 \\
& 3 & 1 & 3 & 3 & 1 & 3 \\
& 4 & 1 & 1 & 1 & 1 & 1
\end{tabular}

Next, we will then run the \%ChoicEff macro, only this time we will specify nalts=4 instead of \(f l a g s=f 1-f 4\). Since there are no alternative flag variables to count, we have to tell the macro how many alternatives are in each choice set. We will also ask for fewer iterations since the candidate set is large.
```

\%choiceff(data=final, model=class(x1-x5), nsets=6, nalts=4, maxiter=10,
beta=zero, seed=109);

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline & n & Name & Beta & Label & \\
\hline & 1 & x 11 & 0 & x1 1 & \\
\hline & 2 & x12 & 0 & x12 & \\
\hline & 3 & x 21 & 0 & x2 1 & \\
\hline & 4 & x22 & 0 & x2 2 & \\
\hline & 5 & x31 & 0 & x3 1 & \\
\hline & 6 & x32 & 0 & x3 2 & \\
\hline & 7 & x 41 & 0 & x41 & \\
\hline & 8 & x42 & 0 & x4 2 & \\
\hline & 9 & x51 & 0 & x5 1 & \\
\hline & 10 & \(\times 52\) & 0 & x5 2 & \\
\hline \multicolumn{6}{|c|}{Generic Chair Attributes} \\
\hline Design & Ite & tion & D-Effici & & D-Error \\
\hline \multirow[t]{4}{*}{1} & \multicolumn{2}{|c|}{0} & \multicolumn{2}{|c|}{0.536166} & 1.865093 \\
\hline & \multicolumn{2}{|c|}{1} & \multicolumn{2}{|c|}{0.848201} & 1.178966 \\
\hline & \multicolumn{2}{|c|}{2} & \multicolumn{2}{|c|}{0.872298} & 1.146398 \\
\hline & \multicolumn{2}{|c|}{3} & \multicolumn{2}{|c|}{0.872298} & 1.146398 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Design & Iteration & D-Efficiency & D-Error \\
\hline \multirow[t]{6}{*}{5} & 0 & 0.529592 & 1.888245 \\
\hline & 1 & 0.836422 & 1.195568 \\
\hline & 2 & 0.861051 & 1.161372 \\
\hline & 3 & 0.898936 & 1.112426 \\
\hline & 4 & 0.904411 & 1.105692 \\
\hline & 5 & 0.904411 & 1.105692 \\
\hline Design & Iteration & D-Efficiency & D-Error \\
\hline \multirow[t]{5}{*}{10} & 0 & 0.539774 & 1.852627 \\
\hline & 1 & 0.820582 & 1.218648 \\
\hline & 2 & 0.846874 & 1.180814 \\
\hline & 3 & 0.869219 & 1.150458 \\
\hline & 4 & 0.869219 & 1.150458 \\
\hline
\end{tabular}

Final Results
\begin{tabular}{lr} 
Design & 5 \\
Choice Sets & 6 \\
Alternatives & 4 \\
D-Efficiency & 0.904411 \\
D-Error & 1.105692 \\
& \\
Generic Chair Attributes
\end{tabular}
\begin{tabular}{rccccc}
\multicolumn{3}{c}{\begin{tabular}{c} 
Variable \\
n
\end{tabular}} & Name & Label & Variance
\end{tabular} DF \begin{tabular}{c} 
Dtandard \\
Error
\end{tabular}

This design is less efficient than we found using the alternative-swapping algorithm, so we will not use it.

\section*{Design Algorithm Comparisons}

It is instructive to compare the three approaches outlined in this chapter in the context of this problem. There are \(3^{3 \times 5}=14,348,907\) choice sets for this problem (three-level factors and 3 alternatives times 5 factors per alternative). If we were to use the pure linear design approach using the \%MktEx macro, we could never begin to consider all possible candidate choice sets. Similarly, with the choice-set-swapping algorithm of the \%ChoicEff macro, we could never begin to consider all possible candidate choice sets. Furthermore, with the linear design approach, we could not create a design with six choice sets since the minimum size is \(2 \times 15+1=31\). Now consider the alternative-swapping algorithm. It uses at most a candidate set with only 244 observations \(\left(3^{5}+1\right)\). From it, every possible choice set can potentially be constructed, although the macro will only consider a tiny fraction of the possibilities. Hence, the alternative swapping will usually find a better design, because the candidate set does not limit it.
Both uses of the \%ChoicEff macro have the advantage that they are explicitly minimizing the variances of the parameter estimates given a model and a \(\boldsymbol{\beta}\) vector. They can be used to produce smaller, more specialized, and better designs. However, if the \(\boldsymbol{\beta}\) vector or model is badly misspecified, the designs could be horrible. How badly do things have to be misspecified before you will have problems? Who knows. More research is needed. In contrast, the linear model \%MktEx approach is very conservative and safe in that it should let you specify a very general model and still produce estimable parameters. The cost is you may be using many more choice sets than you need, particularly for nonbranded generic attributes. If you really have some information about your parameters, you should use them to produce a smaller and better design. However, if you have little or no information about parameters and if you anticipate specifying very general models like mother logit, then you probably want to use the linear design approach.

\section*{Initial Designs}

This section illustrates some design strategies that involve improving on or augmenting initial designs. We will not actually use any designs from this section.

\section*{Improving an Existing Design}

Sometimes, it is useful to try to improve an existing design. In this example, we use the \%MktEx macro to create a design in 80 runs for 25 four-level factors. In the next step, we specify init=, and the macro goes straight into the design refinement history seeking to refine the input design. You might want to do this for example whenever you have a good, but not \(100 \%\) efficient design, and you are willing to wait a few minutes to see if the macro can make it any better.
```

title 'Try to Improve an Existing Design';
%mktex(4 ** 25, n=80, seed=368)
%mktex(4 ** 25, n=80, seed=306, init=design, maxtime=20)

```

Here is the \(D\)-efficiency of the final design from the first step.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Try to Improve an Existing Design} \\
\hline \multicolumn{5}{|c|}{The OPTEX Procedure} \\
\hline & & & & Average \\
\hline & & & & Prediction \\
\hline Design & & & & Standard \\
\hline Number & D-Efficiency & A-Efficiency & G-Efficiency & Error \\
\hline 1 & 91.4106 & 83.9583 & 97.6073 & 0.9747 \\
\hline
\end{tabular}

This is a large problem. One in which the maxtime= option may cause the macro to stop before it reaches the maximum number of iterations. Running a second refinement step might help improve the design by adding a few more iterations. Here are the results from the second step.
\begin{tabular}{crrrl}
\multicolumn{5}{c}{ Design Refinement History } \\
& & Current & Best & \\
Design & Row, Col & D-Efficiency & D-Efficiency & Notes \\
\hline-0 & Initial & 91.4106 & 91.4106 & Ini \\
& & & & \\
1 & Start & 90.0771 & & Pre, Mut,Ann \\
1 & End & 91.3476 &
\end{tabular}
\begin{tabular}{lrr}
2 & Start \\
2 & 36 & 12 \\
2 & 56 & 6 \\
2 & 7 & 17 \\
2 & 13 & 10 \\
2 & 23 & 18 \\
2 & 17 & 16 \\
2 & 34 & 6 \\
2 & 56 & 19 \\
2 & 56 & 21 \\
2 & 77 & 1 \\
2 & 23 & 18 \\
2 & 48 & 3 \\
2 & 48 & 9 \\
2 & 40 & 18 \\
2 & & End
\end{tabular}
88.8927

Pre, Mut, Ann

Pre, Mut,Ann
\begin{tabular}{lrr}
6 & Start \\
6 & 63 & 19 \\
6 & 68 & 18 \\
6 & & End
\end{tabular}
90.2194
91.5811
91.5811
91.5835
91.5835

End
91.5751
\begin{tabular}{lrr}
7 & \(r\) & Start \\
7 & 25 & 4 \\
7 & 34 & 7 \\
7 & 47 & 2 \\
7 & 48 & 14 \\
7 & 56 & 4 \\
7 & 56 & 15 \\
7 & 60 & 6 \\
7 & 68 & 7 \\
7 & 78 & 5 \\
7 & 13 & 21 \\
7 & 18 & 19 \\
7 & 43 & 10 \\
7 & 48 & 14 \\
7 & 50 & 22 \\
7 & 61 & 4 \\
7 & 80 & 15 \\
7 & 46 & 12 \\
7 & 48 & 6 \\
7 & & End
\end{tabular}
89.4
91.5851
91.5851
91.5902
91.5913
91.5913
91.5930
91.5930
91.5955
91.5955
91.5999
91.5999
91.6142
91.6142
91.6172
91.6172
91.6172
91.6172
91.6249
91.6249
91.6249
91.6249
91.6249
91.6249
91.6282
91.6282
91.6408
91.6408
91.6417
91.6417
91.6430
91.6430
91.6430
91.6430
91.6430
91.6430

Pre, Mut,Ann


The macro skips the normal first steps, algorithm search and design search, and goes straight into the design refinement search. In this example a small improvement was found, although often, no improvement is found.

\section*{When Some Choice Sets are Fixed in Advance}

Sometimes certain runs or choice sets are fixed in advance and must be included in the design. The \(\%\) MktEx macro can be used to efficiently augment a starting design with other choice sets. Suppose that you can make a choice design from the \(L_{36}\left(2^{11} 3^{12}\right)\). In addition, you want to optimally add four more choice sets to use as holdouts. First we will look at how to do this using the fixed= option. This option can be used for fairly general design augmentation and refinement problems. On page 330, we will see an easier way to handle this particular problem using the holdouts=option.

You can create the design in 36 runs as before. Next, a DATA step is used to add a flag variable \(f\) that has values of 1 for the original 36 runs. In addition, four more runs are added (just copies of the last run) but with a flag value of missing. When this variable is specified on the fixed=f option, it indicates that the first 36 runs of the init=init design are fixed - they may not change. The remaining 4 runs are to be randomly initialized and optimally refined to maximize the \(D\)-efficiency of the overall 40 -run design. We specified options=nosort so that the additional runs would stay at the end of the design.
```

title 'Augment a Design';
%mktex(n=36, seed=292)

```
```

data init;
set randomized end = eof;
f = 1;
output;
if eof then do;
f = .;
do i = 1 to 4; output; end;
drop i;
end;
run;

```
proc print; run;
\%mktex (2 ** 113 ** 12, \(\mathrm{n}=40\), init=init, fixed=f, seed=513, options=nosort)
proc print; run;
Here is the initial design.

Augment a Design
\(\left.\begin{array}{rlllllllllllllllllllllllll}0 & & & & & & & & & & \mathrm{x} & \\ \mathrm{b} & \mathrm{x} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & \\ \mathrm{~s} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 & 1 & 2 & 3 & \mathrm{f} \\ & & & & & & & & & & & & & & & & & & & & & & & & \\ 1 & 2 & 1 & 2 & 2 & 2 & 2 & 1 & 1 & 1 & 2 & 1 & 2 & 3 & 1 & 1 & 1 & 2 & 3 & 2 & 3 & 1 & 3 & 2 & 1 \\ 2 & 2 & 1 & 1 & 2 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 3 & 1 & 2 & 1 & 3 & 2 & 3 & 1 & 2 & 2 & 3 & 1 & 1 \\ 3 & 2 & 2 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 2 & 1 & 2 & 3 & 1 & 1 & 2 & 2 & 3 & 2 & 3 & 3 & 3 & 1 \\ 4 & 1 & 1 & 1 & 1 & 2 & 1 & 1 & 2 & 2 & 2 & 1 & 1 & 2 & 3 & 2 & 3 & 2 & 3 & 2 & 1 & 2 & 1 & 2 & 1 \\ 5 & 1 & 2 & 1 & 2 & 2 & 2 & 1 & 2 & 1 & 1 & 2 & 1 & 1 & 2 & 2 & 2 & 1 & 3 & 3 & 3 & 3 & 3 & 2 & 1 \\ 6 & 2 & 1 & 1 & 2 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 3 & 2 & 1 & 2 & 2 & 3 & 1 & 1 & 3 & 1 \\ 7 & 1 & 2 & 2 & 1 & 2 & 1 & 2 & 1 & 1 & 1 & 1 & 3 & 3 & 2 & 2 & 1 & 1 & 2 & 2 & 1 & 2 & 3 & 3 & 1 \\ 8 & 2 & 2 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 3 & 2 & 3 & 3 & 1 & 1 & 1 & 3 & 2 & 1 & 2 & 1 \\ 9 & 2 & 2 & 2 & 2 & 1 & 1 & 1 & 2 & 2 & 1 & 1 & 2 & 2 & 2 & 3 & 3 & 3 & 3 & 3 & 1 & 1 & 3 & 3 & 1 \\ 10 & 2 & 2 & 2 & 2 & 1 & 1 & 1 & 2 & 2 & 1 & 1 & 1 & 1 & 3 & 1 & 1 & 1 & 1 & 2 & 3 & 2 & 2 & 1 & 1 \\ 11 & 1 & 1 & 2 & 1 & 1 & 2 & 1 & 1 & 2 & 1 & 2 & 3 & 2 & 2 & 2 & 1 & 2 & 1 & 3 & 3 & 1 & 1 & 1 & 1 \\ 12 & 2 & 2 & 2 & 1 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 1 & 3 & 3 & 2 & 3 & 3 & 2 & 1 & 3 & 1 & 3 & 1 & 1 \\ 13 & 1 & 2 & 1 & 2 & 2 & 2 & 1 & 2 & 1 & 1 & 2 & 3 & 3 & 3 & 3 & 3 & 2 & 1 & 2 & 2 & 1 & 2 & 3 & 1 \\ 14 & 1 & 1 & 2 & 1 & 1 & 2 & 1 & 1 & 2 & 1 & 2 & 1 & 3 & 1 & 1 & 3 & 1 & 3 & 1 & 1 & 3 & 2 & 3 & 1 \\ 15 & 2 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 1 & 1 & 1 & 1 & 3 & 2 & 3 & 1 & 3 & 3 & 2 & 2 & 3 & 1 & 1 & 1 \\ 16 & 1 & 2 & 2 & 1 & 2 & 1 & 2 & 1 & 1 & 1 & 1 & 2 & 2 & 3 & 3 & 2 & 2 & 3 & 1 & 3 & 3 & 2 & 1 & 1 \\ 17 & 2 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 1 & 1 & 1 & 3 & 2 & 3 & 1 & 2 & 1 & 1 & 1 & 1 & 1 & 3 & 2 & 1 \\ 18 & 1 & 1 & 1 & 1 & 2 & 1 & 1 & 2 & 2 & 2 & 1 & 3 & 1 & 1 & 3 & 1 & 3 & 1 & 1 & 3 & 3 & 3 & 3 & 1 \\ 19 & 2 & 1 & 2 & 2 & 2 & 2 & 1 & 1 & 1 & 2 & 1 & 1 & 2 & 2 & 2 & 2 & 3 & 1 & 1 & 2 & 2 & 2 & 3 & 1 \\ 20 & 2 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 1 & 1 & 1 & 2 & 1 & 1 & 2 & 3 & 2 & 2 & 3 & 3 & 2 & 2 & 3 & 1\end{array}\right]\)
\begin{tabular}{lllllllllllllllllllllllll}
21 & 1 & 2 & 1 & 2 & 1 & 2 & 2 & 1 & 2 & 2 & 1 & 1 & 3 & 1 & 3 & 2 & 2 & 1 & 3 & 1 & 2 & 3 & 1 & 1 \\
22 & 1 & 1 & 2 & 1 & 1 & 2 & 1 & 1 & 2 & 1 & 2 & 2 & 1 & 3 & 3 & 2 & 3 & 2 & 2 & 2 & 2 & 3 & 2 & 1 \\
23 & 2 & 2 & 2 & 1 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 3 & 2 & 1 & 3 & 1 & 1 & 3 & 3 & 2 & 2 & 2 & 2 & 1 \\
24 & 1 & 2 & 2 & 1 & 2 & 1 & 2 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 3 & 3 & 1 & 3 & 2 & 1 & 1 & 2 & 1 \\
25 & 1 & 1 & 2 & 2 & 1 & 1 & 2 & 2 & 1 & 2 & 2 & 1 & 1 & 2 & 3 & 1 & 2 & 2 & 1 & 1 & 1 & 2 & 2 & 1 \\
26 & 1 & 1 & 2 & 2 & 1 & 1 & 2 & 2 & 1 & 2 & 2 & 2 & 2 & 1 & 2 & 3 & 1 & 1 & 2 & 2 & 3 & 3 & 1 & 1 \\
27 & 1 & 1 & 2 & 2 & 1 & 1 & 2 & 2 & 1 & 2 & 2 & 3 & 3 & 3 & 1 & 2 & 3 & 3 & 3 & 3 & 2 & 1 & 3 & 1 \\
28 & 1 & 2 & 1 & 2 & 2 & 2 & 1 & 2 & 1 & 1 & 2 & 2 & 2 & 1 & 1 & 1 & 3 & 2 & 1 & 1 & 2 & 1 & 1 & 1 \\
29 & 2 & 1 & 2 & 2 & 2 & 2 & 1 & 1 & 1 & 2 & 1 & 3 & 1 & 3 & 3 & 3 & 1 & 2 & 3 & 1 & 3 & 1 & 1 & 1 \\
30 & 2 & 2 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 2 & 3 & 1 & 1 & 2 & 2 & 3 & 3 & 2 & 1 & 1 & 2 & 1 & 1 \\
31 & 1 & 2 & 1 & 2 & 1 & 2 & 2 & 1 & 2 & 2 & 1 & 2 & 1 & 3 & 2 & 1 & 1 & 3 & 1 & 2 & 1 & 1 & 3 & 1 \\
32 & 2 & 1 & 1 & 2 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 2 & 3 & 3 & 2 & 1 & 3 & 1 & 3 & 1 & 3 & 2 & 2 & 1 \\
33 & 2 & 2 & 2 & 2 & 1 & 1 & 1 & 2 & 2 & 1 & 1 & 3 & 3 & 1 & 2 & 2 & 2 & 2 & 1 & 2 & 3 & 1 & 2 & 1 \\
34 & 1 & 2 & 1 & 2 & 1 & 2 & 2 & 1 & 2 & 2 & 1 & 3 & 2 & 2 & 1 & 3 & 3 & 2 & 2 & 3 & 3 & 2 & 2 & 1 \\
35 & 2 & 2 & 2 & 1 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 1 & 2 & 1 & 2 & 2 & 1 & 2 & 1 & 3 & 1 & 3 & 1 \\
36 & 1 & 1 & 1 & 1 & 2 & 1 & 1 & 2 & 2 & 2 & 1 & 2 & 3 & 2 & 1 & 2 & 1 & 2 & 3 & 2 & 1 & 2 & 1 & 1 \\
37 & 1 & 1 & 1 & 1 & 2 & 1 & 1 & 2 & 2 & 2 & 1 & 2 & 3 & 2 & 1 & 2 & 1 & 2 & 3 & 2 & 1 & 2 & 1 &. \\
38 & 1 & 1 & 1 & 1 & 2 & 1 & 1 & 2 & 2 & 2 & 1 & 2 & 3 & 2 & 1 & 2 & 1 & 2 & 3 & 2 & 1 & 2 & 1 &. \\
39 & 1 & 1 & 1 & 1 & 2 & 1 & 1 & 2 & 2 & 2 & 1 & 2 & 3 & 2 & 1 & 2 & 1 & 2 & 3 & 2 & 1 & 2 & 1 &. \\
40 & 1 & 1 & 1 & 1 & 2 & 1 & 1 & 2 & 2 & 2 & 1 & 2 & 3 & 2 & 1 & 2 & 1 & 2 & 3 & 2 & 1 & 2 & 1 &.
\end{tabular}

Here is the iteration history for the augmentation.

\section*{Augment a Design}

Design Refinement History
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Design} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Row, Col}} & Current & \multicolumn{2}{|l|}{Best} \\
\hline & & & D-Efficiency & D-Efficiency & Notes \\
\hline 0 & Init & ial & 97.0559 & 97.0559 & Ini \\
\hline 1 & & art & 97.0788 & 97.0788 & Pre, Mut, Ann \\
\hline 1 & 37 & 5 & 97.0805 & 97.0805 & \\
\hline 1 & 37 & 8 & 97.0816 & 97.0816 & \\
\hline 1 & 37 & 9 & 97.1049 & 97.1049 & \\
\hline 1 & 37 & 11 & 97.1133 & 97.1133 & \\
\hline 1 & 37 & 13 & 97.1177 & 97.1177 & \\
\hline 1 & 38 & 1 & 97.1410 & 97.1410 & \\
\hline 1 & 38 & 2 & 97.1605 & 97.1605 & \\
\hline 1 & 38 & 3 & 97.1729 & 97.1729 & \\
\hline 1 & 38 & 4 & 97.1822 & 97.1822 & \\
\hline 1 & 38 & 6 & 97.1905 & 97.1905 & \\
\hline 1 & 38 & 8 & 97.1944 & 97.1944 & \\
\hline 1 & 39 & 2 & 97.1991 & 97.1991 & \\
\hline 1 & 39 & 13 & 97.2007 & 97.2007 & \\
\hline 1 & 39 & 19 & 97.2007 & 97.2007 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 1 & 409 & 97.2007 & 97.2007 & \\
\hline 1 & 4010 & 97.2007 & 97.2007 & \\
\hline 1 & 3718 & 97.2023 & 97.2023 & \\
\hline 1 & 373 & 97.2028 & 97.2028 & \\
\hline 1 & 374 & 97.2028 & 97.2028 & \\
\hline 1 & 3723 & 97.2043 & 97.2043 & \\
\hline 1 & End & 97.2043 & & \\
\hline 2 & Start & 97.2043 & 97.2043 & Pre, Mut, Ann \\
\hline 2 & 4021 & 97.2043 & 97.2043 & \\
\hline 2 & 382 & 97.2043 & 97.2043 & \\
\hline 2 & 409 & 97.2043 & 97.2043 & \\
\hline 2 & 4021 & 97.2043 & 97.2043 & \\
\hline 2 & End & 97.2043 & & \\
\hline 3 & Start & 97.2043 & 97.2043 & Pre, Mut, Ann \\
\hline 3 & End & 97.2043 & & \\
\hline 4 & Start & 97.2002 & & Pre, Mut, Ann \\
\hline 4 & 3912 & 97.2043 & 97.2043 & \\
\hline 4 & 3923 & 97.2043 & 97.2043 & \\
\hline 4 & 3916 & 97.2043 & 97.2043 & \\
\hline 4 & End & 97.2043 & & \\
\hline 5 & Start & 97.2043 & 97.2043 & Pre, Mut, Ann \\
\hline 5 & \(37 \quad 3\) & 97.2043 & 97.2043 & \\
\hline 5 & 3715 & 97.2043 & 97.2043 & \\
\hline 5 & End & 97.2043 & & \\
\hline 6 & Start & 97.2043 & 97.2043 & Pre, Mut, Ann \\
\hline 6 & 401 & 97.2043 & 97.2043 & \\
\hline 6 & 3916 & 97.2043 & 97.2043 & \\
\hline 6 & 3816 & 97.2043 & 97.2043 & \\
\hline 6 & End & 97.2043 & & \\
\hline
\end{tabular}

NOTE: Stopping since it appears that no improvement is possible.

Notice that the macro goes straight into the design refinement stage. Also notice that in the iteration history, only rows 37 through 40 are changed. Here is the design. The last four rows are the holdouts.

\section*{Augment a Design}


This code does the same thing only using the holdouts=4 option instead.
```

title 'Augment a Design';
%mktex(n=36, seed=292)
%mktex(2 ** 11 3 ** 12, n=40, init=randomized,
holdouts=4, seed=513, options=nosort)
proc print data=design(firstobs=37); run;

```

Here are the holdout observations, which are the same as we saw previously.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{25}{|c|}{Augment a Design} \\
\hline 0 & & & & & & & & & & x & x & x & x & x & x & x & x & x & x & x & x & x & x & \\
\hline b & x & x & x & x & x & x & x & x & x & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & \\
\hline s & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 & 1 & 2 & 3 & W \\
\hline 37 & 1 & 2 & 2 & 2 & 2 & 1 & 1 & 2 & 1 & 1 & 1 & 3 & 2 & 3 & 3 & 2 & 1 & 2 & 1 & 3 & 1 & 3 & 1 & . \\
\hline 38 & 2 & 2 & 2 & 1 & 2 & 1 & 2 & 2 & 1 & 1 & 1 & 2 & 2 & 1 & 2 & 3 & 3 & 3 & 1 & 1 & 3 & 2 & 3 & . \\
\hline 39 & 1 & 2 & 2 & 2 & 2 & 2 & 2 & 1 & 2 & 2 & 2 & 3 & 3 & 3 & 1 & 2 & 1 & 3 & 2 & 1 & 3 & 2 & 3 & - \\
\hline 40 & 2 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 1 & 2 & 1 & 2 & 3 & 2 & 1 & 3 & 2 & 1 & 1 & 2 & 1 & - \\
\hline
\end{tabular}

\section*{Partial Profiles and Restrictions}

Partial-profile designs (Chrzan and Elrod, 1995) are used when there are many attributes but no more than a few of them are allowed to vary at a time. Chrzan and Elrod show an example where respondents must choose between vacuum cleaners that vary along 20 different attributes: Brand, Price, Warranty, Horsepower, and so on. It is difficult for respondents to simultaneously evaluate that many attributes, so it is better if they are only exposed to a few at a time.

\section*{Pair-wise Partial Profile Choice Design}

Here for example is a partial profile design for 20 two-level factors, with 5 varying at a time, with the factors that are not shown printed with an ordinary missing value.
\begin{tabular}{llllllllllllllllll}
. &. &. &. &. &. &. &. &. & 2 &. & 2 &. & 2 &. & 1 &. &.
\end{tabular}\(e_{l}\).
```

. 1 . 1 . }12\mathrm{ 2
. . . }12\mathrm{ . 1 . 2 1
1 . }21\mathrm{ 1 2 .
2 1 . . . 2 2 . 2
. 2 2 1 . 1 . . . 2
2 2 2 2 . . . 1 .
. . . . 1 . 2 2 1 2 .
. . 1 . . . 1 . . 1 . . . 1 . . . 1 . .
. 1 . . . 2 . 2 . 2 2 . .
. 2 2 . . 2 1 2 . . .

```

A design like this could be used to make a binary choice experiment. For example, the last run has factors \(6,7,10,11\), and 17 varying. Assume they are all yes-no factors ( 1 yes, 2 no). Subjects could be offered a choice between these two profiles:
```

x6 = no, x7 = no, x10 = no, x11 = yes, x17 = no
x6 = yes, x7 = yes, x10 = yes, x11 = no, x17 = yes

```

The first profile came directly from the design and the second came from shifting the design: yes \(\rightarrow\) no, and no \(\rightarrow\) yes. Partial-profile designs have become very popular among some researchers.
Here is the code that generated and printed the partial profile design.
```

title 'Partial Profiles';
%mktex(3 ** 20, n=41, partial=5, seed=292, maxdesigns=1)
%mktlab(values=. 1 2, nfill=99)
data _null_; set final(firstobs=2); put (x1-x20) (2.); run;

```

A \(3^{20}\) design is requested in 41 runs. The three levels are yes, no, and not shown. Forty-one runs will give us 40 partial profiles and one more run with just all attributes not shown (all ones in the original design before reassigning levels). When we ask for partial profiles, in this case partial=5, we are imposing a constraint that the number of 2 's and 3 's in each run equal 5 and the number of 1's equal 15. This makes the sum of the coded variables constant in each run and hence introduces a linear dependency (the sum of the coded variables is proportional to the intercept). The way we avoid having the linear dependency is by adding this additional row where all attributes are set to the not shown level. The sum of the coded variables for this row will be different than the constant sum for the other rows and hence will eliminate the linear dependency we would otherwise have.

The \%MktLab macro reassigns the levels \(1,2,3\) to ., 1,2 where . will mean not shown. Normally the \%MktLab macro complains about using missing values for levels, because missing values are used in the key= data set as fillers when some factors have more levels than others. Encountering missing levels normally indicates an error. We can allow for missing levels by specifying nfill=99. Then the macro considers levels of 99 to be invalid, not missing. A DATA step prints the design excluding the constant (all not shown) first row.

This next section of code takes this design and turns it into a partial-profile choice design. It reads each profile in the design, and outputs it. If the level is not missing, the code changes 1 to 2 and 2 to 1 and outputs the new profile. The next step uses the \%ChoicEff macro to evaluate the design.

We specified zero=none for now to see exactly which parameters we can estimate and which ones we cannot. This usage of the \%ChoicEff macro is similar to what we saw in the food product example on page 260. Our choice design is specified on data= and the same data set, with just the Set variable kept, is specified on the init= option. The number of choice sets, 40 (we drop the constant choice set), number of alternatives, 2 , and assumed betas, a vector of zeros, are also specified. Zero internal iterations are requested since we want a design evaluation, not an attempt to improve the design.
```

data des(drop=i);
Set = _n_;
set final(firstobs=2);
array x[20];
output;
do i = 1 to 20;
if n(x[i]) then do; if x[i] = 1 then x[i] = 2; else x[i] = 1; end;
end;
output;
run;
%choiceff(data=des,
model=class(x1-x20 / zero=none),
nsets=40, nalts=2,
beta=zero, init=des(keep=set),
intiter=0)

```

Here is the last part of the output.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Partial Profiles} \\
\hline & Variable & & & & Standard \\
\hline n & Name & Label & Variance & DF & Error \\
\hline 1 & x 11 & x1 1 & 0.51210 & 1 & 0.71561 \\
\hline 2 & x12 & x12 & . & 0 & . \\
\hline 3 & x 21 & x2 1 & 0.53230 & 1 & 0.72959 \\
\hline 4 & x22 & x2 2 & . & 0 & . \\
\hline 5 & x31 & x3 1 & 0.37021 & 1 & 0.60845 \\
\hline 6 & x32 & x3 2 & . & 0 & . \\
\hline 7 & x 41 & x411 & 0.49818 & 1 & 0.70582 \\
\hline 8 & x 42 & x4 2 & . & 0 & . \\
\hline 9 & x51 & x5 1 & 0.51016 & 1 & 0.71425 \\
\hline 10 & x52 & x5 2 & . & 0 & . \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 11 & x61 & x6 1 & 0.52252 & 1 & 0.72285 \\
\hline 12 & x62 & x6 2 & . & 0 & . \\
\hline 13 & x71 & x7 1 & 0.54267 & 1 & 0.73666 \\
\hline 14 & x72 & x7 2 & . & 0 & . \\
\hline 15 & x81 & x8 1 & 0.49567 & 1 & 0.70404 \\
\hline 16 & x82 & x8 2 & . & 0 & . \\
\hline 17 & x91 & x9 1 & 0.51694 & 1 & 0.71898 \\
\hline 18 & x92 & x9 2 & . & 0 & . \\
\hline 19 & x 101 & \(\times 101\) & 0.50651 & 1 & 0.71170 \\
\hline 20 & x102 & \(\times 102\) & . & 0 & . \\
\hline 21 & x111 & \(\times 111\) & 0.48852 & 1 & 0.69894 \\
\hline 22 & x 112 & \(\times 112\) & . & 0 & . \\
\hline 23 & x 121 & \(\times 121\) & 0.50283 & 1 & 0.70910 \\
\hline 24 & x 122 & \(\times 122\) & . & 0 & . \\
\hline 25 & x 131 & \(\times 131\) & 0.56443 & 1 & 0.75128 \\
\hline 26 & x 132 & \(\times 132\) & . & 0 & . \\
\hline 27 & x141 & \(\times 141\) & 0.55872 & 1 & 0.74747 \\
\hline 28 & x142 & \(\times 142\) & . & 0 & . \\
\hline 29 & x151 & \(\times 151\) & 0.49168 & 1 & 0.70120 \\
\hline 30 & x152 & \(\times 152\) & . & 0 & . \\
\hline 31 & x161 & \(\times 161\) & 0.50164 & 1 & 0.70827 \\
\hline 32 & x162 & x16 2 & . & 0 & . \\
\hline 33 & x171 & \(\times 171\) & 0.59184 & 1 & 0.76931 \\
\hline 34 & x172 & \(\times 172\) & . & 0 & . \\
\hline 35 & x 181 & \(\times 181\) & 0.45818 & 1 & 0.67689 \\
\hline 36 & x182 & \(\times 182\) & . & 0 & . \\
\hline 37 & x191 & \(\times 191\) & 0.35190 & 1 & 0.59321 \\
\hline 38 & x192 & \(\times 192\) & . & 0 & . \\
\hline 39 & x201 & \(\times 201\) & 0.46177 & 1 & 0.67954 \\
\hline 40 & x202 & \(\times 202\) & . & 0 & . \\
\hline & & \multicolumn{4}{|c|}{=} \\
\hline & & \multicolumn{4}{|c|}{20} \\
\hline
\end{tabular}

We see that one parameter is estimable for each factor and that is the parameter for the 1 or yes level. The \%ChoicEff macro prints a list of all redundant variables.
```

Redundant Variables:
x12 x22 x32 x42 x52 x62 x72 x82 x92 x102 x112 x122 x132 x142 x152 x162 x172 x182
x192 x202

```

We can cut this list into our program and drop those terms.
```

%choiceff(data=des,
model=class(x1-x20 / zero=none),
nsets=40, nalts=2,
beta=zero, init=des(keep=set),
intiter=0, drop=x12 x22 x32 x42 x52 x62 x72 x82 x92 x102
x112 x122 x132 x142 x152 x162 x172 x182 x192 x202);

```

Here is the last part of the output.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Partial Profiles} \\
\hline \multicolumn{3}{|c|}{Variable} & \multicolumn{3}{|r|}{Standard} \\
\hline n & Name & Label & Variance & DF & Error \\
\hline 1 & x 11 & x11 & 0.51210 & 1 & 0.71561 \\
\hline 2 & x 21 & x2 1 & 0.53230 & 1 & 0.72959 \\
\hline 3 & x31 & x3 1 & 0.37021 & 1 & 0.60845 \\
\hline 4 & x 41 & x41 & 0.49818 & 1 & 0.70582 \\
\hline 5 & x 51 & x5 1 & 0.51016 & 1 & 0.71425 \\
\hline 6 & x 61 & x6 1 & 0.52252 & 1 & 0.72285 \\
\hline 7 & x71 & x71 & 0.54267 & 1 & 0.73666 \\
\hline 8 & x81 & x8 1 & 0.49567 & 1 & 0.70404 \\
\hline 9 & x91 & x9 1 & 0.51694 & 1 & 0.71898 \\
\hline 10 & x101 & x10 1 & 0.50651 & 1 & 0.71170 \\
\hline 11 & x111 & x11 1 & 0.48852 & 1 & 0.69894 \\
\hline 12 & x121 & x12 1 & 0.50283 & 1 & 0.70910 \\
\hline 13 & x131 & x13 1 & 0.56443 & 1 & 0.75128 \\
\hline 14 & x141 & x 141 & 0.55872 & 1 & 0.74747 \\
\hline 15 & x151 & x15 1 & 0.49168 & 1 & 0.70120 \\
\hline 16 & x161 & x16 1 & 0.50164 & 1 & 0.70827 \\
\hline 17 & x171 & x17 1 & 0.59184 & 1 & 0.76931 \\
\hline 18 & x181 & x18 1 & 0.45818 & 1 & 0.67689 \\
\hline 19 & x191 & x19 1 & 0.35190 & 1 & 0.59321 \\
\hline 20 & x201 & x20 1 & 0.46177 & 1 & 0.67954 \\
\hline & & & & = & \\
\hline & & & & 20 & \\
\hline
\end{tabular}

\section*{Linear Partial Profile Design}

Here is another example. Say you would like to make a design in 36 runs with 12 three-level factors, but you want only four of them to be considered at a time. You would need to create four-level factors with one of the levels meaning not shown. You also need to ask for a design in 37 runs, because with partial profiles, one run must be all-constant. Here is a partial profile request with the \%MktEx macro using the partial= option.
```

title 'Partial Profiles';
%mktex(4 ** 12, n=37, partial=4, seed=462, maxdesigns=1)
%mktlab(values=. 1 2 3, nfill=99)
proc print; run;

```

The iteration history will proceed like before, so we will not discuss it. Here is the final \(D\)-efficiency.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{\begin{tabular}{l}
Partial Profiles \\
The OPTEX Procedure
\end{tabular}} \\
\hline Design Number & D-Efficiency & A-Efficiency & G-Efficiency & Average Prediction Standard Error \\
\hline 1 & 49.4048 & 22.4346 & 100.0000 & 1.0000 \\
\hline
\end{tabular}

With partial-profile designs, \(D\)-efficiency will typically be much less than we are accustomed to seeing with other types of designs. Here is the design.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|c|}{Partial Profiles} \\
\hline Obs & x 1 & x2 & x3 & x4 & x5 & x6 & x7 & x8 & x9 & x10 & x11 & x 12 \\
\hline 1 & . & . & . & . & . & . & . & . & . & . & . & . \\
\hline 2 & . & . & . & . & . & 1 & . & 1 & 1 & . & 1 & . \\
\hline 3 & 3 & 1 & . & 2 & . & . & . & 2 & . & . & . & . \\
\hline 4 & . & . & . & 3 & . & 2 & . & . & 3 & . & 3 & . \\
\hline 5 & 2 & 3 & - & . & . & . & . & . & . & 1 & 3 & . \\
\hline 6 & 1 & 2 & . & 3 & 3 & . & . & . & - & . & . & . \\
\hline 7 & . & 3 & . & . & . & . & 2 & 3 & 3 & . & . & . \\
\hline 8 & . & 2 & . & 2 & - & . & 3 & . & . & 3 & . & . \\
\hline 9 & . & . & 1 & . & . & 3 & . & 1 & . & 2 & . & . \\
\hline 10 & . & . & . & 2 & 2 & 1 & . & . & . & . & 2 & . \\
\hline 11 & 1 & . & 2 & . & . & . & 3 & . & . & . & 2 & . \\
\hline 12 & . & . & 3 & . & 1 & . & . & . & 3 & 1 & . & . \\
\hline 13 & 3 & 2 & . & . & . & . & . & . & . & . & 2 & 3 \\
\hline 14 & . & . & 2 & 2 & 3 & . & . & . & . & . & . & 3 \\
\hline 15 & . & . & 1 & . & 2 & . & . & . & . & 2 & 1 & . \\
\hline 16 & 2 & . & 3 & . & . & 2 & . & 3 & . & . & . & . \\
\hline 17 & . & 2 & 2 & . & . & 1 & 1 & . & . & . & . & . \\
\hline 18 & 1 & . & . & . & \(\cdot\) & 1 & . & \(\cdot\) & . & 3 & . & 3 \\
\hline 19 & . & . & . & . & 2 & . & 1 & 1 & . & . & . & 1 \\
\hline 20 & . & 3 & . & . & 1 & 2 & . & . & . & . & . & 2 \\
\hline 21 & 3 & . & . & . & 3 & 1 & 3 & . & . & . & . & . \\
\hline 22 & . & 3 & 3 & 1 & . & . & . & . & 2 & . & . & . \\
\hline 23 & 3 & . & 2 & 3 & - & . & . & - & . & 3 & . & . \\
\hline 24 & . & . & . & . & . & 3 & 1 & . & . & . & 1 & 1 \\
\hline 25 & . & . & 1 & - & . & . & 1 & 2 & . & - & 2 & . \\
\hline 26 & 2 & . & . & 1 & . & . & . & . & 3 & . & . & 2 \\
\hline 27 & & & & 1 & & 2 & 2 & & & 1 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 28 & . & - & - & 1 & 1 & . & . & 3 & . & . & 3 & . \\
\hline 29 & . & 1 & . & . & 3 & . & . & . & . & 3 & 2 & . \\
\hline 30 & - & . & . & . & . & 1 & . & 2 & . & 2 & . & 1 \\
\hline 31 & . & . & . & 2 & . & . & 1 & . & 1 & 2 & . & - \\
\hline 32 & . & 1 & 1 & . & . & . & . & - & 1 & . & . & 1 \\
\hline 33 & . & . & 3 & . & . & - & 2 & - & . & . & 3 & 2 \\
\hline 34 & 2 & . & . & . & 1 & . & 2 & . & 2 & . & . & . \\
\hline 35 & . & 1 & . & 3 & . & . & 3 & . & . & . & - & 3 \\
\hline 36 & . & . & . & . & . & . & . & 3 & 2 & 1 & . & 2 \\
\hline 37 & - & - & . & . & 2 & 3 & . & 2 & 1 & . & . & . \\
\hline
\end{tabular}

Notice that the first run is constant. For all other runs, exactly four factors vary and have levels not missing.

\section*{Choice from Triples; Partial Profiles Constructed Using Restrictions}

The approach we just saw, constructing partial profiles using the partial= option, would be fine for a full-profile conjoint study or a pair-wise choice study with level shifts. However, it would not be good for a more general choice experiment with more alternatives. For a choice experiment, you would have to have full-profile restrictions on each alternative, and you must have the same attributes varying in each choice set. There is currently no automatic way to request this in the \%MktEx macro, so you have to program the restrictions yourself. To specify restrictions for choice designs, you need to take into consideration the number of attributes that may vary within each alternative, which ones, and which attributes go with which alternatives. Fortunately, that is not too difficult. See page 231 for another example of restrictions.

In this section, we will construct a partial-profile design for a purely generic study (unbranded), with ten attributes and three alternatives. Each attribute will have three levels, and each alternative will be a bundle of attributes. Partial-profile designs have the advantage that subjects do not have to consider all attributes at once. However, this is also a bit of a disadvantage as well in the sense that the subjects must constantly shift from considering one set of attributes to considering a different set. For this reason, it can be helpful to get more information out of each choice, and having more than two alternatives per choice set accomplishes this.

This example will have several parts. As we mentioned in the chair study, we will usually not directly use the \(\% \mathrm{MktEx}\) macro to generate designs for generic studies. Instead, we will use the \%MktEx macro to generate a candidate set of partial profile choice sets. Next, the design will be checked and turned into a candidate set of generic choice sets. Next, the \%MktDups macro will be called to ensure there are no duplicate choice sets. Finally, the \%ChoicEff macro will be used to create an efficient generic partial-profile choice design.

Before we go into any more detail on making this design, let's skip ahead and look at a couple of potential choice sets so it will be clear what we are trying to accomplish and why. Here are two potential choice sets still in linear design format.
```

2 2 1 3 1 2 1 2 2 2 2 1 3 3 2 1 1 2 1 2 2 % 2 % 3 2 1 1 3 3 3 3 2 2
2 2 1 3 2 2 1 3 2 3 3 2 2 3 1 2 1 1 1 1 1 2 2 3 3 3 2 1 2 3 2

```

Here are the same two potential choice sets, but now arrayed in choice design format.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Set} & \multirow[b]{2}{*}{x 1} & \multirow[b]{2}{*}{x 2} & \multirow[b]{2}{*}{x3} & \multicolumn{3}{|l|}{Partial Profiles} & \multirow[b]{2}{*}{x7} & \multirow[b]{2}{*}{x8} & \multirow[b]{2}{*}{x9} & \multirow[b]{2}{*}{x 10} \\
\hline & & & & x4 & x5 & x6 & & & & \\
\hline \multirow[t]{3}{*}{1} & 2 & 2 & 1 & 3 & 1 & 2 & 1 & 2 & 2 & 2 \\
\hline & 2 & 1 & 3 & 2 & 1 & 1 & 2 & 1 & 2 & 2 \\
\hline & 2 & 3 & 2 & 1 & 1 & 3 & 3 & 3 & 2 & 2 \\
\hline \multirow[t]{3}{*}{2} & 2 & 2 & 1 & 3 & 2 & 2 & 1 & 3 & 2 & 3 \\
\hline & 3 & 2 & 2 & 3 & 1 & 2 & 1 & 1 & 1 & 1 \\
\hline & 1 & 2 & 3 & 3 & 3 & 2 & 1 & 2 & 3 & 2 \\
\hline
\end{tabular}

Each choice set has 10 three-level factors and three alternatives. Four attributes are constant in each choice set: x 1 , x 5 , x 9 , and x 10 in the first choice set, and \(\mathrm{x} 2, \mathrm{x} 4, \mathrm{x} 6\), and x 7 in the second choice set. We do not need an all-constant choice set like we saw in our earlier partial-profile designs, nor do we need an extra level for not varying. In this approach, we will simply construct choice sets for four constant attributes (they may be constant at 1,2 , or 3 ) and six varying attributes (with levels: 1,2 , and 3). Respondents will be given a choice task along the lines of "Given a set of products that differ on these attributes but are identical in all other respects, which one would you choose?". They would then be shown a list of differences.

Here is the code for making the candidate set.
```

title 'Partial Profiles';
%macro partprof;
sum = 0;
do k = 1 to 10;
sum = sum + (x[k] = x[k+10] \& x[k] = x[k+20]);
end;
bad = abs(sum - 4);
%mend;
%mktex(3 ** 30, n=198, optiter=0, tabiter=0, maxtime=0, order=random,
out=sasuser.cand, restrictions=partprof, seed=382)

```

We requested a design in 198 runs with 30 three-level factors. The 198 was chosen arbitrarily as a number divisible by \(3 \times 3=9\) that would give us approximately 200 candidate sets. The first ten factors, \(\mathrm{x} 1-\mathrm{x} 10\), will make the first alternative, the next ten, \(\mathrm{x} 11-\mathrm{x} 20\), will make the second alternative, and the last ten, x21-x30, will make the third alternative. We will want six attributes to be nonconstant at a time. The PartProf macro will count the number of constant attributes: \(\mathrm{x} 1=\mathrm{x} 11=\mathrm{x} 21, \mathrm{x} 2\) \(=\mathrm{x} 12=\mathrm{x} 22, \ldots\), and \(\mathrm{x} 10=\mathrm{x} 20=\mathrm{x} 30\). If the number of constant attributes is four, our choice set conforms. If it is more or less than four, our choice set is in violation of the restrictions. The badness is the absolute difference between four and the number of constant attributes.

We specified order=random, which specifies that the columns are to be looped over in a random order in the coordinate exchange algorithm. When partial= is specified, as it was in the previous partial-profile examples, order=random is the default. Whenever you are imposing partial-profile restrictions without using the partial= option, you should specify order=random. Without order=random, \%MktEx will tend to put the nonconstant levels close together in each row.

Our goal in this step is to make a candidate set of potential partial-profile choice sets, not to make a final experimental design. Ideally, it would be nice if we had more than random candidates - it would be nice if our candidate generation code at least made some attempt to ensure that our attributes are approximately orthogonal and balanced across attributes both between and within alternatives. This is a big problem ( 30 factors and 198 runs) with restrictions, so \(\% \mathrm{MktEx}\) macro will run slowly by default. It is not critical that we allow the macro to spend a great deal of time optimizing linear model \(D\)-efficiency. For this reason, we use some of the more esoteric number-of-iterations options. We specify optiter=0, which specifies no OPTEX iterations, since with large partial profile studies, we will never have a good candidate set for PROC OPTEX to search. We also specify tabiter=0 since a tabled initial design will be horrible for this problem. We specified the maxtime=0 option so that the macro will just create two candidate designs using the coordinate-exchange algorithm with a random initialization and make one attempt to refine the best one.


NOTE: Quitting the algorithm search step after 2.46 minutes and 1 designs.


The macro finds a design that conforms to the restrictions (shown by the Conforms note) that is \(93.41 \%\) \(D\)-efficient, and the final design is \(96.55 \% D\)-efficient. This step took 7 minutes.

Here is the rest of the code for making the partial-profile choice design.
```

%mktkey(x1-x30)
data key;
input (x1-x10) (\$);
datalines;
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
x11 x12 x13 x14 x15 x16 x17 x18 x19 x20
x21 x22 x23 x24 x25 x26 x27 x28 x29 x30
;
%mktroll(design=sasuser.cand, key=key, out=rolled)
%mktdups(generic, data=rolled, out=nodups, factors=x1-x10, nalts=3);
proc print data=nodups(obs=9); id set; by set; run;
%choiceff(data=nodups, model=class(x1-x10), seed=495,
iter=10, nsets=27, nalts=3, options=nodups, beta=zero)
proc print data=best; id set; by notsorted set; var x1-x10; run;

```

The \%MktKey macro is run to generate the full list of names in the range x1-x30 for pasting into the next step. A KEY data set is created and the \(\% \mathrm{MktRoll}\) macro is run to create a generic choice design from the linear candidate design.

The next step runs the \%MktDups macro, which we have not used in previous examples. The \%MktDups macro can check a design to see if there are any duplicate runs and output just the unique sets. For a generic study like this, it can also check to make sure there are no duplicate choice sets taking into account the fact that two choice sets can be duplicates even if the alternatives are not in the same order. The \%MktDups step names in a positional parameter the type of design as a generic choice design. It names the input data set and the output data set that will contain the design with any duplicates removed. It names the factors in the choice design \(\mathrm{x} 1-\mathrm{x} 10\) and the number of alternatives. The result is a data set called NODUPS. Here are the first 3 candidate choice sets.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{Partial Profiles} \\
\hline Set & _Alt_ & x1 & x2 & x3 & x 4 & x5 & x6 & x7 & x8 & x9 & x10 \\
\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 1 & 3 & 2 \\
\hline & 2 & 3 & 3 & 2 & 2 & 1 & 3 & 3 & 1 & 3 & 2 \\
\hline & 3 & 2 & 2 & 3 & 3 & 1 & 2 & 1 & 1 & 3 & 2 \\
\hline 2 & 1 & 1 & 1 & 1 & 3 & 1 & 3 & 1 & 3 & 3 & 3 \\
\hline & 2 & 1 & 2 & 2 & 1 & 1 & 1 & 2 & 3 & 3 & 1 \\
\hline & 3 & 1 & 3 & 3 & 2 & 1 & 2 & 3 & 3 & 3 & 2 \\
\hline 3 & 1 & 1 & 1 & 1 & 3 & 2 & 3 & 1 & 2 & 3 & 1 \\
\hline & 2 & 1 & 1 & 1 & 2 & 2 & 1 & 3 & 3 & 1 & 3 \\
\hline & 3 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 1 & 2 & 2 \\
\hline
\end{tabular}

The \%ChoicEff macro is called to search for an efficient choice design. The model specification class ( \(\mathrm{x} 1-\mathrm{x} 10\) ) specifies a generic model with 10 attributes. The option iter=10 specifies more than the default number of iterations (the default is 2 designs). We ask for a design with 27 sets and 3 alternatives. Furthermore, we ask for no duplicate choice sets and specify an assumed beta vector of zero. Here are some of the results from the \%ChoicEff macro.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Partial Profiles} \\
\hline & Design & Iteration D-E & Efficiency & & D-Error \\
\hline & 1 & 0 & 2.368953 & & 0.422127 \\
\hline & & 1 & 2.904996 & & 0.344235 \\
\hline & & 2 & 2.912352 & & 0.343365 \\
\hline \multicolumn{6}{|l|}{\multirow[t]{3}{*}{}} \\
\hline & & & & & \\
\hline & & & & & \\
\hline & Design & Iteration D-E & Efficiency & & D-Error \\
\hline & 10 & 0 & 2.489370 & & 0.401708 \\
\hline & & 1 & 2.873127 & & 0.348053 \\
\hline & & 2 & 2.918003 & & 0.342700 \\
\hline & & 3 & 2.936918 & & 0.340493 \\
\hline & & 4 & 2.940485 & & 0.340080 \\
\hline \multicolumn{6}{|c|}{Partial Profiles} \\
\hline \multicolumn{6}{|c|}{Final Results} \\
\hline \multicolumn{6}{|c|}{Design 10} \\
\hline \multicolumn{6}{|c|}{Choice Sets 27} \\
\hline \multicolumn{6}{|c|}{Alternatives 3} \\
\hline \multicolumn{6}{|c|}{D-Efficiency 2.940485} \\
\hline \multicolumn{6}{|c|}{D-Error 0.34008} \\
\hline \multicolumn{6}{|c|}{Partial Profiles} \\
\hline \multicolumn{5}{|c|}{Variable} & Standard \\
\hline n & Name & Label & Variance & DF & Error \\
\hline 1 & x11 & x1 1 & 0.39481 & 1 & 0.62834 \\
\hline 2 & x 12 & x12 & 0.37025 & 1 & 0.60848 \\
\hline 3 & x21 & x2 1 & 0.38889 & 1 & 0.62361 \\
\hline 4 & x 22 & x2 2 & 0.39423 & 1 & 0.62788 \\
\hline 5 & x31 & x3 1 & 0.42249 & 1 & 0.64999 \\
\hline 6 & x32 & x3 2 & 0.44601 & 1 & 0.66784 \\
\hline 7 & x 41 & x41 & 0.40120 & 1 & 0.63340 \\
\hline 8 & x 42 & x4 2 & 0.44805 & 1 & 0.66937 \\
\hline 9 & x51 & x5 1 & 0.36874 & 1 & 0.60724 \\
\hline 10 & x52 & x5 2 & 0.37101 & 1 & 0.60910 \\
\hline
\end{tabular}
\begin{tabular}{llllll}
11 & x61 & x6 1 & 0.37513 & 1 & 0.61248 \\
12 & x62 & x6 2 & 0.36982 & 1 & 0.60813 \\
13 & x71 & x7 1 & 0.48395 & 1 & 0.69566 \\
14 & x72 & x7 2 & 0.46304 & 1 & 0.68047 \\
15 & x81 & x8 1 & 0.41310 & 1 & 0.64273 \\
16 & x82 & x8 2 & 0.41780 & 1 & 0.64637 \\
17 & x91 & x9 1 & 0.42968 & 1 & 0.65550 \\
18 & x92 & x9 2 & 0.43238 & 1 & 0.65755 \\
19 & x101 & x10 1 & 0.48179 & 1 & 0.69411 \\
20 & x102 & x10 2 & 0.42340 & 1 & 0.65069
\end{tabular}

Here is part of the design.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Set} & \multirow[b]{2}{*}{x1} & \multirow[b]{2}{*}{x2} & \multirow[b]{2}{*}{x3} & \multicolumn{3}{|l|}{Partial Profiles} & \multirow[b]{2}{*}{x7} & \multirow[b]{2}{*}{x8} & \multirow[b]{2}{*}{x9} & \multirow[b]{2}{*}{x 10} \\
\hline & & & & x4 & x5 & x 6 & & & & \\
\hline \multirow[t]{3}{*}{30} & 1 & 2 & 2 & 2 & 1 & 1 & 1 & 1 & 3 & 3 \\
\hline & 1 & 2 & 3 & 1 & 2 & 1 & 2 & 2 & 3 & 3 \\
\hline & 1 & 3 & 1 & 3 & 3 & 1 & 3 & 3 & 3 & 3 \\
\hline \multirow[t]{3}{*}{70} & 2 & 1 & 1 & 1 & 1 & 2 & 1 & 3 & 1 & 2 \\
\hline & 3 & 2 & 1 & 3 & 2 & 3 & 1 & 1 & 1 & 2 \\
\hline & 1 & 3 & 1 & 2 & 3 & 1 & 1 & 2 & 1 & 2 \\
\hline \multirow[t]{3}{*}{104} & 2 & 2 & 2 & 3 & 2 & 2 & 1 & 2 & 3 & 1 \\
\hline & 2 & 3 & 2 & 1 & 1 & 2 & 3 & 3 & 2 & 1 \\
\hline & 2 & 1 & 2 & 2 & 3 & 2 & 2 & & 1 & 1 \\
\hline
\end{tabular}

The design has 27 choice sets. The choice set numbers shown in this output correspond to the original set numbers in the candidate design not the choice set numbers in the final design.

\title{
Multinomial Logit Models
}

\author{
Ying So \\ Warren F. Kuhfeld
}

\begin{abstract}
Multinomial logit models are used to model relationships between a polytomous response variable and a set of regressor variables. The term "multinomial logit model" includes, in a broad sense, a variety of models. The cumulative logit model is used when the response of an individual unit is restricted to one of a finite number of ordinal values. Generalized logit and conditional logit models are used to model consumer choices. This article focuses on the statistical techniques for analyzing discrete choice data and discusses fitting these models using SAS/STAT software.*
\end{abstract}

\section*{Introduction}

Multinomial logit models are used to model relationships between a polytomous response variable and a set of regressor variables. These polytomous response models can be classified into two distinct types, depending on whether the response variable has an ordered or unordered structure.

In an ordered model, the response \(Y\) of an individual unit is restricted to one of \(m\) ordered values. For example, the severity of a medical condition may be: none, mild, and severe. The cumulative logit model assumes that the ordinal nature of the observed response is due to methodological limitations in collecting the data that results in lumping together values of an otherwise continuous response variable (McKelvey and Zavoina 1975). Suppose \(Y\) takes values \(y_{1}, y_{2}, \ldots, y_{m}\) on some scale, where \(y_{1}<y_{2}<\ldots<y_{m}\). It is assumed that the observable variable is a categorized version of a continuous latent variable \(U\) such that
\[
Y=y_{i} \Leftrightarrow \alpha_{i-1}<U \leq \alpha_{i}, i=1, \ldots, m
\]
where \(-\infty=\alpha_{0}<\alpha_{1}<\ldots<\alpha_{m}=\infty\). It is further assumed that the latent variable \(U\) is determined by the explanatory variable vector \(\mathbf{x}\) in the linear form \(U=-\boldsymbol{\beta}^{\prime} \mathbf{x}+\epsilon\), where \(\boldsymbol{\beta}\) is a vector of regression coefficients and \(\epsilon\) is a random variable with a distribution function \(F\). It follows that
\[
\operatorname{Pr}\left\{Y \leq y_{i} \mid \mathbf{x}\right\}=F\left(\alpha_{i}+\boldsymbol{\beta}^{\prime} \mathbf{x}\right)
\]

If \(F\) is the logistic distribution function, the cumulative model is also known as the proportional odds model. You can use PROC LOGISTIC or PROC PROBIT directly to fit the cumulative logit models. Although the cumulative model is the most widely used model for ordinal response data, other useful models include the adjacent-categories logit model and the continuation-ratio model (Agresti 1990).

\footnotetext{
*This chapter was presented at SUGI 20 by Ying So and can also be found in the SUGI 20 proceedings. Copies of this article (TS-689F) are available on the web http://support.sas.com/techsup/tnote/tnote_stat.html\#market .
}

In an unordered model, the polytomous response variable does not have an ordered structure. Two classes of models, the generalized logit models and the conditional logit models, can be used with nominal response data. The generalized logit model consists of a combination of several binary logits estimated simultaneously. For example, the response variable of interest is the occurrence or nonoccurrence of infection after a Caesarean section with two types of (I,II) infection. Two binary logits are considered: one for type I infection versus no infection and the other for type II infection versus no infection. The conditional logit model has been used in biomedical research to estimate relative risks in matched case-control studies. The nuisance parameters that correspond to the matched sets in an unconditional analysis are eliminated by using a conditional likelihood that contains only the relative risk parameters (Breslow and Day 1980). The conditional logit model was also introduced by McFadden (1974) in the context of econometrics.

In studying consumer behavior, an individual is presented with a set of alternatives and asked to choose the most preferred alternative. Both the generalized logit and conditional logit models are used in the analysis of discrete choice data. In a conditional logit model, a choice among alternatives is treated as a function of the characteristics of the alternatives, whereas in a generalized logit model, the choice is a function of the characteristics of the individual making the choice. In many situations, a mixed model that includes both the characteristics of the alternatives and the individual is needed for investigating consumer choice.

Consider an example of travel demand. People are asked to choose between travel by auto, plane or public transit (bus or train). The following SAS statements create the data set TRAVEL. The variables AutoTime, PlanTime, and TranTime represent the total travel time required to get to a destination by using auto, plane, or transit, respectively. The variable Age represents the age of the individual being surveyed, and the variable Chosen contains the individual's choice of travel mode.
data travel;
input AutoTime
datalines; PlanTime TranTime Age Chosen \$;

In this example, AutoTime, PlanTime, and TranTime are alternative-specific variables, whereas Age is a characteristic of the individual. You use a generalized logit model to investigate the relationship between the choice of transportation and Age, and you use a conditional logit model to investigate how travel time affects the choice. To study how the choice depends on both the travel time and age of the individual, you need to use a mixed model that incorporates both types of variables.

A survey of the literature reveals a confusion in the terminology for the nominal response models. The term "multinomial logit model" is often used to describe the generalized logit model. The mixed logit is sometimes referred to as the multinomial logit model in which the generalized logit and the conditional logit models are special cases.

The following sections describe discrete choice models, illustrate how to use SAS/STAT software to fit these models, and discuss cross-alternative effects.

\section*{Modeling Discrete Choice Data}

Consider an individual choosing among \(m\) alternatives in a choice set. Let \(\Pi_{j k}\) denote the probability that individual \(j\) chooses alternative \(k\), let \(\mathbf{X}_{j}\) represent the characteristics of individual \(j\), and let \(\mathbf{Z}_{j k}\) be the characteristics of the \(k\) th alternative for individual \(j\). For example, \(\mathbf{X}_{j}\) may be an age and each \(\mathbf{Z}_{j k}\) a travel time.

The generalized logit model focuses on the individual as the unit of analysis and uses individual characteristics as explanatory variables. The explanatory variables, being characteristics of an individual, are constant over the alternatives. For example, for each of the \(m\) travel modes, \(\mathbf{X}_{j}=(1 \text { age })^{\prime}\), and for the first subject, \(\mathbf{X}_{1}=(132)^{\prime}\). The probability that individual \(j\) chooses alternative \(k\) is
\[
\Pi_{j k}=\frac{\exp \left(\boldsymbol{\beta}_{k}^{\prime} \mathbf{X}_{j}\right)}{\sum_{l=1}^{m} \exp \left(\boldsymbol{\beta}_{l}^{\prime} \mathbf{X}_{j}\right)}=\frac{1}{\left.\sum_{l=1}^{m} \exp \left[\left(\boldsymbol{\beta}_{l}-\boldsymbol{\beta}_{k}\right)^{\prime} \mathbf{X}_{j}\right)\right]}
\]
\(\boldsymbol{\beta}_{1}, \ldots, \boldsymbol{\beta}_{m}\) are \(m\) vectors of unknown regression parameters (each of which is different, even though \(\mathbf{X}_{j}\) is constant across alternatives). Since \(\sum_{k=1}^{m} \Pi_{j k}=1\), the \(m\) sets of parameters are not unique. By setting the last set of coefficients to null (that is, \(\boldsymbol{\beta}_{m}=\mathbf{0}\) ), the coefficients \(\boldsymbol{\beta}_{k}\) represent the effects of the \(\mathbf{X}\) variables on the probability of choosing the \(k\) th alternative over the last alternative. In fitting such a model, you estimate \(m-1\) sets of regression coefficients.

In the conditional logit model, the explanatory variables \(\mathbf{Z}\) assume different values for each alternative and the impact of a unit of \(\mathbf{Z}\) is assumed to be constant across alternatives. For example, for each of the \(m\) travel modes, \(\mathbf{Z}_{j k}=(\text { time })^{\prime}\), and for the first subject, \(\mathbf{Z}_{11}=(10)^{\prime}, \mathbf{Z}_{12}=(4.5)^{\prime}\), and \(\mathbf{Z}_{13}=(10.5)^{\prime}\). The probability that the individual \(j\) chooses alternative \(k\) is
\[
\Pi_{j k}=\frac{\exp \left(\boldsymbol{\theta}^{\prime} \mathbf{Z}_{j k}\right)}{\sum_{l=1}^{m} \exp \left(\boldsymbol{\theta}^{\prime} \mathbf{Z}_{j l}\right)}=\frac{1}{\sum_{l=1}^{m} \exp \left[\boldsymbol{\theta}^{\prime}\left(\mathbf{Z}_{j l}-\mathbf{Z}_{j k}\right)\right]}
\]
\(\boldsymbol{\theta}\) is a single vector of regression coefficients. The impact of a variable on the choice probabilities derives from the difference of its values across the alternatives.

For the mixed logit model that includes both characteristics of the individual and the alternatives, the choice probabilities are
\[
\Pi_{j k}=\frac{\exp \left(\boldsymbol{\beta}_{k}^{\prime} \mathbf{X}_{j}+\boldsymbol{\theta}^{\prime} \mathbf{Z}_{j k}\right)}{\sum_{l=1}^{m} \exp \left(\boldsymbol{\beta}_{l}^{\prime} \mathbf{X}_{j}+\boldsymbol{\theta}^{\prime} \mathbf{Z}_{j l}\right)}
\]
\(\boldsymbol{\beta}_{1}, \ldots, \boldsymbol{\beta}_{m-1}\) and \(\boldsymbol{\beta}_{m} \equiv \mathbf{0}\) are the alternative-specific coefficients, and \(\boldsymbol{\theta}\) is the set of global coefficients.

\section*{Fitting Discrete Choice Models}

The CATMOD procedure in SAS/STAT software directly fits the generalized logit model. SAS/STAT software does not yet have a procedure that is specially designed to fit the conditional or mixed logit models. However, with some preliminary data processing, you can use the PHREG procedure to fit these models.

The PHREG procedure fits the Cox proportional hazards model to survival data (refer to SAS/STAT documentation). The partial likelihood of Breslow has the same form as the likelihood in a conditional logit model.

Let \(z_{l}\) denote the vector of explanatory variables for individual \(l\). Let \(t_{1}<t_{2}<\ldots<t_{k}\) denote \(k\) distinct ordered event times. Let \(d_{i}\) denote the number of failures at \(t_{i}\). Let \(s_{i}\) be the sum of the vectors \(z_{l}\) for those individuals that fail at \(t_{i}\), and let \(\mathcal{R}_{i}\) denote the set of indices for those who are at risk just before \(t_{i}\).

The Breslow (partial) likelihood is
\[
L_{B}(\boldsymbol{\theta})=\prod_{i=1}^{k} \frac{\exp \left(\boldsymbol{\theta}^{\prime} s_{i}\right)}{\left[\sum_{l \in \mathcal{R}_{i}} \exp \left(\boldsymbol{\theta}^{\prime} z_{l}\right)\right]^{d_{i}}}
\]

In a stratified analysis, the partial likelihood is the product of the partial likelihood for each individual stratum. For example, in a study of the time to first infection from a surgery, the variables of a patient consist of Time (time from surgery to the first infection), Status (an indicator of whether the observation time is censored, with value 2 identifying a censored time), Z 1 and Z 2 (explanatory variables thought to be related to the time to infection), and \(\operatorname{Grp}\) (a variable identifying the stratum to which the observation belongs). The specification in PROC PHREG for fitting the Cox model using the Breslow likelihood is as follows:
```

proc phreg;
model time*status(2) = z1 z2 / ties=breslow;
strata grp;
run;

```

To cast the likelihood of the conditional logit model in the form of the Breslow likelihood, consider \(m\) artificial observed times for each individual who chooses one of \(m\) alternatives. The \(k\) th alternative is chosen at time 1 ; the choices of all other alternatives (second choice, third choice, ...) are not observed and would have been chosen at some later time. So a choice variable is coded with an observed time value of 1 for the chosen alternative and a larger value, 2, for all unchosen (unobserved or censored alternatives). For each individual, there is exactly one event time (1) and \(m-1\) nonevent times, and the risk set just prior to this event time consists of all the \(m\) alternatives. For individual \(j\) with alternative-specific characteristics \(\mathbf{Z}_{j l}\), the Breslow likelihood is then
\[
L_{B}(\boldsymbol{\theta})=\frac{\exp \left(\boldsymbol{\theta}^{\prime} \mathbf{Z}_{j k}\right)}{\sum_{l=1}^{m} \exp \left(\boldsymbol{\theta}^{\prime} \mathbf{Z}_{j l}\right)}
\]

This is precisely the probability that individual \(j\) chooses alternative \(k\) in a conditional logit model. By stratifying on individuals, you get the likelihood of the conditional logit model. Note that the observed time values of 1 and 2 are chosen for convenience; however, the censored times have to be larger than the event time to form the correct risk set.

Before you invoke PROC PHREG to fit the conditional logit, you must arrange your data in such a way that there is a survival time for each individual-alternative. In the example of travel demand, let Subject identify the individuals, let TravTime represent the travel time for each mode of transportation, and let Choice have a value 1 if the alternative is chosen and 2 otherwise. The Choice variable is used as the artificial time variable as well as a censoring variable in PROC PHREG. The following SAS statements reshape the data set TRAVEL into data set CHOICE and display the first nine observations:
```

data choice(keep=subject mode travtime choice);
array times[3] autotime plantime trantime;
array allmodes[3] \$ _temporary_ ('Auto' 'Plane' 'Transit');
set travel;
Subject = _n_;
do i = 1 to 3;
Mode = allmodes[i];
TravTime = times[i];
Choice = 2 - (chosen eq mode);
output;
end;
run;
proc print data=choice(obs=9);
run;

```
\begin{tabular}{cclrc} 
Obs & Subject & Mode & \begin{tabular}{c} 
Trav \\
Time
\end{tabular} & Choice \\
1 & & & & \\
2 & 1 & Auto & 10.0 & 2 \\
3 & 1 & Plane & 4.5 & 1 \\
4 & 2 & Transit & 10.5 & 2 \\
5 & 2 & Plane & 5.5 & 1 \\
6 & 2 & Transit & 7.0 & 2 \\
7 & 3 & Auto & 4.5 & 2 \\
8 & 3 & Plane & 6.0 & 2 \\
9 & 3 & Transit & 5.5 & 2 \\
& & & &
\end{tabular}

Notice that each observation in TRAVEL corresponds to a block of three observations in CHOICE, exactly one of which is chosen.

The following SAS statements invoke PROC PHREG to fit the conditional logit model. The Breslow likelihood is requested by specifying ties=breslow. Choice is the artificial time variable, and a value of 2 identifies censored times. Subject is used as a stratification variable.
```

proc phreg data=choice;
model choice*choice(2) = travtime / ties=breslow;
strata subject;
title 'Conditional Logit Model Using PHREG';
run;

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Conditional Logit Model Using PHREG} \\
\hline \multicolumn{7}{|c|}{The PHREG Procedure} \\
\hline \multicolumn{7}{|c|}{Analysis of Maximum Likelihood Estimates} \\
\hline Variable & DF & \begin{tabular}{l}
Parameter \\
Estimate
\end{tabular} & Standard Error & Chi-Square & Pr > ChiSq & \begin{tabular}{l}
Hazard \\
Ratio
\end{tabular} \\
\hline TravTime & 1 & -0.26549 & 0.10215 & 6.7551 & 0.0093 & 0.767 \\
\hline
\end{tabular}

To study the relationship between the choice of transportation and the age of people making the choice, the analysis is based on the generalized logit model. You can use PROC CATMOD directly to fit the generalized logit model (refer to SAS/STAT User's Guide, Vol. 1). In the following invocation of PROC CATMOD, Chosen is the response variable and Age is the explanatory variable:
```

proc catmod data=travel;
direct age;
model chosen=age;
title 'Multinomial Logit Model Using Catmod';
run;

```
                                    Response Profiles
\begin{tabular}{cl} 
Response & Chosen \\
\hline----------- \\
1 & Auto \\
2 & Plane \\
3 & Transit
\end{tabular}


Note that there are two intercept coefficients and two slope coefficients for Age. The first Intercept and the first Age coefficients correspond to the effect on the probability of choosing auto over transit, and the second intercept and second age coefficients correspond to the effect of choosing plane over transit.

Let \(\mathbf{X}_{j}\) be a \((p+1)\)-vector representing the characteristics of individual \(j\). The generalized logit model can be cast in the framework of a conditional model by defining the global parameter vector \(\boldsymbol{\theta}\) and the alternative-specific regressor variables \(\mathbf{Z}_{j k}\) as follows:
\(\boldsymbol{\theta}=\left[\begin{array}{c}\boldsymbol{\beta}_{1} \\ \boldsymbol{\beta}_{2} \\ \vdots \\ \boldsymbol{\beta}_{m-1}\end{array}\right] \quad \mathbf{Z}_{j 1}=\left[\begin{array}{c}\mathbf{X}_{j} \\ \mathbf{0} \\ \vdots \\ \mathbf{0}\end{array}\right] \quad \mathbf{Z}_{j 2}=\left[\begin{array}{c}\mathbf{0} \\ \mathbf{X}_{j} \\ \mathbf{0} \\ \vdots \\ \mathbf{0}\end{array}\right] \quad \ldots \quad \mathbf{Z}_{j, m-1}=\left[\begin{array}{c}\mathbf{0} \\ \vdots \\ \mathbf{0} \\ \mathbf{X}_{j}\end{array}\right] \quad \mathbf{Z}_{j m}=\left[\begin{array}{c}\mathbf{0} \\ \vdots \\ \mathbf{0}\end{array}\right]\)
where the \(\mathbf{0}\) is a \((p+1)\)-vector of zeros. The probability that individual \(j\) chooses alternative \(k\) for the generalized logit model is put in the form that corresponds to a conditional logit model as follows:
\[
\begin{aligned}
\Pi_{j k} & =\frac{\exp \left(\boldsymbol{\beta}_{k}^{\prime} \mathbf{X}_{j}\right)}{\sum_{l=1}^{m} \exp \left(\boldsymbol{\beta}_{l}^{\prime} \mathbf{X}_{j}\right)} \\
& =\frac{\exp \left(\boldsymbol{\theta}^{\prime} \mathbf{Z}_{j k}\right)}{\sum_{l=1}^{m} \exp \left(\boldsymbol{\theta}^{\prime} \mathbf{Z}_{j l}\right)}
\end{aligned}
\]

Here, the vector \(\mathbf{X}_{j}\) representing the characteristics of individual \(j\) includes the element 1 for the intercept parameter (provided that the intercept parameters are to be included in the model).

By casting the generalized logit model into a conditional logit model, you can then use PROC PHREG to analyze the generalized logit model. In the example of travel demand, the alternative-specific variables Auto, Plane, AgeAuto, and AgePlane are created from the individual characteristic variable Age. The following SAS statements reshape the data set TRAVEL into data set CHOICE2 and display the first nine observations:
```

data choice2;
array times[3] autotime plantime trantime;
array allmodes[3] \$ _temporary_ ('Auto' 'Plane' 'Transit');
set travel;
Subject = _n_;
do i = 1 to 3;
Mode = allmodes[i];
TravTime = times[i];
Choice = 2 - (chosen eq mode);
Auto = (i eq 1);
Plane = (i eq 2);
AgeAuto = auto * age;
AgePlane = plane * age;
output;
end;
keep subject mode travtime choice auto plane ageauto ageplane;
run;
proc print data=choice2(obs=9);
run;

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Obs & Subject & Mode & \begin{tabular}{l}
Trav \\
Time
\end{tabular} & Choice & Auto & Plane & Age
Auto & \[
\begin{gathered}
\text { Age } \\
\text { Plane }
\end{gathered}
\] \\
\hline 1 & 1 & Auto & 10.0 & 2 & 1 & 0 & 32 & 0 \\
\hline 2 & 1 & Plane & 4.5 & 1 & 0 & 1 & 0 & 32 \\
\hline 3 & 1 & Transit & 10.5 & 2 & 0 & 0 & 0 & 0 \\
\hline 4 & 2 & Auto & 5.5 & 1 & 1 & 0 & 13 & 0 \\
\hline 5 & 2 & Plane & 4.0 & 2 & 0 & 1 & 0 & 13 \\
\hline 6 & 2 & Transit & 7.5 & 2 & 0 & 0 & 0 & 0 \\
\hline 7 & 3 & Auto & 4.5 & 2 & 1 & 0 & 41 & 0 \\
\hline 8 & 3 & Plane & 6.0 & 2 & 0 & 1 & 0 & 41 \\
\hline 9 & 3 & Transit & 5.5 & 1 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

The following SAS statements invoke PROC PHREG to fit the generalized logit model:
```

proc phreg data=choice2;
model choice*choice(2) = auto plane ageauto ageplane /
ties=breslow;
strata subject;
title 'Generalized Logit Model Using PHREG';
run;

```
```

 Generalized Logit Model Using PHREG
 The PHREG Procedure
 Analysis of Maximum Likelihood Estimates
    ```
\begin{tabular}{lrrrrrr} 
Variable & DF & \begin{tabular}{r} 
Parameter \\
Estimate
\end{tabular} & \begin{tabular}{r} 
Standard \\
Error
\end{tabular} & Chi-Square & Pr \(>\) ChiSq & \begin{tabular}{r} 
Hazard \\
Ratio
\end{tabular} \\
Auto & 1 & 3.04494 & 2.42682 & 1.5743 & 0.2096 & 21.009 \\
Plane & 1 & 2.72121 & 2.29289 & 1.4085 & 0.2353 & 15.199 \\
AgeAuto & 1 & -0.07097 & 0.06517 & 1.1859 & 0.2762 & 0.931 \\
AgePlane & 1 & -0.05000 & 0.05958 & 0.7045 & 0.4013 & 0.951
\end{tabular}

By transforming individual characteristics into alternative-specific variables, the mixed logit model can be analyzed as a conditional logit model.

Analyzing the travel demand data for the effects of both travel time and age of individual requires the same data set as the generalized logit model, only now the TravTime variable will be used as well. The following SAS statements use PROC PHREG to fit the mixed logit model:
```

proc phreg data=choice2;
model choice*choice(2) = auto plane ageauto ageplane travtime /
ties=breslow;
strata subject;
title 'Mixed Logit Model Using PHREG';
run;

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Mixed Logit Model Using PHREG} \\
\hline \multicolumn{7}{|c|}{The PHREG Procedure} \\
\hline \multicolumn{7}{|c|}{Analysis of Maximum Likelihood Estimates} \\
\hline Variable & DF & Parameter Estimate & Standard Error & Chi-Square & Pr > ChiSq & \begin{tabular}{l}
Hazard \\
Ratio
\end{tabular} \\
\hline Auto & 1 & 2.50069 & 2.39585 & 1.0894 & 0.2966 & 12.191 \\
\hline Plane & 1 & -2.77912 & 3.52929 & 0.6201 & 0.4310 & 0.062 \\
\hline AgeAuto & 1 & -0.07826 & 0.06332 & 1.5274 & 0.2165 & 0.925 \\
\hline AgePlane & 1 & 0.01695 & 0.07439 & 0.0519 & 0.8198 & 1.017 \\
\hline TravTime & 1 & -0.60845 & 0.27126 & 5.0315 & 0.0249 & 0.544 \\
\hline
\end{tabular}

A special case of the mixed logit model is the conditional logit model with alternative-specific constants. Each alternative in the model can be represented by its own intercept, which captures the unmeasured desirability of the alternative.
```

proc phreg data=choice2;
model choice*choice(2) = auto plane travtime / ties=breslow;
strata subject;
title 'Conditional Logit Model with Alternative Specific Constants';
run;

```

Conditional Logit Model with Alternative Specific Constants
The PHREG Procedure

Analysis of Maximum Likelihood Estimates
\begin{tabular}{lcrrrrr} 
Variable & DF & \begin{tabular}{r} 
Parameter \\
Estimate
\end{tabular} & \begin{tabular}{r} 
Standard \\
Error
\end{tabular} & Chi-Square & Pr > ChiSq & \begin{tabular}{r} 
Hazard \\
Ratio
\end{tabular} \\
Auto & 1 & -0.11966 & 0.70820 & 0.0285 & 0.8658 & 0.887 \\
Plane & 1 & -1.63145 & 1.24251 & 1.7241 & 0.1892 & 0.196 \\
TravTime & 1 & -0.48665 & 0.20725 & 5.5139 & 0.0189 & 0.615
\end{tabular}

With transit as the reference mode, the intercept for auto, which is negative, may reflect the inconvenience of having to drive over traveling by bus/train, and the intercept for plane may reflect the high expense of traveling by plane over bus/train.

\section*{Cross-Alternative Effects}

Discrete choice models are often derived from the principle of maximum random utility. It is assumed that an unobserved utility \(V_{k}\) is associated with the \(k\) th alternative, and the response function \(Y\) is
determined by
\[
Y=k \Leftrightarrow V_{k}=\max \left\{V_{l}, 1 \leq l \leq m\right\}
\]

Both the generalized logit and the conditional logit models are based on the assumption that \(V_{1}, \ldots, V_{m}\) are independently distributed and each follows an extreme maxima value distribution (Hoffman and Duncan, 1988). An important property of such models is Independence from Irrelevant Alternatives (IIA); that is, the ratio of the choice probabilities for any two alternatives for a particular observation is not influenced systematically by any other alternatives. IIA can be tested by fitting a model that contains all the cross-alternative effects and examining the significance of these effects. The crossalternative effects pick up a variety of IIA violations and other sources of error in the model. (See pages 213, 219, 228, and 358 for other discussions of IIA.)

In the example of travel demand, there may be separate effects for the three travel modes and travel times. In addition, there may be cross-alternative effects for travel times. Not all the effects are estimable, only two of the three intercepts and three of the six cross-alternative effects can be estimated. The following SAS statements create the design variables for all the cross-alternative effects and display the first nine observations:
```

* Number of alternatives in each choice set;
%let m = 3;
data choice3;
drop i j k autotime plantime trantime;
 * Values of the variable CHOSEN;
array allmodes[\&m] \$
temporary ('Auto' 'Plane' 'Transit');
 * Travel times for the alternatives;
array times[\&m] autotime plantime trantime;
 * New variables that will contain the design:;
array inters[\&m]
Auto /*intercept for auto */
Plane /*intercept for plane */
Transit; /*intercept for transit */
array cross[%eval(\&m * \&m)]
TimeAuto /*time of auto alternative */
PlanAuto /*cross effect of plane on auto */
TranAuto /*cross effect of transit on auto */
AutoPlan /*cross effect of auto on plane */
TimePlan /*time of plane alternative */
TranPlan /*cross effect of transit on plane*/
AutoTran /*cross effect of auto on transit */
PlanTran /*cross effect of plane on transit*/
TimeTran; /*time of transit alternative */
set travel;
subject = _n_;

```
* Create \&m observations for each choice set;
do \(i=1\) to \&m;
Mode = allmodes[i]; /* this alternative */
Travtime \(=\) times[i]; /* travel time */
Choice = 2 - (chosen eq mode);/* 1 - chosen */
do \(j=1\) to \&m;
inters[j] \(=(i\) eq \(j) ; / *\) mode indicator \(* /\)
do \(k=1\) to \&m;
* (j=k) - time, otherwise, cross effect;
cross [\&m* ( \(j-1\) ) +k ] =times [k]*inters [j];
end;
end;
output;
end;
run;
proc print data=choice3(obs=9) label noobs;
var subject mode travtime choice auto plane transit timeauto timeplan timetran autoplan autotran planauto plantran tranauto tranplan;
run;
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline subject & \multicolumn{2}{|c|}{Mode} & Travtime & Choice & & Auto & & Plane & Transit \\
\hline 1 & \multicolumn{2}{|c|}{Auto} & 10.0 & 2 & & 1 & & 0 & 0 \\
\hline 1 & \multicolumn{2}{|c|}{Plane} & 4.5 & 1 & & 0 & & 1 & 0 \\
\hline 1 & \multicolumn{2}{|r|}{Transit} & 10.5 & 2 & & 0 & & 0 & 1 \\
\hline 2 & \multicolumn{2}{|c|}{Auto} & 5.5 & 1 & & 1 & & 0 & 0 \\
\hline 2 & \multicolumn{2}{|c|}{Plane} & 4.0 & 2 & & 0 & & 1 & 0 \\
\hline 2 & \multicolumn{2}{|r|}{Transit} & 7.5 & 2 & & 0 & & 0 & 1 \\
\hline 3 & \multicolumn{2}{|c|}{Auto} & 4.5 & 2 & & 1 & & 0 & 0 \\
\hline 3 & \multicolumn{2}{|c|}{Plane} & 6.0 & 2 & & 0 & & 1 & 0 \\
\hline 3 & \multicolumn{2}{|r|}{Transit} & 5.5 & 1 & & 0 & & 0 & 1 \\
\hline Time & Time & Time & Auto & Auto & Plan & & Plan & Tran & Tran \\
\hline Auto & Plan & Tran & Plan & Tran & Auto & & Tran & Auto & Plan \\
\hline 10.0 & 0.0 & 0.0 & 0.0 & 0.0 & 4.5 & & 0.0 & 10.5 & 0.0 \\
\hline 0.0 & 4.5 & 0.0 & 10.0 & 0.0 & 0.0 & & 0.0 & 0.0 & 10.5 \\
\hline 0.0 & 0.0 & 10.5 & 0.0 & 10.0 & 0.0 & & 4.5 & 0.0 & 0.0 \\
\hline 5.5 & 0.0 & 0.0 & 0.0 & 0.0 & 4.0 & & 0.0 & 7.5 & 0.0 \\
\hline 0.0 & 4.0 & 0.0 & 5.5 & 0.0 & 0.0 & & 0.0 & 0.0 & 7.5 \\
\hline 0.0 & 0.0 & 7.5 & 0.0 & 5.5 & 0.0 & & 4.0 & 0.0 & 0.0 \\
\hline 4.5 & 0.0 & 0.0 & 0.0 & 0.0 & 6.0 & & 0.0 & 5.5 & 0.0 \\
\hline 0.0 & 6.0 & 0.0 & 4.5 & 0.0 & 0.0 & & 0.0 & 0.0 & 5.5 \\
\hline 0.0 & 0.0 & 5.5 & 0.0 & 4.5 & 0.0 & & 6.0 & 0.0 & 0.0 \\
\hline
\end{tabular}

PROC PHREG allows you to specify test statements for testing linear hypotheses of the parameters. The test is a Wald test, which is based on the asymptotic normality of the parameter estimators. The following SAS statements invoke PROC PHREG to fit the so called "Mother Logit" model that includes all the cross-alternative effects. The TEST statement, with label IIA, specifies the null hypothesis that cross-alternative effects AutoPlan, PlanTran, and TranAuto are 0. Since only three cross-alternative effects are estimable and these are the first cross-alternative effects specified in the model, they account for all the cross-alternative effects in the model.
```

proc phreg data=choice3;
model choice*choice(2) = auto plane transit timeauto timeplan
timetran autoplan plantran tranauto planauto tranplan
autotran / ties=breslow;
IIA: test autoplan,plantran,tranauto;
strata subject;
title 'Mother Logit Model';
run;

```

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & Analysis & aximum Li & ihood Est & & \\
\hline Variable & DF & Parameter & \multicolumn{2}{|l|}{Standard} & Pr > ChiSq & Hazard \\
\hline Auto & 1 & -0.73812 & 3.05933 & 0.0582 & 0.8093 & 0.478 \\
\hline Plane & 1 & -3.62435 & 3.48049 & 1.0844 & 0.2977 & 0.027 \\
\hline Transit & 0 & 0 & & . & & . \\
\hline TimeAuto & 1 & -2. 23433 & 1.89921 & 1.3840 & 0.2394 & 0.107 \\
\hline TimePlan & 1 & -0.10112 & 0.68621 & 0.0217 & 0.8829 & 0.904 \\
\hline TimeTran & 1 & 0.09785 & 0.70096 & 0.0195 & 0.8890 & 1.103 \\
\hline AutoPlan & 1 & 0.44495 & 0.68616 & 0.4205 & 0.5167 & 1.560 \\
\hline PlanTran & 1 & -0.53234 & 0.63481 & 0.7032 & 0.4017 & 0.587 \\
\hline TranAuto & 1 & 1.66295 & 1.51193 & 1.2097 & 0.2714 & 5.275 \\
\hline PlanAuto & 0 & 0 & . & . & . & . \\
\hline TranPlan & 0 & 0 & & . & . & . \\
\hline AutoTran & 0 & 0 & - & . & . & \\
\hline
\end{tabular}

Linear Hypotheses Testing Results

Wald
Label Chi-Square DF Pr \(>\) ChiSq
\(\begin{array}{llll}\text { IIA } & 1.6526 & 3 & 0.6475\end{array}\)

The \(\chi^{2}\) statistic for the Wald test is 1.6526 with 3 degrees of freedom, indicating that the crossalternative effects are not statistically significant ( \(p=.6475\) ). A generally more preferable way of testing the significance of the cross-alternative effects is to compare the likelihood of the "Mother logit" model with the likelihood of the reduced model with the cross- alternative effects removed. The following SAS statements invoke PROC PHREG to fit the reduced model:
```

proc phreg data=choice3;
model choice*choice(2) = auto plane transit timeauto
timeplan timetran / ties=breslow;
strata subject;
title 'Reduced Model without Cross-Alternative Effects';
run;

```
Reduced Model without Cross-Alternative Effects

The PHREG Procedure

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics
\begin{tabular}{lrr} 
Criterion & \begin{tabular}{r} 
Without \\
Covariates
\end{tabular} & \begin{tabular}{r} 
With \\
Covariates
\end{tabular} \\
-2 LOG L & 46.142 & 27.153 \\
AIC & 46.142 & 37.153 \\
SBC & 46.142 & 42.376 \\
& \\
Testing Global Null Hypothesis: BETA=0
\end{tabular}
\begin{tabular}{lrrr} 
Test & Chi-Square & DF & Pr > ChiSq \\
& & & \\
Likelihood Ratio & 18.9886 & 5 & 0.0019 \\
Score & 14.4603 & 5 & 0.0129 \\
Wald & 7.3422 & 5 & 0.1964
\end{tabular}
\begin{tabular}{lrrrcrr} 
Variable & DF & \begin{tabular}{r} 
Parameter \\
Estimate
\end{tabular} & \begin{tabular}{r} 
Standard \\
Error
\end{tabular} & Chi-Square & Pr \(>\) ChiSq & \begin{tabular}{r} 
Hazard \\
Ratio
\end{tabular} \\
Auto & 1 & 1.71578 & 1.80467 & 0.9039 & 0.3417 & 5.561 \\
Plane & 1 & -3.60073 & 3.30555 & 1.1866 & 0.2760 & 0.027 \\
Transit & 0 & 0 &. &. &. &. \\
TimeAuto & 1 & -0.79543 & 0.36327 & 4.7946 & 0.0285 & 0.451 \\
TimePlan & 1 & 0.12162 & 0.58954 & 0.0426 & 0.8366 & 1.129 \\
TimeTran & 1 & -0.42184 & 0.25733 & 2.6873 & 0.1012 & 0.656
\end{tabular}

The chi-squared statistic for the likelihood ratio test of IIA is \((27.153-24.781)=2.372\), which is not statistically significant ( \(p=.4989\) ) when compared to a \(\chi^{2}\) distribution with 3 degrees of freedom. This is consistent with the previous result of the Wald test. (See pages 213, 219, 228, and 354 for other discussions of IIA.)

\section*{Final Comments}

For some discrete choice problems, the number of available alternatives is not the same for each individual. For example, in a study of consumer brand choices of laundry detergents as prices change, data are pooled from different locations, not all of which offer a brand that contains potash. The varying choice sets across individuals can easily be accommodated in PROC PHREG. For individual \(j\) who chooses from a set of \(m_{j}\) alternatives, consider \(m_{j}\) artificial times in which the chosen alternative has an event time 1 and the unchosen alternatives have a censored time of 2 . The analysis is carried out in the same fashion as illustrated in the previous section.

Unlike the example of travel demand in which data for each individual are provided, choice data are often given in aggregate form, with choice frequencies indicating the repetition of each choice. One way of dealing with aggregate data is to expand the data to the individual level and carry out the analysis as if you have nonaggregate data. This approach is generally not recommended, because it
defeats the purpose of having a smaller aggregate data set. PROC PHREG provides a FREQ statement that allows you to specify a variable that identifies the frequency of occurrence of each observation. However, with the specification of a FREQ variable, the artificial event time is no longer the only event time in a given stratum, but has ties of the given frequency. With proper stratification, the Breslow likelihood is proportional to the likelihood of the conditional logit model. Thus PROC PHREG can be used to obtain parameter estimates and hypothesis testing results for the choice models.

The ties=discrete option should not be used instead of the ties=breslow option. This is especially detrimental with aggregate choice data because the likelihood that PROC PHREG is maximizing may no longer be the same as the likelihood of the conditional logit model. ties=discrete corresponds to the discrete logistic model for genuinely discrete time scale, which is also suitable for the analysis of case-control studies when there is more than one case in a matched set (Gail, Lubin, and Rubinstein, 1981). For nonaggregate choice data, all ties= options give the same results; however, the resources required for the computation are not the same, with ties=breslow being the most efficient.

Once you have a basic understanding of how PROC PHREG works, you can use it to fit a variety of models for the discrete choice data. The major involvement in such a task lies in reorganizing the data to create the observations necessary to form the correct risk sets and the appropriate design variables. There are many options in PROC PHREG that can also be useful in the analysis of discrete choice data. For example, the offset= option allows you to restrict the coefficient of an explanatory variable to the value of 1 ; the selection= option allows you to specify one of four methods for selecting variables into the model; the outest= option allows you to specify the name of the SAS data set that contains the parameter estimates, based on which you can easily compute the predicted probabilities of the alternatives.

This article deals with estimating parameters of discrete choice models. There is active research in the field of marketing research to use design of experiments to study consumer choice behavior. If you are interested in this area, refer to Carson et al. (1994), Kuhfeld et al. (1994), and Lazari et al. (1994).

\title{
Conjoint Analysis
}

\section*{Warren F. Kuhfeld}

\begin{abstract}
Conjoint analysis is used to study consumers' product preferences and simulate consumer choice. This chapter describes conjoint analysis and provides examples using SAS. Topics include metric and nonmetric conjoint analysis, efficient experimental design, data collection and manipulation, holdouts, brand by price interactions, maximum utility and logit simulators, and change in market share. \({ }^{\dagger}\)
\end{abstract}

\section*{Introduction}

Conjoint analysis is used to study the factors that influence consumers' purchasing decisions. Products possess attributes such as price, color, ingredients, guarantee, environmental impact, predicted reliability, and so on. Consumers typically do not have the option of buying the product that is best in every attribute, particularly when one of those attributes is price. Consumers are forced to make trade-offs as they decide which products to purchase. Consider the decision to purchase a car. Increased size generally means increased safety and comfort. The trade off is an increase in cost and environmental impact and a decrease in gas mileage and maneuverability. Conjoint analysis is used to study these trade-offs.

Conjoint analysis is a popular marketing research technique. It is used in designing new products, changing or repositioning existing products, evaluating the effects of price on purchase intent, and simulating market share. Refer to Green and Rao (1971) and Green and Wind (1975) for early introductions to conjoint analysis, Louviere (1988) for a more recent introduction, and Green and Srinivasan (1990) for a review article.

\section*{Conjoint Measurement}

Conjoint analysis grew out of the area of conjoint measurement in mathematical psychology. Conjoint measurement is used to investigate the joint effect of a set of independent variables on an ordinal-scale-of-measurement dependent variable. The independent variables are typically nominal and sometimes interval-scaled variables. Conjoint measurement simultaneously finds a monotonic scoring of the dependent variable and numerical values for each level of each independent variable. The goal is to monotonically transform the ordinal values to equal the sum of their attribute level values. Hence, conjoint measurement is used to derive an interval variable from ordinal data. The conjoint measurement model is a mathematical model, not a statistical model, since it has no statistical error term.

\footnotetext{
\({ }^{\dagger}\) Copies of this chapter (TS-689G) are available on the web http://support.sas.com/techsup/tnote/tnote_stat.html\#market .
}

\section*{Conjoint Analysis}

Conjoint analysis is based on a main effects analysis-of-variance model. Subjects provide data about their preferences for hypothetical products defined by attribute combinations. Conjoint analysis decomposes the judgment data into components, based on qualitative attributes of the products. A numerical part-worth utility value is computed for each level of each attribute. Large part-worth utilities are assigned to the most preferred levels, and small part-worth utilities are assigned to the least preferred levels. The attributes with the largest part-worth utility range are considered the most important in predicting preference. Conjoint analysis is a statistical model with an error term and a loss function.

Metric conjoint analysis models the judgments directly. When all of the attributes are nominal, the metric conjoint analysis is a simple main-effects ANOVA with some specialized output. The attributes are the independent variables, the judgments comprise the dependent variable, and the part-worth utilities are the \(\beta\) 's, the parameter estimates from the ANOVA model. The following is a metric conjoint analysis model for three factors:
\[
y_{i j k}=\mu+\beta_{1 i}+\beta_{2 j}+\beta_{3 k}+\epsilon_{i j k}
\]
where
\[
\sum \beta_{1 i}=\sum \beta_{2 j}=\sum \beta_{3 k}=0
\]

This model could be used, for example, to investigate preferences for cars that differ on three attributes: mileage, expected reliability, and price. The \(y_{i j k}\) term is one subject's stated preference for a car with the \(i t h\) level of mileage, the \(j t h\) level of expected reliability, and the \(k t h\) level of price. The grand mean is \(\mu\), and the error is \(\epsilon_{i j k}\). The predicted utility for the \(i j k\) product is:
\[
\hat{y}_{i j k}=\hat{\mu}+\hat{\beta}_{1 i}+\hat{\beta}_{2 j}+\hat{\beta}_{3 k}
\]

Nonmetric conjoint analysis finds a monotonic transformation of the preference judgments. The model, which follows directly from conjoint measurement, iteratively fits the ANOVA model until the transformation stabilizes. The \(R^{2}\) increases during every iteration until convergence, when the change in \(R^{2}\) is essentially zero. The following is a nonmetric conjoint analysis model for three factors:
\[
\Phi\left(y_{i j k}\right)=\mu+\beta_{1 i}+\beta_{2 j}+\beta_{3 k}+\epsilon_{i j k}
\]
where \(\Phi\left(y_{i j k}\right)\) designates a monotonic transformation of the variable y .
The \(R^{2}\) for a nonmetric conjoint analysis model will always be greater than or equal to the \(R^{2}\) from a metric analysis of the same data. The smaller \(\mathrm{R}^{2}\) in metric conjoint analysis is not necessarily a disadvantage, since results should be more stable and reproducible with the metric model. Metric conjoint analysis was derived from nonmetric conjoint analysis as a special case. Today, metric conjoint analysis is probably used more often than nonmetric conjoint analysis.
In the SAS System, conjoint analysis is performed with the SAS/STAT procedure TRANSREG (transformation regression). Metric conjoint analysis models are fit using ordinary least squares, and nonmetric conjoint analysis models are fit using an alternating least squares algorithm (Young, 1981; Gifi,
1990). Conjoint analysis is explained more fully in the examples. The "PROC TRANSREG Specifications" section of this chapter starting on page 467 documents the PROC TRANSREG statements and options that are most relevant to conjoint analysis. The "Samples of PROC TRANSREG Usage" section starting on page 476 shows some typical conjoint analysis specifications. This chapter shows some of the SAS programming that is used for conjoint analysis. Alternatively, there is a marketing research GUI that performs conjoint analysis available from the main display manager PMENU by selecting: Solutions \(\rightarrow\) Analysis \(\rightarrow\) Market Research.

\section*{Choice-Based Conjoint}

The meaning of the word "conjoint" has broadened over the years from conjoint measurement to conjoint analysis (which at first always meant what we now call nonmetric conjoint analysis) and later to metric conjoint analysis. Metric and nonmetric conjoint analysis are based on a linear ANOVA model. In contrast, a different technique, discrete choice, is based on the nonlinear multinomial logit model. Discrete choice is sometimes referred to as "choice-based conjoint." This technique is not discussed in this chapter, however it is discussed in detail starting on page 81.

\section*{Preliminaries}

\section*{Design of Experiments}

The design of experiments is a fundamental part of conjoint analysis. \({ }^{\ddagger}\) During conjoint analysis data collection, subjects are asked to judge their preferences for hypothetical products defined by attribute combinations. Experimental designs are used to select the attribute combinations. The factors of an experimental design are variables that have two or more fixed values, or levels. Experiments are performed to study the effects of the factor levels on the response, or dependent variable. In a conjoint study, the factors are the attributes of the hypothetical products or services, and the response is a rating or ranking of product preference. The rows of a design are called runs and correspond to product profiles in a full-profile conjoint study. For example, the following table contains an experimental design with two factors, brand and price. Brand has three levels, Acme, Ajax, and Widget, and price has two levels, \(\$ 1.99\) and \(\$ 2.99\).
\begin{tabular}{|lr|}
\hline \multicolumn{2}{|c|}{\begin{tabular}{c} 
Full-Profile \\
Conjoint
\end{tabular}} \\
\hline Brand & Prici \\
\hline Acme & 1.99 \\
Acme & 2.99 \\
Ajax & 1.99 \\
Ajax & 2.99 \\
Widget & 1.99 \\
Widget & 2.99 \\
\hline
\end{tabular}

This is an example of a full-factorial design. It consists of all possible combinations of the levels of the factors. With five factors, two at four levels and three at five levels (denoted \(4^{2} 5^{3}\) ), there are \(4 \times 4 \times 5 \times 5 \times 5=2000\) combinations in the full-factorial design. Factorial designs allow you to estimate main effects and interactions. A main effect is a simple effect, such as a price or brand effect. In a main effects model, for example, the brand effect is the same at the different prices and the price effect is the same for the different brands. Interactions involve two or more factors, such as a brand by price interaction. In a model with interactions, for example, brand preference is different at the different prices and the price effect is different for the different brands.

In a full-factorial design, all main effects, all two-way interactions, and all higher-order interactions are estimable and uncorrelated. The problem with a full-factorial design is that, for most practical situations, it is too cost-prohibitive and tedious to have subjects consider all possible combinations. For this reason, researchers often use fractional-factorial designs, which have fewer runs than full-factorial designs. The price of having fewer runs is that some effects become confounded. Two effects are confounded or aliased when they are not distinguishable from each other.

A special type of fractional-factorial design is the orthogonal array. An orthogonal array or orthogonal design is one in which all estimable effects are uncorrelated. The term "orthogonal array," as it is sometimes used in practice, is imprecise. It is correctly used to refer to designs that are both orthogonal and balanced, and hence optimal. The term is sometimes also used to refer to designs that are orthogonal but not balanced, and hence not \(100 \%\) efficient and sometimes not even optimal.

\footnotetext{
\({ }^{\ddagger}\) See pages 39 and 84 for more detailed discussions of experimental design.
}

A design is balanced when each level occurs equally often within each factor, which that means the intercept is orthogonal to each effect. Imbalance is a generalized form of nonorthogonality, hence it increases the variances of the parameter estimates and decreases efficiency. Orthogonal designs are often practical for main-effects models when the number of factors is small (say six or fewer) and the number of levels of each factor is small (say four or fewer). However, there are some situations in which orthogonal designs are not practical, such as when
- not all combinations of factor levels are feasible or make sense
- the desired number of runs is not available in an orthogonal design
- a nonstandard model is being used, such as a model with interactions, polynomials, or splines.

When an orthogonal and balanced design is not practical, you must make a choice. One choice is to change the factors and levels to fit some known orthogonal design. This choice is undesirable for obvious reasons. When a suitable orthogonal and balanced design does not exist, efficient nonorthogonal designs can be used instead. Nonorthogonal designs, where some coefficients may be slightly correlated, can be used in all of the situations listed previously. You do not have to adapt every experiment to fit some known orthogonal array. First you choose the number of runs. You are not restricted by the sizes of orthogonal arrays, which come in specific numbers of runs (such as \(16,18,27,32,36\), and so forth) for specific numbers of factors with specific numbers of levels. Then you specify the levels of each of the factors and the number of runs. Algorithms for generating efficient designs select a set of design points that optimize an efficiency criterion. Throughout this book, we will use the \%MktEx macro to find good, efficient experimental designs. The \%MktEx macro is a part of the SAS autocall library. See page 479 for information on installing and using SAS autocall macros. Refer to Kuhfeld, Tobias, and Garratt (1994), page 39, for more information on efficient experimental designs.

The rest of the Design of Experiments section discusses precisely what is meant by an efficient design. It is not critical that you understand the rest of this section before doing a conjoint analysis, and if you wish, you may now skip to The Output Delivery System section on page 366.

The goodness or efficiency of an experimental design can be quantified. Common measures of the efficiency of an ( \(\left.N_{D} \times p\right)\) design matrix \(\mathbf{X}\) are based on the information matrix \(\mathbf{X}^{\prime} \mathbf{X}\). The variancecovariance matrix of the vector of parameter estimates \(\hat{\boldsymbol{\beta}}\) in a least-squares analysis is proportional to \(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\). An efficient design will have a "small" variance matrix, and the eigenvalues of \(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\) provide measures of its "size." The two most prominent efficiency measures are based on quantifying the idea of matrix size by averaging (in some sense) the eigenvalues or variances. A-efficiency is a function of the arithmetic mean of the eigenvalues, which is also the arithmetic mean of the variances and is given by trace \(\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right) / p\). (The trace is the sum of the diagonal elements of a matrix, which is the sum of the eigenvalues.) D-efficiency is a function of the geometric mean of the eigenvalues, which is given by \(\left|\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right|^{1 / p}\). (The determinant, \(\left|\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right|\), is the product of the eigenvalues of \(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\).) A third common efficiency measure, \(G\)-efficiency, is based on \(\sigma_{M}\), the maximum standard error for prediction over the candidate set. All three of these criteria are convex functions of the eigenvalues of \(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\) and hence are usually highly correlated.

For all three criteria, if a balanced and orthogonal design exists, then it has optimum efficiency; conversely, the more efficient a design is, the more it tends toward balance and orthogonality. A design is balanced and orthogonal when \(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\) is diagonal, \(\frac{1}{N_{D}} \mathbf{I}\), for a suitably coded \(\mathbf{X}\). A design is orthogonal when the submatrix of \(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\), excluding the row and column for the intercept, is diagonal; there may be off-diagonal nonzeros for the intercept. A design is balanced when all off-diagonal elements in the intercept row and column are zero.

These measures of efficiency can be scaled to range from 0 to 100 (see page 91 for the orthogonal coding of \(\mathbf{X}\) that must be used with these formulas):
\[
\begin{aligned}
A \text {-efficiency } & =100 \times \frac{1}{N_{D} \operatorname{trace}\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right) / p} \\
D \text {-efficiency } & =100 \times \frac{1}{N_{D}\left|\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right|^{1 / p}} \\
G \text {-efficiency } & =100 \times \frac{\sqrt{p / N_{D}}}{\sigma_{M}}
\end{aligned}
\]

These efficiencies measure the goodness of the design relative to hypothetical orthogonal designs that may not exist, so they are not useful as absolute measures of design efficiency. Instead, they should be used relatively, to compare one design to another for the same situation. Efficiencies that are not near 100 may be perfectly satisfactory.

\section*{The Output Delivery System}

The Output Delivery System (ODS) can be used to customize the output of SAS procedures including PROC TRANSREG, the procedure we use for conjoint analysis. PROC TRANSREG can produce a great deal of information for conjoint analysis, more than we often wish to see. We will use ODS primarily to exclude certain portions of the default conjoint output in which we are usually not interested. This will create a better, more parsimonious display for typical analyses. However, when we need it, we can revert back to getting the full array of information. See page 95 for other examples of customizing output using ODS. You can run the following step once to customize PROC TRANSREG conjoint analysis output.
```

proc template;
edit Stat.Transreg.ParentUtilities;
column Label Utility StdErr tValue Probt Importance Variable;
header title;
define title; text 'Part-Worth Utilities'; space=1; end;
define Variable; print=off; end;
end;
run;

```

Running this step edits the templates for the main conjoint analysis results table and stores a copy in SASUSER. These changes will remain in effect until you delete them. These changes move the variable label to the first column, turn off printing the variable names, and set the table header to "Part-Worth Utilities". These changes assume that each effect in the model has a variable label associated with it, so there is no need to print variable names. This will usually be the case. To return to the default output, run the following.
```

* Delete edited template, restore original template;
proc template;
delete Stat.Transreg.ParentUtilities;
run;

```

By default, PROC TRANSREG prints an ANOVA table for metric conjoint analysis and both univariate and multivariate ANOVA tables for nonmetric conjoint analysis. With nonmetric conjoint analysis, PROC TRANSREG sometimes prints liberal and conservative ANOVA tables. All of the possible

ANOVA tables, along with some header notes, can be suppressed by specifying the following statement before running PROC TRANSREG.
```

ods exclude notes anova liberalanova conservanova
mvanova liberalmvanova conservmvanova;

```

For metric conjoint analysis, this statement can be abbreviated as follows.
ods exclude notes mvanova anova;
The rest of this section gives more details about what the PROC TEMPLATE step does and why. The rest of this section can be helpful if you wish to further customize the output from TRANSREG or some other procedure. Impatient readers may skip ahead to the candy example on page 369 .

We are most interested in the part-worth utilities table in conjoint analysis, which contains the partworth utilities, their standard errors, and the importance of each attribute. We can first use PROC TEMPLATE to identify the template for the utilities table and then edit the template. First, let's have PROC TEMPLATE display the templates for PROC TRANSREG. The source stat.transreg statement specifies that we want to see PROC TEMPLATE source code for the STAT product and the TRANSREG procedure.
```

proc template;
source stat.transreg;
run;

```

If we search the results for "Utilities", we find the template for the table Stat.Transreg.ParentUtilities. Here is the template for the part-worth utilities table.
```

define table Stat.Transreg.ParentUtilities;
notes "Parent Utilities Table for Proc Transreg";
dynamic FootMessages TitleText;
column Label Utility StdErr tValue Probt Importance Variable;
header Title;
footer Foot;
define Title;
text TitleText;
space = 1;
spill_margin;
first_panel;
end;
define Label;
parent = Stat.Transreg.Label;
style = RowHeader;
end;
define Utility;
header = "Utility";
format_width = 7;
parent = Stat.Transreg.Coefficient;
end;
define StdErr;
parent = Stat.Transreg.StdErr;
end;

```
```

 define tValue;
 parent = Stat.Transreg.tValue;
 print = OFF;
 end;
 define Probt;
 parent = Stat.Transreg.Probt;
 print = OFF;
 end;
 define Importance;
 header = %nrstr(";Importance;%(%% Utility;Range%)");
 translate _val_=._ into " ";
 format = 7.3;
 end;
 define Variable;
 parent = Stat.Transreg.Variable;
 end;
 define Foot;
 text FootMessages;
 just = l;
 maximize;
 end;
 control = control;
 required_space = 20;
 end;

```

Recall that we ran the following step to customize the output.
```

proc template;
edit Stat.Transreg.ParentUtilities;
column Label Utility StdErr tValue Probt Importance Variable;
header title;
define title; text 'Part-Worth Utilities'; space=1; end;
define Variable; print=off; end;
end;
run;

```

We specified the edit Stat.Transreg. ParentUtilities statement to name the table that we wish to change. The column statement was copied from the PROC TEMPLATE source listing, and it names all of the columns in the table. Some, like tValue and Probt do not print by default. We will change the Variable column to also not print. We redefine Variable with the print=off option specified. We also redefine the table header to read "Part-Worth Utilities". The names in the column and header statements must match the names in the original template.

\section*{Chocolate Candy Example}

This example illustrates conjoint analysis with rating scale data and a single subject. The subject was asked to rate his preference for eight chocolate candies. The covering was either dark or milk chocolate, the center was either chewy or soft, and the candy did or did not contain nuts. The candies were rated on a 1 to 9 scale where 1 means low preference and 9 means high preference. Conjoint analysis is used to determine the importance of each attribute and the part-worth utility for each level of each attribute.

\section*{Metric Conjoint Analysis}

After data collection, the attributes and the rating data are entered into a SAS data set.
```

title 'Preference for Chocolate Candies';
data choc;
input Chocolate \$ Center \$ Nuts \$\& Rating;
datalines;
Dark Chewy Nuts 7
Dark Chewy No Nuts 6
Dark Soft Nuts 6
Dark Soft No Nuts 4
Milk Chewy Nuts 9
Milk Chewy No Nuts 8
Milk Soft Nuts 9
Milk Soft No Nuts 7
;

```

Note that the "\&" specification in the input statement is used to read character data with embedded blanks.

PROC TRANSREG is used to perform a metric conjoint analysis.
```

ods exclude notes mvanova anova;
proc transreg utilities separators=', ' short;
title2 'Metric Conjoint Analysis';
model identity(rating) = class(chocolate center nuts / zero=sum);
run;

```

Printed output from the metric conjoint analysis is requested by specifying the utilities option in the proc statement. The value specified in the separators= option, in this case a comma followed by a blank, is used in constructing the labels for the part-worth utilities in the printed output. With these options, the labels will consist of the class variable name, a comma, a blank and the values of the class variables. We specify the short option to suppress the iteration history. PROC TRANSREG will still print a convergence summary table so we will know if there are any convergence problems. Since this is a metric conjoint analysis, there should be only one iteration and there should not be any problems. We specified ods exclude notes mvanova anova to exclude ANOVA information (which we usually want to ignore) and provide more parsimonious output. The analysis variables, the transformation of each variable, and transformation specific options are specified in the model statement.

The model statement provides for general transformation regression models, so it has a markedly different syntax from other SAS/STAT procedure model statements. Variable lists are specified in parentheses after a transformation name. The specification identity (rating) requests an identity transformation of the dependent variable Rating. A transformation name must be specified for all variable lists, even for the dependent variable in metric conjoint analysis, when no transformation is desired. The identity transformation of Rating will not change the original scoring. An equal sign follows the dependent variable specification, then the attribute variables are specified along with their transformation. The specification
```

class(chocolate center nuts / zero=sum)

```
designates the attributes as class variables with the restriction that the part-worth utilities sum to zero within each attribute. A slash must be specified to separate the variables from the transformation option zero=sum. The class specification creates a main-effects design matrix from the specified variables. This example produces only printed output; later examples will show how to store results in output SAS data sets.

The output is shown next. Recall that we used an ods exclude statement and we used PROC TEMPLATE on page 366 to customize the output from PROC TRANSREG.
Preference for Chocolate Candies
Metric Conjoint Analysis
The TRANSREG Procedure

Part-Worth Utilities
\begin{tabular}{lrrr} 
Label & Utility & \begin{tabular}{r} 
Standard \\
Error
\end{tabular} & \begin{tabular}{r} 
Importance \\
(\% Utility \\
Range)
\end{tabular} \\
Intercept & 7.0000 & 0.17678 & \\
Chocolate, Dark & -1.2500 & 0.17678 & 50.000 \\
Chocolate, Milk & 1.2500 & 0.17678 & \\
Center, Chewy & 0.5000 & 0.17678 & 20.000 \\
Center, Soft & -0.5000 & 0.17678 & \\
& & 0.17678 & 30.000 \\
Nuts, No Nuts & -0.7500 & 0.17678 &
\end{tabular}

We see Algorithm converged in the output indicating no problems with the iterations. We also see \(\mathrm{R}^{2}=0.95\). The last table displays the part-worth utilities. The part-worth utilities show the most and least preferred levels of the attributes. Levels with positive utility are preferred over those with negative utility. Milk chocolate (part-worth utility \(=1.25\) ) was preferred over dark ( -1.25 ), chewy center (0.5) over soft (-0.5), and nuts (0.75) over no nuts (-0.75).

Conjoint analysis provides an approximate decomposition of the original ratings. The predicted utility for a candy is the sum of the intercept and the part-worth utilities. The conjoint analysis model for the preference for chocolate type \(i\), center \(j\), and nut content \(k\) is
\[
y_{i j k}=\mu+\beta_{1 i}+\beta_{2 j}+\beta_{3 k}+\epsilon_{i j k}
\]
for \(i=1,2 ; j=1,2 ; k=1,2\); where
\[
\beta_{11}+\beta_{12}=\beta_{21}+\beta_{22}=\beta_{31}+\beta_{32}=0
\]

The part-worth utilities for the attribute levels are the parameter estimates \(\hat{\beta}_{11}, \hat{\beta}_{12}, \hat{\beta}_{21}, \hat{\beta}_{22}, \hat{\beta}_{31}\), and \(\hat{\beta}_{32}\) from this main-effects ANOVA model. The estimate of the intercept is \(\hat{\mu}\), and the error term is \(\epsilon_{i j k}\).

The predicted utility for the \(i j k\) combination is
\[
\hat{y}_{i j k}=\hat{\mu}+\hat{\beta}_{1 i}+\hat{\beta}_{2 j}+\hat{\beta}_{3 k}
\]

For the most preferred milk/chewy/nuts combination, the predicted utility and actual preference values are
\[
7.0+1.25+0.5+0.75=9.5=\hat{y} \approx y=9.0
\]

For the least preferred dark/soft/no nuts combination, the predicted utility and actual preference values are
\[
7.0+-1.25+-0.5+-0.75=4.5=\hat{y} \approx y=4.0
\]

The predicted utilities are regression predicted values; the squared correlation between the predicted utilities for each combination and the actual preference ratings is the \(R^{2}\).

The importance value is computed from the part-worth utility range for each factor (attribute). Each range is divided by the sum of all ranges and multiplied by 100. The factors with the largest part-worth utility ranges are the most important in determining preference. Note that when the attributes have a varying number of levels, attributes with the most levels sometimes have inflated importances (Wittink, Krishnamurthi, and Reibstein ; 1989).

The importance values show that type of chocolate, with an importance of \(50 \%\), was the most important attribute in determining preference.
\[
\frac{100 \times(1.25--1.25)}{(1.25--1.25)+(0.50--0.50)+(0.75--0.75)}=50 \%
\]

The second most important attribute was whether the candy contained nuts, with an importance of \(30 \%\).
\[
\frac{100 \times(0.75--0.75)}{(1.25--1.25)+(0.50--0.50)+(0.75--0.75)}=30 \%
\]

Type of center was least important at \(20 \%\).
\[
\frac{100 \times(0.50--0.50)}{(1.25--1.25)+(0.50--0.50)+(0.75--0.75)}=20 \%
\]

\section*{Nonmetric Conjoint Analysis}

In the next part of this example, PROC TRANSREG is used to perform a nonmetric conjoint analysis of the candy data set. The difference between requesting a nonmetric and metric conjoint analysis is the dependent variable transformation; a monotone transformation of Rating variable is requested instead of an identity transformation. Also, we did not specify the short option this time so that we could see the iteration history table. The output statement is used to put the transformed rating into the out= output data set.
```

ods exclude notes anova liberalanova conservanova
mvanova liberalmvanova conservmvanova;
proc transreg utilities separators=', ';
title2 'Nonmetric Conjoint Analysis';
model monotone(rating) = class(chocolate center nuts / zero=sum);
output;
run;

```

Nonmetric conjoint analysis iteratively derives the monotonic transformation of the ratings. Recall that we used an ods exclude statement and we used PROC TEMPLATE on page 366 to customize the output from PROC TRANSREG.

Preference for Chocolate Candies Nonmetric Conjoint Analysis

The TRANSREG Procedure Dependent Variable Monotone(Rating)
\begin{tabular}{lcl}
\multicolumn{2}{c}{ Class Level Information } \\
Class & Levels & Values \\
Chocolate & 2 & Dark Milk \\
Center & 2 & Chewy Soft \\
Nuts & 2 & No Nuts Nuts
\end{tabular}

Number of Observations Read 8 Number of Observations Used 8

TRANSREG Univariate Algorithm Iteration History for Monotone (Rating)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Iteration Number & Average Change & Maximum Change & R-Square & Criterion Change & Note \\
\hline 1 & 0.08995 & 0.23179 & 0.95000 & & \\
\hline 2 & 0.01263 & 0.03113 & 0.96939 & 0.01939 & \\
\hline 3 & 0.00345 & 0.00955 & 0.96981 & 0.00042 & \\
\hline 4 & 0.00123 & 0.00423 & 0.96984 & 0.00003 & \\
\hline 5 & 0.00050 & 0.00182 & 0.96985 & 0.00000 & \\
\hline 6 & 0.00021 & 0.00078 & 0.96985 & 0.00000 & \\
\hline 7 & 0.00009 & 0.00033 & 0.96985 & 0.00000 & \\
\hline 8 & 0.00004 & 0.00014 & 0.96985 & 0.00000 & \\
\hline 9 & 0.00002 & 0.00006 & 0.96985 & 0.00000 & \\
\hline 10 & 0.00001 & 0.00003 & 0.96985 & 0.00000 & Converged \\
\hline
\end{tabular}

Algorithm converged.
\begin{tabular}{llll} 
Root MSE & 0.38829 & R-Square & 0.9698 \\
Dependent Mean & 7.00000 & Adj R-Sq & 0.9472 \\
Coeff Var & 5.54699 & &
\end{tabular}

Part-Worth Utilities
\begin{tabular}{|c|c|c|c|}
\hline & & Standard & Importance (\% Utility \\
\hline Label & Utility & & \\
\hline Intercept & 7.0000 & 0.13728 & \\
\hline Chocolate, Dark & -1.3143 & 0.13728 & 53.209 \\
\hline Chocolate, Milk & 1.3143 & 0.13728 & \\
\hline Center, Chewy & 0.4564 & 0.13728 & 18.479 \\
\hline Center, Soft & -0.4564 & 0.13728 & \\
\hline Nuts, No Nuts & -0.6993 & 0.13728 & 28.312 \\
\hline Nuts, Nuts & 0.6993 & 0.13728 & \\
\hline \multicolumn{4}{|l|}{The standard errors are not adjusted for the fact that the dependent variable was transformed and so are generally liberal (too small).} \\
\hline
\end{tabular}

The \(R^{2}\) increases from 0.95 for the metric case to 0.96985 for the nonmetric case. The importances and part-worth utilities are slightly different from the metric analysis, but the overall pattern of results is the same.

The GPLOT procedure is used to plot the transformation of the ratings.
```

proc sort; by rating; run;
proc gplot;
title h=1.5 'Preference for Chocolate Candies';
title2 h=1 'Nonmetric Conjoint Analysis';
plot trating * rating = 1 / frame haxis=axis2 vaxis=axis1;
symbol1 v=plus i=join;
axis1 order=(1 to 10)
label=(angle=90 'Transformation of Rating');
axis2 order=(1 to 9) label=('Original Rating');
run; quit;

```


In this case, the transformation is nearly linear. In practice, the \(\mathrm{R}^{2}\) may increase much more than it did in this example, and the transformation may be markedly nonlinear.

\section*{Frozen Diet Entrées Example (Basic)}

This example uses PROC TRANSREG to perform a conjoint analysis to study preferences for frozen diet entrées. The entrées have four attributes: three with three levels and one with two levels. The attributes are shown in the table.
\begin{tabular}{|l|lll|}
\hline Factor & Levels & & \\
\hline Main Ingredient & Chicken & Beef & Turkey \\
Fat Claim Per Serving & 8 Grams & 5 Grams & 2 Grams \\
Price & \(\$ 2.59\) & \(\$ 2.29\) & \(\$ 1.99\) \\
Calories & 350 & 250 & \\
\hline
\end{tabular}

\section*{Choosing the Number of Stimuli}

Ideally, for this design, we would like the number of runs in the experimental design to be divisible by 2 (because of the two-level factor), 3 (because of the three-level factors), \(2 \times 3=6\) (to have equal numbers of products in each two-level and three-level factor combinations), and \(3 \times 3=9\) (to have equal numbers of products in each pair of three-level factor combinations). If we fit a main-effects model, we need at least \(1+3 \times(3-1)+(2-1)=8\) runs. We can avoid doing this math ourselves and instead use the \(\% \mathrm{MktRuns}\) autocall macro to help us choose the number of products. See page 479 for macro documentation and information on installing and using SAS autocall macros. To use this macro, you specify the number of levels for each of the factors. For this example, specify three 3 's and one 2.
```

title 'Frozen Diet Entrees';

```
\%mktruns ( \(\left.\begin{array}{llll}3 & 3 & 3 & 2\end{array}\right)\)
Frozen Diet Entrees
Design Summary
Number of
Levels
2 \(\quad\) Frequency \begin{tabular}{l} 
\\
3
\end{tabular}

Some Reasonable
Design Sizes
\(18 *\)
\(36 * 0\)
\(12 \quad 3 \quad 9\)
\(24 \quad 3 \quad 9\)
\(30 \quad 3 \quad 9\)
\(9 \quad 4 \quad 26\)
\(27 \quad 4 \quad 26\)
\(15 \quad 7 \quad 269\)
\(21 \quad 7 \quad 269\)
\(33 \quad 7 \quad 269\)
* - \(100 \%\) Efficient Design can be made with the MktEx Macro.


The output tells us that we need at least eight products, shown by the "Saturated \(=8\) ". The sizes 18 and 36 would be optimal. Twelve is a good size but three times it cannot be divided by \(9=3 \times 3\). The "three times" comes from the \(3(3-1) / 2=3\) pairs of three-level factors. Similarly, the size 9 has four violations because it cannot be divided once by 2 and three times by \(6=2 \times 3\) (once for each three-level factor and two-level factor pair). We could use a size smaller than 18 and not have equal frequencies everywhere, but 18 is a manageable number so we will use 18.

When an orthogonal and balanced design is available from the \%MktEx macro, the \%MktRuns macro tells us about it. For example, the macro tells us that our design, which can be designated \(2^{1} 3^{3}\), is available in 18 runs, and can be constructed from a design with 1 two-level factor ( \(2 * * 1\) or \(2^{1}\) ) and 7 three-level factors ( \(3 * * 7\) or \(3^{7}\) ). Both the \(\%\) MktRuns and \(\%\) MktEx macros accept this ' \(n * * m\) ' exponential syntax as input, which means \(m\) factors each at \(n\) levels. Hence, 23 ** 7 or 2 ** 13 ** 7 or 23333 333 are all equivalent level-list specifications for the experimental design \(2^{1} 3^{7}\), which has 1 two-level factor and 7 three-level factors.

\section*{Generating the Design}

We can use the \%MktEx autocall macro to find a design. When you invoke the \(\% \mathrm{MktEx}\) macro for a simple problem, you only need to specify the numbers of levels and number of runs. The macro does the rest. The \%MktEx macro can create designs in a number of ways. For this problem, it simply looks up an orthogonal design. Here is the \(\% \mathrm{MktEx}\) macro call for this example:
```

%mktex(3 3 3 2, n=18)

```

The first argument to the \%MktEx macro is a list of factor levels, and the second is the number of runs \((\mathrm{n}=18)\). These are all the options that are needed for a simple problem such as this one. However, throughout this book, random number seeds are explicitly specified with the seed= option so that you can reproduce these results. \({ }^{\S}\) Here is the code for creating our design with the random number seed and the actual factor names specified:
```

\%mktex (3 332 , $\mathrm{n}=18$, seed=151)
\%mktlab (vars=Ingredient Fat Price Calories)

```

The \%MktEx macro always creates factors named x 1 , x 2 , and so on. The \%MktLab autocall macro is used to change the names when you want to provide actual factor names. This example has four factors, Ingredient, Fat, and Price, each with three levels and Calories with two levels.

Here is the output:


\footnotetext{
\({ }^{\S}\) By specifying a random number seed, results should be reproducible within a SAS release for a particular operating system. However, due to machine differences, some results may not be exactly reproducible on other machines. For most orthogonal and balanced designs, the results should be reproducible. When computerized searches are done, it is likely that you will not get the same design as the one in the book, although you would expect the efficiency differences to be slight.
}

Frozen Diet Entrees

The OPTEX Procedure
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & & Average \\
\hline & & & & Prediction \\
\hline Design & & & & Standard \\
\hline Number & D-Efficiency & A-Efficiency & G-Efficiency & Error \\
\hline 1 & 100.0000 & 100.0000 & 100.0000 & 0.6667 \\
\hline
\end{tabular}

We see that the macro had no trouble finding an optimal, \(100 \%\) efficient experimental design through table look up. The value Tab in the Notes column of the algorithm search history tells us the macro was able to use table look up. See pages 479, 546, and the discrete choice examples starting on page 81 for more information on how the \(\% \mathrm{MktEx}\) macro works.

The \%MktEx macro creates two output data sets with the experimental design, DESIGN and RANDOMIZED. The DESIGN data set is sorted and for a number of the tabled designs, often has a first row consisting entirely of ones. For these reasons, you should typically use the randomized design. In the randomized design, the profiles are presented in a random order and the levels have been randomly reassigned. Neither of these operations affects the design efficiency, balance, or orthogonality. When there are restrictions on the design (see for example page 433), the profiles are sorted into a random order, but the levels are not randomly reassigned. The randomized design is the default input to the \%MktLab macro.

\section*{Evaluating and Preparing the Design}

We will use the FORMAT procedure to create descriptive labels for the levels of the attributes. By default, the values of the factors are positive integers. For example for ingredient, we create a format if (for Ingredient Format) that assigns the descriptive value label "Chicken" for level 1, "Beef" for level 2, and "Turkey" for level 3. A permanent SAS data set is created with the formats assigned (although, as we will see in the next example, we could have done this previously in the \%MktLab step). Finally, the design is printed.
```

proc format;
value if 1='Chicken' 2='Beef' 3='Turkey';
value ff 1='8 Grams' 2='5 Grams' 3='2 Grams';
value pf 1='\$2.59' 2='\$2.29' 3='\$1.99';
value cf 1='350' 2='250';
run;
data sasuser.dietdes;
set final;
format ingredient if. fat ff. price pf. calories cf.;
run;
proc print; run;

```

Here is the design.
\begin{tabular}{|c|c|c|c|c|}
\hline Obs & Ingredient & Fat & Price & Calories \\
\hline 1 & Turkey & 5 Grams & \$1.99 & 350 \\
\hline 2 & Turkey & 8 Grams & \$2.29 & 350 \\
\hline 3 & Chicken & 8 Grams & \$1.99 & 350 \\
\hline 4 & Turkey & 2 Grams & \$2.59 & 250 \\
\hline 5 & Beef & 8 Grams & \$2.59 & 350 \\
\hline 6 & Beef & 2 Grams & \$1.99 & 350 \\
\hline 7 & Beef & 5 Grams & \$2.29 & 350 \\
\hline 8 & Beef & 5 Grams & \$2.29 & 250 \\
\hline 9 & Chicken & 2 Grams & \$2.29 & 350 \\
\hline 10 & Beef & 8 Grams & \$2.59 & 250 \\
\hline 11 & Turkey & 8 Grams & \$2.29 & 250 \\
\hline 12 & Chicken & 5 Grams & \$2.59 & 350 \\
\hline 13 & Chicken & 5 Grams & \$2.59 & 250 \\
\hline 14 & Chicken & 2 Grams & \$2.29 & 250 \\
\hline 15 & Turkey & 5 Grams & \$1.99 & 250 \\
\hline 16 & Turkey & 2 Grams & \$2.59 & 350 \\
\hline 17 & Beef & 2 Grams & \$1.99 & 250 \\
\hline 18 & Chicken & 8 Grams & \$1.99 & 250 \\
\hline
\end{tabular}

Even when you know the design is \(100 \%\) D-efficient, orthogonal, and balanced, it is good to run basic checks on your designs. You can use the \%MktEval autocall macro to display information about the design.
\%mkteval;
The macro first prints a matrix of canonical correlations between the factors. We hope to see an identity matrix (a matrix of ones on the diagonal and zeros everywhere else), which would mean that all of the factors are uncorrelated. Next, the macro prints all one-way frequencies for all attributes, all two-way frequencies, and all \(n\)-way frequencies (in this case four-way frequencies). We hope to see equal or at least nearly equal one-way and two-way frequencies, and we want to see that each combination occurs only once.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{```
    Frozen Diet Entrees
Canonical Correlations Between the Factors
There are O Canonical Correlations Greater Than 0.316
```}} \\
\hline & & & & \\
\hline & Ingredient & Fat & Price & Calories \\
\hline Ingredient & 1 & 0 & 0 & 0 \\
\hline Fat & 0 & 1 & 0 & 0 \\
\hline Price & 0 & 0 & 1 & 0 \\
\hline Calories & 0 & 0 & 0 & 1 \\
\hline
\end{tabular}
```

            Frozen Diet Entrees
            Summary of Frequencies
    There are O Canonical Correlations Greater Than 0.316
Frequencies
Ingredient 666
Fat 666
Price }66
Calories 9 9
Ingredient Fat 22 2 2 2 2 2 2 2
Ingredient Price 2 2 2 2 2 2 2 2 2
Ingredient Calories }33333
Fat Price 22 2 2 2 2 2 2 2
Fat Calories 33 3 3 3 3
Price Calories 33 3 3 3 3
N-Way }\quad1\begin{array}{lllllllllllllllllllll}{1}\&{1}\&{1}\&{1}\&{1}\&{1}\&{1}\&{1}\&{1}\&{1}\&{1}\&{1}\&{1}\&{1}\&{1}\&{1}\&{1}\&{1}

```

A canonical correlation is the maximum correlation between linear combinations of the coded factors (see page 90). All zeros off the diagonal show that this design is orthogonal for main effects. If any off-diagonal canonical correlations had been greater than \(0.316\left(r^{2}>0.1\right)\), the macro would have listed them in a separate table. The last title line tells you that none of them were this large. For nonorthogonal designs and designs with interactions, the canonical-correlation matrix is not a substitute for looking at the variance matrix (with examine=v) in the \%MktEx macro. The \%MktEx macro just provides a quick and more-compact picture of the correlations between the factors. The variance matrix is sensitive to the actual model specified and the coding. The canonical-correlation matrix just tells you if there is some correlation between the main effects. In this case, there are no correlations.

The equal one-way frequencies show you that this design is balanced. The equal two-way frequencies show you that this design is orthogonal. Equal one-way and two-way frequencies together show you that this design is \(100 \% D\)-efficient. The \(n\)-way frequencies, all equal to one, show you that there are no duplicate profiles. This is a perfect design for a main effects model. However, there are other \(100 \%\) efficient designs for this problem with duplicate observations. In the last part of the output, the N-Way frequencies may contain some 2's for those designs. You can specify options=nodups in the \%MktEx macro to ensure that there are no duplicate profiles.

The \%MktEval macro produces a very compact summary of the design, hence some information, for example the levels to which the frequencies correspond, is not shown. You can use the print=freqs option in the \(\% \mathrm{MktEval}\) macro to get a less compact and more detailed display.

\section*{Printing the Stimuli and Data Collection}

Next, we generate the stimuli. The data null_ step uses the file statement to set the print destination to the printed output destination. The design data set is read with the set statement. A put statement prints the attributes along with some constant text and the combination number. The put statement option +3 skips 3 spaces, @50 starts printing in column \(50,+(-1)\) skips one space backwards getting rid of the blank that would by default appear after the stimulus number, and / skips to a new line. Text enclosed in quotes is literally copied to the output. For our attribute variables, the formatted
values are printed. The variable \(n_{-}\)is the number of the current pass through the DATA step, which in this case is the stimulus number. The if statement causes six descriptions to be printed on a page.
```

title;
data _null_;
file print;
set sasuser.dietdes;
put ///
+3 ingredient 'Entree' @50 '(' _n_ +(-1) ')' /
+3 'With ' fat 'of Fat and ' calories 'Calories' /
+3 'Now for Only ' Price +(-1) '.'///;
if mod(_n_, 6) = 0 then put _page_;
run;

```

Turkey Entree
With 5 Grams of Fat and 350 Calories
Now for Only \$1.99.
Turkey Entree
With 8 Grams of Fat and 350 Calories Now for Only \$2.29.

Chicken Entree
With 8 Grams of Fat and 350 Calories Now for Only \$1.99.

Turkey Entree
With 2 Grams of Fat and 250 Calories Now for Only \(\$ 2.59\).

Beef Entree
With 8 Grams of Fat and 350 Calories Now for Only \$2.59.

Beef Entree
With 2 Grams of Fat and 350 Calories
Now for Only \$1.99.
Beef Entree
With 5 Grams of Fat and 350 Calories Now for Only \$2.29.

Beef Entree
With 5 Grams of Fat and 250 Calories
Now for Only \$2.29.
Chicken Entree
With 2 Grams of Fat and 350 Calories Now for Only \$2.29.
```

Beef Entree
With 8 Grams of Fat and 250 Calories
Now for Only \$2.59.
Turkey Entree
With 8 Grams of Fat and 250 Calories
Now for Only \$2.29.
Chicken Entree
With 5 Grams of Fat and 350 Calories
Now for Only \$2.59.
Chicken Entree
With 5 Grams of Fat and 250 Calories
Now for Only \$2.59.
Chicken Entree
With 2 Grams of Fat and 250 Calories
Now for Only \$2.29.
Turkey Entree
With 5 Grams of Fat and 250 Calories
Now for Only \$1.99.
Turkey Entree
With 2 Grams of Fat and 350 Calories
Now for Only \$2.59.
Beef Entree
With 2 Grams of Fat and 250 Calories
Now for Only \$1.99.
Chicken Entree
With 8 Grams of Fat and 250 Calories
Now for Only \$1.99.

```

Next, we print the stimuli, produce the cards, and ask a subject to sort the cards from most preferred to least preferred. The combination numbers (most preferred to least preferred) are entered as data. For example, this subject's most preferred combination is 17, which is the "Beef Entree, With 2 Grams of Fat and 250 Calories, Now for Only \(\$ 1.99\) ", and her least preferred combination is 18, "Chicken Entree, With 8 Grams of Fat and 250 Calories, Now for Only \(\$ 1.99\) ".

\section*{Data Processing}

The data are transposed, going from one observation and 18 variables to 18 observations and one variable named Combo. The next DATA step creates the variable Rank: 1 for the first and most preferred combination, ..., and 18 for the last and least preferred combination. The data are sorted by combination number and merged with the design.
```

title 'Frozen Diet Entrees';
data results;
input combo1-combo18;
datalines;
17 6 8 7 10 5 4 16 15 1 1112 9 9 14 12 13 3 18
;
proc transpose out=results(rename=(col1=combo)); run;
data results; set results; Rank = _n_; drop _name_; run;
proc sort; by combo; run;
data results(drop=combo);
merge sasuser.dietdes results;
run;
proc print; run;

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Frozen Diet Entrees} \\
\hline Obs & Ingredient & & Fat & Price & Calories & Rank \\
\hline 1 & Turkey & 5 & Grams & \$1.99 & 350 & 10 \\
\hline 2 & Turkey & 8 & Grams & \$2.29 & 350 & 12 \\
\hline 3 & Chicken & 8 & Grams & \$1.99 & 350 & 17 \\
\hline 4 & Turkey & 2 & Grams & \$2.59 & 250 & 7 \\
\hline 5 & Beef & 8 & Grams & \$2.59 & 350 & 6 \\
\hline 6 & Beef & 2 & Grams & \$1.99 & 350 & 2 \\
\hline 7 & Beef & 5 & Grams & \$2.29 & 350 & 4 \\
\hline 8 & Beef & 5 & Grams & \$2.29 & 250 & 3 \\
\hline 9 & Chicken & 2 & Grams & \$2.29 & 350 & 13 \\
\hline 10 & Beef & 8 & Grams & \$2.59 & 250 & 5 \\
\hline 11 & Turkey & 8 & Grams & \$2.29 & 250 & 11 \\
\hline 12 & Chicken & 5 & Grams & \$2.59 & 350 & 15 \\
\hline 13 & Chicken & 5 & Grams & \$2.59 & 250 & 16 \\
\hline 14 & Chicken & 2 & Grams & \$2.29 & 250 & 14 \\
\hline 15 & Turkey & 5 & Grams & \$1.99 & 250 & 9 \\
\hline 16 & Turkey & 2 & Grams & \$2.59 & 350 & 8 \\
\hline 17 & Beef & 2 & Grams & \$1.99 & 250 & 1 \\
\hline 18 & Chicken & 8 & Grams & \$1.99 & 250 & 18 \\
\hline
\end{tabular}

Recall that the seventeenth combination was most preferred, and it has a rank of 1. The eighteenth combination was least preferred and it has a rank of 18.

\section*{Nonmetric Conjoint Analysis}

PROC TRANSREG is used to perform the nonmetric conjoint analysis of the ranks.
```

ods exclude notes anova liberalanova conservanova
mvanova liberalmvanova conservmvanova;
proc transreg utilities order=formatted separators=', ';
model monotone(rank / reflect) =
class(Ingredient Fat Price Calories / zero=sum);
output out=utils p ireplace;
run;

```

The utilities option prints the part-worth utilities and importance table. The order=formatted option sorts the levels of the attributes by the formatted values. By default, levels are sorted by their internal unformatted values (in this case the integers \(1,2,3\)). The model statement names the variable Rank as the dependent variable and specifies a monotone transformation for the nonmetric conjoint analysis. The reflect transformation option is specified with rank data. With rank data, small values mean high preference and large values mean low preference. The reflect transformation option reflects the ranks around their mean (-(rank - mean rank) + mean rank) so that in the results, large partworth utilities will mean high preference. With ranks ranging from 1 to 18, reflect transforms 1 to 18,2 to \(17, \ldots, r\) to \((19-r), \ldots\), and 18 to 1 . (Note that the mean rank is the midpoint, in this case \((18+1) / 2=9.5\), and \(-(r-\bar{r})+\bar{r}=2 \bar{r}-r=2(\max (r)+\min (r)) / 2-r=19-r\).) The class specification names the attributes and scales the part-worth utilities to sum to zero within each attribute.

The output statement creates the out= data set, which contains the original variables, transformed variables, and indicator variables. The predicted utilities for all combinations are written to this data set by the p option (for predicted values). The ireplace option specifies that the transformed independent variables replace the original independent variables, since both are the same.

Here are the results of the conjoint analysis. Recall that we used an ods exclude statement and we used PROC TEMPLATE on page 366 to customize the output from PROC TRANSREG.

\begin{tabular}{ll}
Number of Observations Read & 18 \\
Number of Observations Used & 18
\end{tabular}

Number of Observations Used 18
TRANSREG Univariate Algorithm Iteration History for Monotone(Rank)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Iteration Number & Average Change & Maximum Change & R-Square & Criterion Change & Note \\
\hline 1 & 0.07276 & 0.10014 & 0.99174 & & \\
\hline 2 & 0.00704 & 0.01074 & 0.99977 & 0.00802 & \\
\hline 3 & 0.00468 & 0.00710 & 0.99990 & 0.00013 & \\
\hline 4 & 0.00311 & 0.00470 & 0.99995 & 0.00006 & \\
\hline 5 & 0.00207 & 0.00312 & 0.99998 & 0.00003 & \\
\hline 6 & 0.00138 & 0.00208 & 0.99999 & 0.00001 & \\
\hline 7 & 0.00092 & 0.00138 & 1.00000 & 0.00001 & \\
\hline 8 & 0.00061 & 0.00092 & 1.00000 & 0.00000 & \\
\hline 9 & 0.00041 & 0.00061 & 1.00000 & 0.00000 & \\
\hline 10 & 0.00027 & 0.00041 & 1.00000 & 0.00000 & \\
\hline 11 & 0.00018 & 0.00027 & 1.00000 & 0.00000 & \\
\hline 12 & 0.00012 & 0.00018 & 1.00000 & 0.00000 & \\
\hline 13 & 0.00008 & 0.00012 & 1.00000 & 0.00000 & \\
\hline 14 & 0.00005 & 0.00008 & 1.00000 & 0.00000 & \\
\hline 15 & 0.00004 & 0.00005 & 1.00000 & 0.00000 & \\
\hline 16 & 0.00002 & 0.00004 & 1.00000 & 0.00000 & \\
\hline 17 & 0.00002 & 0.00002 & 1.00000 & 0.00000 & \\
\hline 18 & 0.00001 & 0.00002 & 1.00000 & 0.00000 & \\
\hline 19 & 0.00001 & 0.00001 & 1.00000 & 0.00000 & Converged \\
\hline
\end{tabular}

Algorithm converged.

\section*{Frozen Diet Entrees}

\section*{The TRANSREG Procedure}

The TRANSREG Procedure Hypothesis Tests for Monotone(Rank)
\begin{tabular}{lrrr}
Root MSE & 0.00007166 & R-Square & 1.0000 \\
Dependent Mean & 9.50000 & Adj R-Sq & 1.0000 \\
Coeff Var & 0.00075429 & &
\end{tabular}

Part-Worth Utilities
\begin{tabular}{|c|c|c|c|}
\hline & & Standard Error & \begin{tabular}{l}
Importance \\
(\% Utility \\
Range)
\end{tabular} \\
\hline Label & Utility & & \\
\hline Intercept & 9.5000 & 0.00002 & \\
\hline Ingredient, Beef & 6.0281 & 0.00002 & 74.999 \\
\hline Ingredient, Chicken & -6.0281 & 0.00002 & \\
\hline Ingredient, Turkey & -0.0000 & 0.00002 & \\
\hline Fat, 2 Grams & 2.0094 & 0.00002 & 25.000 \\
\hline Fat, 5 Grams & 0.0000 & 0.00002 & \\
\hline Fat, 8 Grams & -2.0094 & 0.00002 & \\
\hline Price, \$1.99 & 0.0000 & 0.00002 & 0.000 \\
\hline Price, \$2.29 & 0.0000 & 0.00002 & \\
\hline Price, \$2.59 & -0.0000 & 0.00002 & \\
\hline Calories, 250 & 0.0001 & 0.00002 & 0.001 \\
\hline Calories, 350 & -0.0001 & 0.00002 & \\
\hline \multicolumn{4}{|l|}{The standard errors are not adjusted for the fact that the dependent variable was transformed and so are generally liberal (too small).} \\
\hline
\end{tabular}

We see in the conjoint output that main ingredient was the most important attribute at almost \(75 \%\) and that beef was preferred over turkey, which was preferred over chicken. We also see that fat content was the second most important attribute at \(25 \%\) and lower fat is preferred over higher fat. Price and calories only account for essentially none of the preference.

Next, the products in the out= data set are sorted by their predicted utility and the combinations are printed along with their rank, transformed and reflected rank, and predicted values (predicted utility). The variable Rank is the original rank variable; TRank contains the transformation of rank, in this case the reflection and monotonic transformation; and PRank contains the predicted utilities or predicted values. The first letter of the variable name comes from the first letter of "Transformation" and "Predicted".
```

proc sort; by descending prank; run;
proc print label;
var ingredient fat price calories rank trank prank;
label trank = 'Reflected Rank'
prank = 'Utilities';
run;

```
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Frozen Diet Entrees} \\
\hline Obs & Ingredient & Fat & Price & Calories & Rank & \begin{tabular}{l}
Reflected \\
Rank
\end{tabular} & Utilities \\
\hline 1 & Beef & 2 Grams & \$1.99 & 250 & 1 & 17.5375 & 17.5375 \\
\hline 2 & Beef & 2 Grams & \$1.99 & 350 & 2 & 17.5373 & 17.5373 \\
\hline 3 & Beef & 5 Grams & \$2.29 & 250 & 3 & 15.5282 & 15.5281 \\
\hline 4 & Beef & 5 Grams & \$2.29 & 350 & 4 & 15.5279 & 15.5280 \\
\hline 5 & Beef & 8 Grams & \$2.59 & 250 & 5 & 13.5188 & 13.5188 \\
\hline 6 & Beef & 8 Grams & \$2.59 & 350 & 6 & 13.5186 & 13.5186 \\
\hline 7 & Turkey & 2 Grams & \$2.59 & 250 & 7 & 11.5095 & 11.5094 \\
\hline 8 & Turkey & 2 Grams & \$2.59 & 350 & 8 & 11.5092 & 11.5093 \\
\hline 9 & Turkey & 5 Grams & \$1.99 & 250 & 9 & 9.5001 & 9.5001 \\
\hline 10 & Turkey & 5 Grams & \$1.99 & 350 & 10 & 9.4999 & 9.4999 \\
\hline 11 & Turkey & 8 Grams & \$2.29 & 250 & 11 & 7.4908 & 7.4907 \\
\hline 12 & Turkey & 8 Grams & \$2.29 & 350 & 12 & 7.4905 & 7.4906 \\
\hline 13 & Chicken & 2 Grams & \$2.29 & 250 & 14 & 5.4813 & 5.4814 \\
\hline 14 & Chicken & 2 Grams & \$2.29 & 350 & 13 & 5.4813 & 5.4812 \\
\hline 15 & Chicken & 5 Grams & \$2.59 & 250 & 16 & 3.4719 & 3.4720 \\
\hline 16 & Chicken & 5 Grams & \$2.59 & 350 & 15 & 3.4719 & 3.4719 \\
\hline 17 & Chicken & 8 Grams & \$1.99 & 250 & 18 & 1.4626 & 1.4627 \\
\hline 18 & Chicken & 8 Grams & \$1.99 & 350 & 17 & 1.4626 & 1.4625 \\
\hline
\end{tabular}

It is interesting to see that the sorted combinations support the information in the utilities table. The combinations are perfectly sorted on beef, turkey, and chicken. Furthermore, within ties in the main ingredient, the products are sorted by fat content.

\section*{Frozen Diet Entrées Example (Advanced)}

This example is an advanced version of the previous example. It illustrates conjoint analysis with more than one subject. It has six parts.
- The \(\% \mathrm{MktEx}\) macro is used to generate an experimental design.
- Holdout observations are generated.
- The descriptions of the products are printed for data collection.
- The data are collected, entered, and processed.
- The metric conjoint analysis is performed.
- Results are summarized across subjects.

\section*{Creating a Design with the \%MktEx Macro}

The first thing you need to do in a conjoint study is decide on the product attributes and levels. Then you create the experimental design. We will use the same experimental design as we used in the previous example. The attributes and levels are shown in the table.
\begin{tabular}{|l|lll|}
\hline Factor & Levels & & \\
\hline Main Ingredient & Chicken & Beef & Turkey \\
Fat Claim Per Serving & 8 Grams & 5 Grams & 2 Grams \\
Price & \(\$ 2.59\) & \(\$ 2.29\) & \(\$ 1.99\) \\
Calories & 350 & 250 & \\
\hline
\end{tabular}

We will create our designs in the same way as we did in the previous example, starting on page 378. Only the random number seed has changed. Like before, we use the \%MktEval macro to check the one-way and two-way frequencies and to ensure that each combination only appears once. See page 479 for macro documentation and information on installing and using SAS autocall macros.
```

title 'Frozen Diet Entrees';
proc format;
value if 1='Chicken' 2='Beef' 3='Turkey';
value ff 1='8 Grams' 2='5 Grams' 3='2 Grams';
value pf 1='\$2.59' 2='\$2.29' 3='\$1.99';
value cf 1='350' 2='250';
run;
%mktex(3 3 3 2, n=18, seed=205)
%mktlab(vars=Ingredient Fat Price Calories)
%mkteval;

```

Frozen Diet Entrees

Algorithm Search History
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Design} & \multirow[b]{2}{*}{Row, Col} & Current & \multicolumn{2}{|l|}{Best} \\
\hline & & D-Efficiency & D-Efficiency & Notes \\
\hline 1 & Start & 100.0000 & 100.0000 & Tab \\
\hline 1 & End & 100.0000 & & \\
\hline
\end{tabular}

The OPTEX Procedure

Class Level Information
Class Levels -Values-
\begin{tabular}{lllll}
x 1 & 3 & 1 & 2 & 3 \\
x 2 & 3 & 1 & 2 & 3 \\
x 3 & 3 & 1 & 2 & 3 \\
x 4 & 2 & 1 & 2 &
\end{tabular}

Frozen Diet Entrees

The OPTEX Procedure
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Design} & \multirow[b]{3}{*}{D-Efficiency} & \multicolumn{2}{|l|}{\multirow[b]{3}{*}{A-Efficiency}} & \multicolumn{2}{|l|}{\multirow[b]{3}{*}{G-Efficiency}} & \multirow[t]{3}{*}{Average Prediction Standard Error} \\
\hline & & & & & & \\
\hline Number & & & & & & \\
\hline \multirow[t]{9}{*}{1} & 100.0000 & \multicolumn{2}{|c|}{100.0000} & \multicolumn{2}{|l|}{100.0000} & \multirow[t]{5}{*}{0.6667} \\
\hline & \multicolumn{5}{|l|}{\multirow[t]{3}{*}{Frozen Diet Entrees
Canonical Correlations Between the Factors
There are 0 Canonical Correlations Greater Than 0.316}} & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & \multicolumn{2}{|r|}{Ingredient} & Fat & Price & Calories & \\
\hline & Ingredient & 1 & 0 & 0 & 0 & \\
\hline & Fat & 0 & 1 & 0 & 0 & \\
\hline & Price & 0 & 0 & 1 & 0 & \\
\hline & Calories & 0 & 0 & 0 & 1 & \\
\hline
\end{tabular}
```

            Frozen Diet Entrees
            Summary of Frequencies
    There are O Canonical Correlations Greater Than 0.316
Frequencies
Ingredient 666
Fat 666
Price }66
Calories 9 9
Ingredient Fat 22 2 2 2 2 2 2 2
Ingredient Price 2 2 2 2 2 2 2 2 2
Ingredient Calories }33333
Fat Price 22 2 2 2 2 2 2 2
Fat Calories 33 3 3 3 3
Price Calories 33 3 3 3 3
N-Way }\quad1\begin{array}{llllllllllllllllllllll}{1}\&{1}\&{1}\&{1}\&{1}\&{1}\&{1}\&{1}\&{1}\&{1}\&{1}\&{1}\&{1}\&{1}\&{1}\&{1}\&{1}\&{1}

```

This design is \(100 \%\) efficient, perfectly balanced and orthogonal, and each product occurs exactly once.

\section*{Designing Holdouts}

The next steps add holdout observations to the design and display the results. Holdouts are ranked by the subjects but are analyzed with zero weight to exclude them from contributing to the utility computations. The correlation between the ranks for holdouts and their predicted utilities provide an indication of the validity of the results of the study.

The first \%MktEx step recreates the formats and the design (just so you can see all of the code for a design with holdouts in one step). The next \%MktEx step adds four holdouts to the randomized design created from the previous step. The specification options=nodups (no duplicates) ensures that the holdouts do not match products already in the design. The first \%MktEval step evaluates just the original design, excluding the holdouts. The second \%MktEval step evaluates the entire design. Both \(\% M k t E v a l\) steps ensure that the variable w, which flags the active and holdout observations, is excluded and not treated as a factor. The \%MktLab step gives the factors informative names and assigns formats. Unlike the previous examples, this time we directly assign the formats in the \%MktLab macro using the statements= option, specifying a complete format statement.
```

title 'Frozen Diet Entrees';
proc format;
value if 1='Chicken' 2='Beef' 3='Turkey';
value ff 1='8 Grams' 2='5 Grams' 3='2 Grams';
value pf 1='\$2.59' 2='\$2.29' }3='\$1.99'
value cf 1='350' 2='250';
run;
%mktex(3 3 3 2, n=18, seed=205)
%mktex(3 3 3 2, n=22, init=randomized, holdouts=4, options=nodups, seed=368)
proc print data=randomized; run;
%mkteval(data=randomized(where=(w=1)), factors=x:);
%mkteval(data=randomized(drop=w));
%mktlab(data=randomized, out=sasuser.dietdes,
vars=Ingredient Fat Price Calories,
statements=format Ingredient if. fat ff. price pf. calories cf.)
proc print; run;

```

Here is the last part of the output from the first \%MktEx step, which shows that the macro found a \(100 \%\) efficient design.
\begin{tabular}{|c|c|c|c|c|}
\hline & & \multicolumn{3}{|l|}{\begin{tabular}{l}
Frozen Diet Entrees \\
The OPTEX Procedure
\end{tabular}} \\
\hline Design Number & D-Efficiency & A-Efficiency & G-Efficiency & Average Prediction Standard Error \\
\hline 1 & 100.0000 & 100.0000 & 100.0000 & 0.6667 \\
\hline
\end{tabular}

Next, is some of the output from the \(\% M k t E x\) step that finds the holdouts. Notice that the macro immediately enters the design refinement step.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Design} & \multicolumn{3}{|l|}{\begin{tabular}{l}
Frozen Diet Entrees \\
Design Refinement History
\end{tabular}} & \\
\hline & Row, Col & Current D-Efficiency & Best D-Efficiency & Notes \\
\hline 0 & Initial & 98.0764 & & Ini \\
\hline 1 & Start & 98.0764 & & Pre, Mut, Ann \\
\hline 1 & 221 & 98.2421 & 98.2421 & Conforms \\
\hline 1 & End & 98.2421 & & \\
\hline 2 & Start & 98.2421 & & Pre, Mut, Ann \\
\hline 2 & 21 & 98.2421 & 98.2421 & Conforms \\
\hline 2 & End & 98.2421 & & \\
\hline 3 & Start & 98.2421 & & Pre, Mut, Ann \\
\hline 3 & 21 & 98.2421 & 98.2421 & Conforms \\
\hline 3 & End & 98.2421 & & \\
\hline 4 & Start & 98.2421 & & Pre, Mut, Ann \\
\hline 4 & 21 & 98.2421 & 98.2421 & Conforms \\
\hline 4 & End & 98.2421 & & \\
\hline 5 & Start & 98.2421 & & Pre, Mut, Ann \\
\hline 5 & 21 & 98.2421 & 98.2421 & Conforms \\
\hline 5 & End & 98.2421 & & \\
\hline
\end{tabular}

NOTE: Stopping since it appears that no improvement is possible.

Next, the raw design is printed. Observations with w equal to 1 comprise the original design. The observations with a missing w are the holdouts.
\begin{tabular}{cccccc}
\multicolumn{6}{c}{ Frozen Diet Entrees } \\
Obs & x 1 & x 2 & x 3 & x 4 & w \\
& & & & & \\
1 & 2 & 3 & 1 & 2 &. \\
2 & 2 & 2 & 1 & 2 & 1 \\
3 & 3 & 3 & 3 & 1 & 1 \\
4 & 3 & 3 & 3 & 2 & 1 \\
5 & 3 & 1 & 1 & 1 & 1 \\
6 & 1 & 3 & 1 & 1 & 1
\end{tabular}
\begin{tabular}{rrrrrr}
7 & 1 & 3 & 1 & 2 & 1 \\
8 & 1 & 1 & 2 & 1 & 1 \\
9 & 2 & 2 & 1 & 1 & 1 \\
10 & 3 & 2 & 2 & 2 & 1 \\
11 & 2 & 2 & 3 & 1 &. \\
12 & 2 & 3 & 2 & 2 & 1 \\
13 & 3 & 1 & 1 & 2 & 1 \\
14 & 2 & 1 & 3 & 2 & 1 \\
15 & 3 & 2 & 1 & 1 &. \\
16 & 1 & 2 & 3 & 1 & 1 \\
17 & 1 & 1 & 2 & 2 & 1 \\
18 & 1 & 2 & 2 & 2 &. \\
19 & 2 & 3 & 2 & 1 & 1 \\
20 & 3 & 2 & 2 & 1 & 1 \\
21 & 1 & 2 & 3 & 2 & 1 \\
22 & 2 & 1 & 3 & 1 & 1
\end{tabular}

Here is the evaluation of the original design.

Frozen Diet Entrees
Canonical Correlations Between the Factors
There are O Canonical Correlations Greater Than 0.316
\begin{tabular}{ccccc}
& x 1 & x 2 & x 3 & x 4 \\
& & & & \\
x 1 & 1 & 0 & 0 & 0 \\
x 2 & 0 & 1 & 0 & 0 \\
x3 & 0 & 0 & 1 & 0 \\
x 4 & 0 & 0 & 0 & 1
\end{tabular}

Frozen Diet Entrees
Summary of Frequencies
There are 0 Canonical Correlations Greater Than 0.316
\begin{tabular}{|c|c|}
\hline & Frequencies \\
\hline x 1 & 666 \\
\hline x 2 & 666 \\
\hline x3 & 666 \\
\hline x 4 & 99 \\
\hline x1 x2 & 222222222 \\
\hline x1 x3 & 222222222 \\
\hline x 1 x 4 & 333333 \\
\hline x2 x3 & 222222222 \\
\hline x 2 x 4 & 333333 \\
\hline x3 x4 & 333333 \\
\hline N-Way & \\
\hline
\end{tabular}

Here is an evaluation of the design with the holdouts.

Here is the design, printed with descriptive factor names and formats.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Obs} & \multicolumn{4}{|c|}{Frozen Diet Entrees} & \multirow[b]{2}{*}{w} \\
\hline & Ingredient & Fat & Price & Calories & \\
\hline 1 & Beef & 2 Grams & \$2.59 & 250 & . \\
\hline 2 & Beef & 5 Grams & \$2.59 & 250 & 1 \\
\hline 3 & Turkey & 2 Grams & \$1.99 & 350 & 1 \\
\hline 4 & Turkey & 2 Grams & \$1.99 & 250 & 1 \\
\hline 5 & Turkey & 8 Grams & \$2.59 & 350 & 1 \\
\hline 6 & Chicken & 2 Grams & \$2.59 & 350 & 1 \\
\hline 7 & Chicken & 2 Grams & \$2.59 & 250 & 1 \\
\hline 8 & Chicken & 8 Grams & \$2.29 & 350 & 1 \\
\hline 9 & Beef & 5 Grams & \$2.59 & 350 & 1 \\
\hline 10 & Turkey & 5 Grams & \$2.29 & 250 & 1 \\
\hline 11 & Beef & 5 Grams & \$1.99 & 350 & . \\
\hline 12 & Beef & 2 Grams & \$2.29 & 250 & 1 \\
\hline 13 & Turkey & 8 Grams & \$2.59 & 250 & 1 \\
\hline 14 & Beef & 8 Grams & \$1.99 & 250 & 1 \\
\hline 15 & Turkey & 5 Grams & \$2.59 & 350 & - \\
\hline 16 & Chicken & 5 Grams & \$1.99 & 350 & 1 \\
\hline 17 & Chicken & 8 Grams & \$2.29 & 250 & 1 \\
\hline 18 & Chicken & 5 Grams & \$2.29 & 250 & . \\
\hline 19 & Beef & 2 Grams & \$2.29 & 350 & 1 \\
\hline 20 & Turkey & 5 Grams & \$2.29 & 350 & 1 \\
\hline 21 & Chicken & 5 Grams & \$1.99 & 250 & 1 \\
\hline 22 & Beef & 8 Grams & \$1.99 & 350 & 1 \\
\hline
\end{tabular}

\section*{Print the Stimuli}

Once the design is generated, the stimuli (descriptions of the combinations) must be generated for data collection. They are printed using the exact same step as we used on page 382.
```

title;
data _null_;
file print;
set sasuser.dietdes;
put ///
+3 ingredient 'Entree' @50 '(' _n_ +(-1) ')' /
+3 'With ' fat 'of Fat and ' calories 'Calories' /
+3 'Now for Only ' Price +(-1) '.'///;
if mod(_n_, 6) = 0 then put _page_;
run;

```

In the interest of space, only the first three are shown.

\section*{Beef Entree}
(1)

With 2 Grams of Fat and 250 Calories
Now for Only \$2.59.

Beef Entree
(2)

With 5 Grams of Fat and 250 Calories
Now for Only \$2.59.

Turkey Entree
With 2 Grams of Fat and 350 Calories
Now for Only \$1.99.

\section*{Data Collection, Entry, and Preprocessing}

The next step in the conjoint analysis study is data collection and entry. Each subject was asked to take the 22 cards and rank them from the most preferred combination to the least preferred combination. The combination numbers are entered as data. The data follow the datalines statement in the next DATA step. For the first subject, 4 was most preferred, 3 was second most preferred, ..., and 5 was the least preferred combination. The DATA step validates the data entry and converts the input to ranks.
```

title 'Frozen Diet Entrees';
%let m = 22; /* number of combinations */

* Read the input data and convert to ranks;
data ranks(drop=i k c1-c\&m);
input c1-c\&m;
array c[\&m];
array r[\&m];
do i = 1 to \&m;
k = c[i];
if 1 le k le \&m then do;
if r[k] ne . then
put 'ERROR: For subject ' _n_ +(-1) ', combination ' k
'is given more than once.';
r[k] = i; /* Convert to ranks. */
end;
else put 'ERROR: For subject ' _n_ +(-1) ', combination ' k
'is invalid.';
end;

```
```

    do i = 1 to &m;
    if r[i] = . then
        put 'ERROR: For subject ' _n_ +(-1) ', combination ' i
        'is not given.';
    end;
    name = 'Subj' || put(_n_, z2.);
    datalines;
    4 3 7 7 21 12 10 6 19 19 16 18 11 20 14 17 15 2 2 22 9 8 8 13 5
4}12
4 3 7 7 12 19 21 1 6 10 18 16 11 20 15 2 14 9 9 17 22 8 13 5
4 12 12 10 21 14 18 3 7 2 17 13 19 11 22 20 16 15 6
4}22
4}22

```

```

4 21 3 16 14 11 12 22 18 10 19 20 17 8 7 7 6 1 1 2 1 13 15 9 5
4 21 3 16 11 14 22 12 18 10 20 19 17 17 8 7 7 6 1 13 13 15 2 9 5

```

```

15

```

```

;

```

The macro variable \&m is set to 22 , the number of combinations. This is done to make it easier to modify the code for future use with different sized studies. For each subject, the numbers of the 22 products are read into the variables c1 through c22. The do loop, do i \(=1\) to \(\& m\), loops over each of the products. Consider the first product: k is set to c [i], which is c [1], which is 4 since the fourth product was ranked first by the first subject. The first data integrity check, if 1 le k le \&m then do ensures that the number is in the valid range, 1 to 22 . Otherwise an error is printed. Since the number is valid, \(r[k]\) is checked to see if it is missing. If it is not missing, another error is printed. The array \(r\) consists of 22 variables r1 through 22. These variables start out each pass through the DATA step as missing and end up as the ranks. If \(\mathrm{r}[\mathrm{k}]\) eq ., then the \(k\) th combination has not had a rank assigned yet so everything is fine. If \(\mathrm{r}[\mathrm{k}]\) ne ., the same number appears twice in a subject's data so there is something wrong with the data entry. The statement \(r[k]=i \operatorname{assigns}\) the ranks. For subject 1 and the first product, \(\mathrm{k}=\mathrm{c}[\mathrm{i}]=\mathrm{c}[1]=4\) so the rank of the fourth product is set to 1 \((r[k]=r[4]=i=1)\). For subject 1 and the second product, \(k=c[i]=c[2]=3\) so the rank of the third product is set to \(2(r[k]=r[3]=i=2)\). For subject 1 and the last product, \(k=c[i]\) \(=c[22]=5\) so the rank of the fifth product is set to \(22(r[k]=r[5]=i=22)\). At the end of the do \(i=1\) to \&m loop, each of the 22 variables in \(r 1-r 22\) should have been set to exactly one rank. If any of these variables are missing, then one or more product numbers did not appear in the data, so this is flagged as an error. The statement name \(=\) 'Subj' \| put(\(\left.n_{-}, z_{2}.\right)\) creates a subject ID of the form Subj01, Subj02, ..., Subj12.

Say there was a mistake in data entry for the first subject - say product 17 had been entered as 7 instead of 17 . We would get the following error messages.
```

ERROR: For subject 1, combination 7 is given more than once.

```

ERROR: For subject 1, combination 17 is not given.
If for the first subject, the 17 had been entered as 117 instead of 17 , we would get the following error messages.

ERROR: For subject 1, combination 117 is invalid.
ERROR: For subject 1, combination 17 is not given.

The next step transposes the data set from one row per subject to one row per product. The id name statement on PROC TRANSPOSE names the rank variables Subj01 through Subj12. Later, we will need to sort by these names. That is why we used leading zeros and names like Subj01 instead of Subj1. Next, the input data set is merged with the design.
```

proc transpose data=ranks out=ranks2;
id name;
run;
data both;
merge sasuser.dietdes ranks2;
drop _name_;
run;
proc print label;
title2 'Data and Design Together';
run;

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Obs & Ingredient & & Fat & Price & Calories & W & Subj01 & Subj02 & Subj03 & Subj04 \\
\hline 1 & Beef & 2 & Grams & \$2.59 & 250 & . & 9 & 4 & 7 & 3 \\
\hline 2 & Beef & 5 & Grams & \$2.59 & 250 & 1 & 17 & 12 & 15 & 10 \\
\hline 3 & Turkey & 2 & Grams & \$1.99 & 350 & 1 & 2 & 3 & 2 & 8 \\
\hline 4 & Turkey & 2 & Grams & \$1.99 & 250 & 1 & 1 & 1 & 1 & 1 \\
\hline 5 & Turkey & 8 & Grams & \$2.59 & 350 & 1 & 22 & 21 & 22 & 21 \\
\hline 6 & Chicken & 2 & Grams & \$2.59 & 350 & 1 & 7 & 8 & 8 & 19 \\
\hline 7 & Chicken & 2 & Grams & \$2.59 & 250 & 1 & 3 & 6 & 3 & 9 \\
\hline 8 & Chicken & 8 & Grams & \$2.29 & 350 & 1 & 20 & 22 & 20 & 22 \\
\hline 9 & Beef & 5 & Grams & \$2.59 & 350 & 1 & 19 & 16 & 17 & 20 \\
\hline 10 & Turkey & 5 & Grams & \$2.29 & 250 & 1 & 6 & 7 & 9 & 4 \\
\hline 11 & Beef & 5 & Grams & \$1.99 & 350 & . & 12 & 9 & 12 & 14 \\
\hline 12 & Beef & 2 & Grams & \$2.29 & 250 & 1 & 5 & 2 & 4 & 2 \\
\hline 13 & Turkey & 8 & Grams & \$2.59 & 250 & 1 & 21 & 19 & 21 & 12 \\
\hline 14 & Beef & 8 & Grams & \$1.99 & 250 & 1 & 14 & 17 & 16 & 6 \\
\hline 15 & Turkey & 5 & Grams & \$2.59 & 350 & - & 16 & 15 & 14 & 18 \\
\hline 16 & Chicken & 5 & Grams & \$1.99 & 350 & 1 & 10 & 11 & 11 & 17 \\
\hline 17 & Chicken & 8 & Grams & \$2.29 & 250 & 1 & 15 & 20 & 18 & 11 \\
\hline 18 & Chicken & 5 & Grams & \$2.29 & 250 & . & 11 & 13 & 10 & 7 \\
\hline 19 & Beef & 2 & Grams & \$2.29 & 350 & 1 & 8 & 5 & 5 & 13 \\
\hline 20 & Turkey & 5 & Grams & \$2.29 & 350 & 1 & 13 & 14 & 13 & 16 \\
\hline 21 & Chicken & 5 & Grams & \$1.99 & 250 & 1 & 4 & 10 & 6 & 5 \\
\hline 22 & Beef & 8 & Grams & \$1.99 & 350 & 1 & 18 & 18 & 19 & 15 \\
\hline
\end{tabular}
\begin{tabular}{rrrrrrrrr}
Obs & Subj05 & Subj06 & Subj07 & Subj08 & Subj09 & Subj10 & Subj11 & Subj12 \\
& & & & & & & & \\
1 & 16 & 13 & 4 & 17 & 17 & 14 & 15 & 7 \\
2 & 18 & 17 & 12 & 18 & 20 & 17 & 22 & 12 \\
3 & 6 & 5 & 5 & 3 & 3 & 2 & 11 & 3 \\
4 & 1 & 1 & 2 & 1 & 1 & 1 & 9 & 2 \\
5 & 22 & 22 & 22 & 22 & 22 & 22 & 21 & 22 \\
6 & 17 & 16 & 7 & 16 & 16 & 20 & 5 & 10 \\
7 & 15 & 11 & 6 & 15 & 15 & 15 & 14 & 4 \\
8 & 13 & 15 & 20 & 14 & 14 & 16 & 17 & 20 \\
9 & 19 & 19 & 15 & 21 & 21 & 19 & 13 & 18 \\
10 & 11 & 12 & 13 & 10 & 10 & 10 & 16 & 14 \\
11 & 4 & 7 & 10 & 6 & 5 & 4 & 6 & 9 \\
12 & 7 & 4 & 1 & 7 & 8 & 6 & 10 & 1 \\
13 & 20 & 20 & 21 & 19 & 18 & 18 & 7 & 21 \\
14 & 3 & 6 & 17 & 5 & 6 & 3 & 19 & 13 \\
15 & 21 & 21 & 16 & 20 & 19 & 21 & 1 & 19 \\
16 & 5 & 3 & 11 & 4 & 4 & 7 & 20 & 11 \\
17 & 12 & 14 & 18 & 13 & 13 & 13 & 3 & 15 \\
18 & 10 & 9 & 9 & 9 & 9 & 11 & 12 & 8 \\
19 & 9 & 10 & 3 & 11 & 12 & 9 & 8 & 6 \\
20 & 14 & 18 & 14 & 12 & 11 & 12 & 18 & 17 \\
21 & 2 & 2 & 8 & 2 & 2 & 5 & 4 & 5 \\
22 & 8 & 8 & 19 & 8 & 7 & 8 & 2 & 16
\end{tabular}

One more data set manipulation is sometimes necessary - the addition of simulation observations. Simulation observations are not rated by the subjects and do not contribute to the analysis. They are scored as passive observations. Simulations are what-if combinations. They are combinations that are entered to get a prediction of what their utility would have been if they had been rated. In this example, all combinations are added as simulations. The \%MktEx macro is called to make a full-factorial design. The \(n=\) specification accepts expressions, so \(n=3 * 3 * 3 * 2\) and \(n=54\) are equivalent. The data all step reads in the design and data followed by the simulation observations. The flag variable \(f\) indicates when the simulation observations are being processed. Simulation observations are given a weight of 0 to exclude them from the analysis and to distinguish them from the holdouts. Notice that the dependent variable has missing values for the simulations and nonmissing values for the holdouts and active observations.
```

proc format;
value wf 1 = 'Active'
. = 'Holdout'
0 = 'Simulation';
run;
%mktex(3 3 3 2, n=3*3*3*2)
%mktlab(data=design, vars=Ingredient Fat Price Calories)
data all;
set both final(in=f);
if f then w = 0;
format w wf.;
run;

```
```

proc print data=all(Obs=25 drop=subj04-subj12) label;
title2 'Some of the Final Data Set';
run;

```

Here the data for the first three subjects and the first 25 rows of the data set.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Obs} & \multirow[b]{2}{*}{Ingredient} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Fat}} & \multicolumn{3}{|l|}{\begin{tabular}{l}
Frozen Diet Entrees \\
Some of the Final Data Set
\end{tabular}} & \multirow[b]{2}{*}{Subj01} & \multirow[b]{2}{*}{Subj02} & \multirow[b]{2}{*}{Subj03} \\
\hline & & & & Price & Calories & w & & & \\
\hline 1 & Beef & 2 & Grams & \$2.59 & 250 & Holdout & 9 & 4 & 7 \\
\hline 2 & Beef & 5 & Grams & \$2.59 & 250 & Active & 17 & 12 & 15 \\
\hline 3 & Turkey & 2 & Grams & \$1.99 & 350 & Active & 2 & 3 & 2 \\
\hline 4 & Turkey & 2 & Grams & \$1.99 & 250 & Active & 1 & 1 & 1 \\
\hline 5 & Turkey & 8 & Grams & \$2.59 & 350 & Active & 22 & 21 & 22 \\
\hline 6 & Chicken & 2 & Grams & \$2.59 & 350 & Active & 7 & 8 & 8 \\
\hline 7 & Chicken & 2 & Grams & \$2.59 & 250 & Active & 3 & 6 & 3 \\
\hline 8 & Chicken & 8 & Grams & \$2.29 & 350 & Active & 20 & 22 & 20 \\
\hline 9 & Beef & 5 & Grams & \$2.59 & 350 & Active & 19 & 16 & 17 \\
\hline 10 & Turkey & 5 & Grams & \$2.29 & 250 & Active & 6 & 7 & 9 \\
\hline 11 & Beef & 5 & Grams & \$1.99 & 350 & Holdout & 12 & 9 & 12 \\
\hline 12 & Beef & 2 & Grams & \$2.29 & 250 & Active & 5 & 2 & 4 \\
\hline 13 & Turkey & 8 & Grams & \$2.59 & 250 & Active & 21 & 19 & 21 \\
\hline 14 & Beef & 8 & Grams & \$1.99 & 250 & Active & 14 & 17 & 16 \\
\hline 15 & Turkey & 5 & Grams & \$2.59 & 350 & Holdout & 16 & 15 & 14 \\
\hline 16 & Chicken & 5 & Grams & \$1.99 & 350 & Active & 10 & 11 & 11 \\
\hline 17 & Chicken & 8 & Grams & \$2.29 & 250 & Active & 15 & 20 & 18 \\
\hline 18 & Chicken & 5 & Grams & \$2.29 & 250 & Holdout & 11 & 13 & 10 \\
\hline 19 & Beef & 2 & Grams & \$2.29 & 350 & Active & 8 & 5 & 5 \\
\hline 20 & Turkey & 5 & Grams & \$2.29 & 350 & Active & 13 & 14 & 13 \\
\hline 21 & Chicken & 5 & Grams & \$1.99 & 250 & Active & 4 & 10 & 6 \\
\hline 22 & Beef & 8 & Grams & \$1.99 & 350 & Active & 18 & 18 & 19 \\
\hline 23 & Chicken & 8 & Grams & \$2.59 & 350 & Simulation & . & . & . \\
\hline 24 & Chicken & 8 & Grams & \$2.59 & 250 & Simulation & . & . & . \\
\hline 25 & Chicken & 8 & Grams & \$2.29 & 350 & Simulation & - & - & - \\
\hline
\end{tabular}

\section*{Metric Conjoint Analysis}

In this part of this example, the conjoint analysis is performed with PROC TRANSREG.
```

ods exclude notes mvanova anova;
proc transreg data=all utilities short separators=', '
method=morals outtest=utils;
title2 'Conjoint Analysis';
model identity(subj: / reflect) =
class(Ingredient Fat Price Calories / zero=sum);
weight w;
output p ireplace out=results coefficients;
run;

```

The proc, model, and output statements are typical for a conjoint analysis of rank-order data with more than one subject. (In this analysis, we perform a metric conjoint analysis. It is more typical to perform nonmetric conjoint analysis of rank-order data. However, it is not absolutely required.) The proc statement specifies method=morals, which fits the conjoint analysis model separately for each subject. The proc statement also requests an outtest= data set, which contains the ANOVA and part-worth utilities tables from the printed output. In the model statement, the dependent variable list subj: specifies all variables in the \(D A T A=\) data set that begin with the prefix subj (in this case subj01-subj12). The weight variable designates the active (weight \(=1\)), holdout (weight \(=\).), and simulation (weight \(=0\)) observations. Only the active observations are used to compute the part-worth utilities. However, predicted utilities are computed for all observations, including active, holdouts, and simulations, using those part-worths. The output statement creates an out= data set beginning with all results for the first subject, followed by all subject two results, and so on.

Here are the results. Recall that we used an ods exclude statement and we used PROC TEMPLATE on page 366 to customize the output from PROC TRANSREG. There is one set of output for each subject. Conjoint analysis fits individual-level models.

\title{
Frozen Diet Entrees \\ Conjoint Analysis
}

The TRANSREG Procedure

Identity(Subj01)
Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Identity(Subj01)

Part-Worth Utilities
\begin{tabular}{lrrr}
Label & Utility & \begin{tabular}{r}
Standard \\
Error
\end{tabular} & \begin{tabular}{r}
Importance \\
(\% Utility \\
Range)
\end{tabular} \\
Intercept & 11.3889 & 0.42673 & \\
Ingredient, Chicken & 1.5556 & 0.60349 & 13.095 \\
Ingredient, Beef & -2.1111 & 0.60349 & \\
Ingredient, Turkey & 0.5556 & 0.60349 & \\
Fat, 8 Grams & -6.9444 & 0.60349 & 50.000 \\
Fat, 5 Grams & -0.1111 & 0.60349 & \\
Fat, 2 Grams & 7.0556 & 0.60349 & \\
Price, \$2.59 & -3.4444 & 0.60349 & 23.810 \\
Price, \$2.29 & 0.2222 & 0.60349 & \\
Price, \$1.99 & 3.2222 & 0.60349 & \\
Calories, 350 & -1.8333 & 0.42673 & 13.095 \\
Calories, 250 & 1.8333 & 0.42673 &
\end{tabular}

\author{
Frozen Diet Entrees \\ Conjoint Analysis \\ The TRANSREG Procedure
}

Identity (Subj02)
Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Identity(Subj02)
\begin{tabular}{lrrr}
Root MSE & 1.30809 & R-Square & 0.9788 \\
Dependent Mean & 11.77778 & Adj R-Sq & 0.9640 \\
Coeff Var & 11.10646 & &
\end{tabular}

Part-Worth Utilities
\begin{tabular}{lrrr}
Label & Utility & \begin{tabular}{r}
Standard \\
Error
\end{tabular} & \begin{tabular}{r}
Importance \\
(\% Utility \\
Range)
\end{tabular} \\
Intercept & 11.7778 & 0.30832 & \\
Ingredient, Chicken & -1.0556 & 0.43603 & 8.451 \\
Ingredient, Beef & 0.1111 & 0.43603 & \\
Ingredient, Turkey & 0.9444 & 0.43603 & \\
Fat, 8 Grams & -7.7222 & 0.43603 & 64.789 \\
Fat, 5 Grams & 0.1111 & 0.43603 & \\
Fat, 2 Grams & 7.6111 & 0.43603 & \\
& & 0.43603 & 15.493 \\
Price, \$2.59 & 0.1111 & 0.43603 & \\
Price, \$2.29 & 1.7778 & 0.43603 & \\
Price, \$1.99 & -1.3333 & 0.30832 & 11.268 \\
Calories, 350 & 1.3333 & 0.30832 &
\end{tabular}

\title{
Frozen Diet Entrees \\ Conjoint Analysis
}

The TRANSREG Procedure

Identity (Subj03)
Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Identity(Subj03)
\begin{tabular}{lrlr}
Root MSE & 1.15470 & R-Square & 0.9844 \\
Dependent Mean & 11.66667 & Adj R-Sq & 0.9735 \\
Coeff Var & 9.89743 & &
\end{tabular}

Part-Worth Utilities
\begin{tabular}{lrrr}
Label & Utility & \begin{tabular}{r}
Standard \\
Error
\end{tabular} & \begin{tabular}{r}
Importance \\
(\% Utility \\
Range)
\end{tabular} \\
Intercept & 11.6667 & 0.27217 & \\
Ingredient, Chicken & 0.6667 & 0.38490 & 6.667 \\
Ingredient, Beef & -1.0000 & 0.38490 & \\
Ingredient, Turkey & 0.3333 & 0.38490 & \\
Fat, 8 Grams & -7.6667 & 0.38490 & 62.000 \\
Fat, 5 Grams & -0.1667 & 0.38490 & \\
Fat, 2 Grams & 7.8333 & 0.38490 & \\
Price, \$2.59 & -2.6667 & 0.38490 & 20.667 \\
Price, \$2.29 & 0.1667 & 0.38490 & \\
Price, \$1.99 & 2.5000 & 0.38490 & \\
Calories, 350 & -1.3333 & 0.27217 & 10.667 \\
Calories, 250 & 1.3333 & 0.27217 &
\end{tabular}

\author{
Frozen Diet Entrees \\ Conjoint Analysis \\ The TRANSREG Procedure
}

Identity (Subj04)
Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Identity(Subj04)
\begin{tabular}{lrll}
Root MSE & 1.05935 & R-Square & 0.9849 \\
Dependent Mean & 11.72222 & Adj R-Sq & 0.9743 \\
Coeff Var & 9.03711 & &
\end{tabular}

Part-Worth Utilities
\begin{tabular}{lrrr}
Label & Utility & \begin{tabular}{r}
Standard \\
Error
\end{tabular} & \begin{tabular}{r}
Importance \\
(\% Utility \\
Range)
\end{tabular} \\
Intercept & 11.7222 & 0.24969 & \\
Ingredient, Chicken & -2.1111 & 0.35312 & 13.490 \\
Ingredient, Beef & 0.7222 & 0.35312 & \\
Ingredient, Turkey & 1.3889 & 0.35312 & \\
Fat, 8 Grams & -2.7778 & 0.35312 & 22.484 \\
Fat, 5 Grams & -0.2778 & 0.35312 & \\
Fat, 2 Grams & 3.0556 & 0.35312 & \\
& & 0.35312 & 25.054 \\
Price, \$2.59 & -3.4444 & 0.3889 & 0.35312
\end{tabular}

\title{
Frozen Diet Entrees \\ Conjoint Analysis
}

The TRANSREG Procedure

Identity (Subj05)
Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Identity(Subj05)
\begin{tabular}{lrlr}
Root MSE & 1.02198 & R-Square & 0.9854 \\
Dependent Mean & 11.22222 & Adj R-Sq & 0.9752 \\
Coeff Var & 9.10676 & &
\end{tabular}

Part-Worth Utilities
\begin{tabular}{lrrr}
Label & Utility & \begin{tabular}{r}
Standard \\
Error
\end{tabular} & \begin{tabular}{r}
Importance \\
(\% Utility \\
Range)
\end{tabular} \\
Intercept & 11.2222 & 0.24088 & \\
Ingredient, Chicken & 0.5556 & 0.34066 & 7.407 \\
Ingredient, Beef & 0.5556 & 0.34066 & \\
Ingredient, Turkey & -1.1111 & 0.34066 & \\
Fat, 8 Grams & -1.7778 & 0.34066 & 17.037 \\
Fat, 5 Grams & -0.2778 & 0.34066 & \\
Fat, 2 Grams & 2.0556 & 0.34066 & \\
Price, \$2.59 & -7.2778 & 0.34066 & 63.704 \\
Price, \$2.29 & 0.2222 & 0.34066 & \\
Price, \$1.99 & 7.0556 & 0.34066 & \\
Calories, 350 & -1.3333 & 0.24088 & 11.852 \\
Calories, 250 & 1.3333 & 0.24088 &
\end{tabular}

\author{
Frozen Diet Entrees \\ Conjoint Analysis \\ The TRANSREG Procedure
}

Identity (Subj06)
Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Identity(Subj06)
\begin{tabular}{lrlr}
Root MSE & 1.67000 & R-Square & 0.9636 \\
Dependent Mean & 11.27778 & Adj R-Sq & 0.9381 \\
Coeff Var & 14.80785 & &
\end{tabular}

Part-Worth Utilities
\begin{tabular}{lrrr}
Label & Utility & \begin{tabular}{r}
Standard \\
Error
\end{tabular} & \begin{tabular}{r}
Importance \\
(\% Utility \\
Range)
\end{tabular} \\
Intercept & 11.2778 & 0.39362 & \\
Ingredient, Chicken & 1.1111 & 0.55667 & 11.015 \\
Ingredient, Beef & 0.6111 & 0.55667 & \\
Ingredient, Turkey & -1.7222 & 0.55667 & \\
Fat, 8 Grams & -2.8889 & 0.55667 & 24.622 \\
Fat, 5 Grams & -0.5556 & 0.55667 & \\
Fat, 2 Grams & 3.4444 & 0.55667 & \\
& & 0.51 .836 \\
Price, \$2.59 & -6.2222 & 0.5667 & \\
Price, \$2.29 & -0.8889 & 0.55667 & \\
Price, \$1.99 & 7.1111 & 0.55667 & \\
Calories, 350 & -1.6111 & 0.39362 & 12.527 \\
Calories, 250 & 1.6111 & 0.39362 &
\end{tabular}

\title{
Frozen Diet Entrees \\ Conjoint Analysis
}

The TRANSREG Procedure

Identity (Subj07)
Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Identity(Subj07)
\begin{tabular}{lrll}
Root MSE & 1.06979 & R-Square & 0.9857 \\
Dependent Mean & 11.88889 & Adj R-Sq & 0.9756 \\
Coeff Var & 8.99821 & &
\end{tabular}

Part-Worth Utilities
\begin{tabular}{lrrr}
Label & Utility & \begin{tabular}{r}
Standard \\
Error
\end{tabular} & \begin{tabular}{r}
Importance \\
(\% Utility \\
Range)
\end{tabular} \\
Intercept & 11.8889 & 0.25215 & \\
Ingredient, Chicken & 0.2222 & 0.35660 & 7.353 \\
Ingredient, Beef & 0.7222 & 0.35660 & \\
Ingredient, Turkey & -0.9444 & 0.35660 & \\
Fat, 8 Grams & -7.6111 & 0.35660 & 68.382 \\
Fat, 5 Grams & -0.2778 & 0.35660 & \\
Fat, 2 Grams & 7.8889 & 0.35660 & \\
& & 0.35660 & 15.441 \\
Price, \$2.59 & -1.9444 & 0.3889 & 0.35660
\end{tabular}

Frozen Diet Entrees
Conjoint Analysis

The TRANSREG Procedure

Identity (Subj08)
Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Identity(Subj08)
\begin{tabular}{lrrr}
Root MSE & 0.79582 & R-Square & 0.9915 \\
Dependent Mean & 11.16667 & Adj R-Sq & 0.9855 \\
Coeff Var & 7.12677 & &
\end{tabular}

\section*{Part-Worth Utilities}
\begin{tabular}{lrrr}
Label & Utility & \begin{tabular}{r}
Standard \\
Error
\end{tabular} & \begin{tabular}{r}
Importance \\
(\% Utility \\
Range)
\end{tabular} \\
Intercept & 11.1667 & 0.18758 & \\
Ingredient, Chicken & 0.5000 & 0.26527 & 4.412 \\
Ingredient, Beef & -0.5000 & 0.26527 & \\
Ingredient, Turkey & 0.0000 & 0.26527 & \\
Fat, 8 Grams & -2.3333 & 0.26527 & 20.588 \\
Fat, 5 Grams & 0.0000 & 0.26527 & \\
Fat, 2 Grams & 2.3333 & 0.26527 & \\
& & 0.26527 & 64.706 \\
Price, \$2.59 & -7.3333 & 0.26527 & \\
Price, \$2.29 & -0.0000 & 0.26527 & \\
Price, \$1.99 & 7.3333 & 0.2657 \\
Calories, 350 & -1.1667 & 0.18758 & 10.294 \\
Calories, 250 & 1.1667 & 0.18758 &
\end{tabular}

\title{
Frozen Diet Entrees \\ Conjoint Analysis
}

The TRANSREG Procedure

Identity (Subj09)
Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Identity(Subj09)

Part-Worth Utilities
\begin{tabular}{lrrr}
Label & Utility & \begin{tabular}{r}
Standard \\
Error
\end{tabular} & \begin{tabular}{r}
Importance \\
(\% Utility \\
Range)
\end{tabular} \\
Intercept & 11.2778 & 0.24969 & \\
Ingredient, Chicken & 0.6111 & 0.35312 & 7.389 \\
Ingredient, Beef & -1.0556 & 0.35312 & \\
Ingredient, Turkey & 0.4444 & 0.35312 & \\
Fat, 8 Grams & -2.0556 & 0.35312 & 18.473 \\
Fat, 5 Grams & -0.0556 & 0.35312 & \\
Fat, 2 Grams & 2.1111 & 0.35312 & \\
Price, \$2.59 & -7.3889 & 0.35312 & 65.764 \\
Price, \$2.29 & -0.0556 & 0.35312 & \\
Price, \$1.99 & 7.4444 & 0.35312 & \\
Calories, 350 & -0.9444 & 0.24969 & 8.374 \\
Calories, 250 & 0.9444 & 0.24969 &
\end{tabular}

\author{
Frozen Diet Entrees \\ Conjoint Analysis \\ The TRANSREG Procedure
}

Identity (Subj10)
Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Identity(Subj10)
\begin{tabular}{lrll}
Root MSE & 0.90062 & R-Square & 0.9889 \\
Dependent Mean & 11.27778 & Adj R-Sq & 0.9812 \\
Coeff Var & 7.98577 & &
\end{tabular}

Part-Worth Utilities
\begin{tabular}{lrrr}
Label & Utility & \begin{tabular}{r}
Standard \\
Error
\end{tabular} & \begin{tabular}{r}
Importance \\
(\% Utility \\
Range)
\end{tabular} \\
Intercept & 11.2778 & 0.21228 & \\
Ingredient, Chicken & -1.3889 & 0.30021 & 9.722 \\
Ingredient, Beef & 0.9444 & 0.30021 & \\
Ingredient, Turkey & 0.4444 & 0.30021 & \\
Fat, 8 Grams & -2.0556 & 0.30021 & 18.750 \\
Fat, 5 Grams & -0.3889 & 0.30021 & \\
Fat, 2 Grams & 2.4444 & 0.30021 & \\
& & 0.30021 & 59.028 \\
Price, \$2.59 & -7.2222 & 0.2778 & 0.30021
\end{tabular}

\title{
Frozen Diet Entrees \\ Conjoint Analysis
}

The TRANSREG Procedure

Identity(Subj11)
Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Identity(Subj11)
\begin{tabular}{lrrr}
Root MSE & 7.42369 & R-Square & 0.2393 \\
Dependent Mean & 12.16667 & Adj R-Sq & -0.2932 \\
Coeff Var & 61.01660 & &
\end{tabular}

\section*{Part-Worth Utilities}
\begin{tabular}{lrrr}
& Utility & \begin{tabular}{r}
Standard \\
Error
\end{tabular} & \begin{tabular}{r}
Importance \\
(\% Utility \\
Range)
\end{tabular} \\
Label & 12.1667 & 1.74978 & \\
Intercept & 1.6667 & 2.47456 & 23.950 \\
Ingredient, Chicken & -0.1667 & 2.47456 & \\
Ingredient, Beef & -1.5000 & 2.47456 & \\
Ingredient, Turkey & 0.6667 & 2.47456 & 45.378 \\
& -3.3333 & 2.47456 & \\
Fat, 8 Grams & 2.6667 & 2.47456 & 21.429 \\
Fat, 5 Grams & -1.5000 & 2.47456 & \\
Fat, 2 Grams & 0.1667 & 2.47456 & \\
Price, \$2.59 & 1.3333 & 2.47456 & \\
Price, \$2.29 & & & \\
Price, \$1.99 & -0.6111 & 1.74978 & \\
Calories, 350 & 0.6111 & 1.74978 &
\end{tabular}

\author{
Frozen Diet Entrees \\ Conjoint Analysis
}

The TRANSREG Procedure

Identity (Subj12)
Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Identity(Subj12)
\begin{tabular}{lrlr}
Root MSE & 1.49443 & R-Square & 0.9717 \\
Dependent Mean & 11.66667 & Adj R-Sq & 0.9519 \\
Coeff Var & 12.80944 & &
\end{tabular}

Part-Worth Utilities
\begin{tabular}{lrrr}
Label & Utility & \begin{tabular}{r}
Standard \\
Error
\end{tabular} & \begin{tabular}{r}
Importance \\
(\% Utility \\
Range)
\end{tabular} \\
Intercept & 11.6667 & 0.35224 & \\
Ingredient, Chicken & 0.8333 & 0.49814 & 8.974 \\
Ingredient, Beef & 0.6667 & 0.49814 & \\
Ingredient, Turkey & -1.5000 & 0.49814 & \\
Fat, 8 Grams & -6.1667 & 0.49814 & 51.923 \\
Fat, 5 Grams & -1.1667 & 0.49814 & \\
Fat, 2 Grams & 7.3333 & 0.49814 & \\
& & -2.8333 & 0.49814 \\
Price, \$2.59 & -0.5000 & 0.49814 & 23.718 \\
Price, \$2.29 & 3.3333 & 0.49814 & \\
Price, \$1.99 & -2.0000 & 0.35224 & 15.385 \\
Calories, 350 & 2.0000 & 0.35224 &
\end{tabular}

Next, we will print some of the output data set to see the predicted utilities for the first two subjects.
```

proc print data=results(drop=_depend_ t_depend_ intercept \&_trgind) label;
title2 'Predicted Utility';
where w ne 0 and _depvar_ le 'Identity(Subj02)' and not (_type_ =: 'M');
by _depvar_;
label p_depend_ = 'Predicted Utility';
run;

```

We print _TYPE_, _NAME_, and the weight variable, w; drop the original and transformed dependent
variable, _depend_ and t_depend_; print the predicted values (predicted utilities), p_depend_; drop the intercept and coded independent variables; and print the original class variables. Note that the macro variable \&_trgind is automatically created by PROC TRANSREG and its value is a list of the names of the coded variables. The where statement is used to exclude the simulation observations and just show results for the first two subjects. Here are the predicted utilities for each of the rated products for the first two subjects.

Frozen Diet Entrees
Predicted Utility
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Obs & _TYPE_ & _NAME_ & W & Predicted Utility & Ingredient & & Fat & Price & Calories \\
\hline 1 & & ROW1 & Holdout & 14.7222 & Beef & 2 & Grams & \$2.59 & 250 \\
\hline 2 & SCORE & ROW2 & Active & 7.5556 & Beef & 5 & Grams & \$2.59 & 250 \\
\hline 3 & SCORE & ROW3 & Active & 20.3889 & Turkey & 2 & Grams & \$1.99 & 350 \\
\hline 4 & SCORE & ROW4 & Active & 24.0556 & Turkey & 2 & Grams & \$1.99 & 250 \\
\hline 5 & SCORE & ROW5 & Active & -0.2778 & Turkey & 8 & Grams & \$2.59 & 350 \\
\hline 6 & SCORE & ROW6 & Active & 14.7222 & Chicken & 2 & Grams & \$2.59 & 350 \\
\hline 7 & SCORE & ROW7 & Active & 18.3889 & Chicken & 2 & Grams & \$2.59 & 250 \\
\hline 8 & SCORE & ROW8 & Active & 4.3889 & Chicken & 8 & Grams & \$2.29 & 350 \\
\hline 9 & SCORE & ROW9 & Active & 3.8889 & Beef & 5 & Grams & \$2.59 & 350 \\
\hline 10 & SCORE & ROW10 & Active & 13.8889 & Turkey & 5 & Grams & \$2.29 & 250 \\
\hline 11 & & ROW11 & Holdout & 10.5556 & Beef & 5 & Grams & \$1.99 & 350 \\
\hline 12 & SCORE & ROW12 & Active & 18.3889 & Beef & 2 & Grams & \$2.29 & 250 \\
\hline 13 & SCORE & ROW13 & Active & 3.3889 & Turkey & 8 & Grams & \$2.59 & 250 \\
\hline 14 & SCORE & ROW14 & Active & 7.3889 & Beef & 8 & Grams & \$1.99 & 250 \\
\hline 15 & & ROW15 & Holdout & 6.5556 & Turkey & 5 & Grams & \$2.59 & 350 \\
\hline 16 & SCORE & ROW16 & Active & 14.2222 & Chicken & 5 & Grams & \$1.99 & 350 \\
\hline 17 & SCORE & ROW17 & Active & 8.0556 & Chicken & 8 & Grams & \$2.29 & 250 \\
\hline 18 & & ROW18 & Holdout & 14.8889 & Chicken & 5 & Grams & \$2.29 & 250 \\
\hline 19 & SCORE & ROW19 & Active & 14.7222 & Beef & 2 & Grams & \$2.29 & 350 \\
\hline 20 & SCORE & ROW20 & Active & 10.2222 & Turkey & 5 & Grams & \$2.29 & 350 \\
\hline 21 & SCORE & ROW21 & Active & 17.8889 & Chicken & 5 & Grams & \$1.99 & 250 \\
\hline 22 & SCORE & ROW22 & Active & 3.7222 & Beef & 8 & Grams & \$1.99 & 350 \\
\hline
\end{tabular}

\begin{tabular}{rlllrlllll}
85 & SCORE & ROW7 & Active & 17.7778 & Chicken & 2 Grams & \(\$ 2.59\) & 250 \\
86 & SCORE & ROW8 & Active & 1.7778 & Chicken & 8 Grams & \(\$ 2.29\) & 350 \\
87 & SCORE & ROW9 & Active & 8.7778 & Beef & 5 & Grams & \(\$ 2.59\) & 350 \\
88 & SCORE & ROW10 & Active & 14.2778 & Turkey & 5 & Grams & \(\$ 2.29\) & 250 \\
89 & & ROW11 & Holdout & 12.4444 & Beef & 5 & Grams & \(\$ 1.99\) & 350 \\
90 & SCORE & ROW12 & Active & 20.9444 & Beef & 2 & Grams & \(\$ 2.29\) & 250 \\
91 & SCORE & ROW13 & Active & 4.4444 & Turkey & 8 Grams & \(\$ 2.59\) & 250 \\
92 & SCORE & ROW14 & Active & 7.2778 & Beef & 8 Grams & \(\$ 1.99\) & 250 \\
93 & & ROW15 & Holdout & 9.6111 & Turkey & 5 & Grams & \(\$ 2.59\) & 350 \\
94 & SCORE & ROW16 & Active & 11.2778 & Chicken & 5 & Grams & \(\$ 1.99\) & 350 \\
95 & SCORE & ROW17 & Active & 4.4444 & Chicken & 8 Grams & \(\$ 2.29\) & 250 \\
96 & & ROW18 & Holdout & 12.2778 & Chicken & 5 & Grams & \(\$ 2.29\) & 250 \\
97 & SCORE & ROW19 & Active & 18.2778 & Beef & 2 Grams & \(\$ 2.29\) & 350 \\
98 & SCORE & ROW20 & Active & 11.6111 & Turkey & 5 & Grams & \(\$ 2.29\) & 350 \\
99 & SCORE & ROW21 & Active & 13.9444 & Chicken & 5 & Grams & \(\$ 1.99\) & 250 \\
100 & SCORE & ROW22 & Active & 4.6111 & Beef & 8 Grams & \(\$ 1.99\) & 350 \\
& & & & & & & & & \\
\hline
\end{tabular}

\section*{Analyzing Holdouts}

The next steps display the correlations between the predicted utility for holdout observations and their actual ratings. These correlations provide a measure of the validity of the results, since the holdout observations have zero weight and do not contribute to any of the calculations. The Pearson correlations are the ordinary correlation coefficients, and the Kendall Tau's are rank-based measures of correlation. These correlations should always be large. Subjects whose correlations are small may be unreliable.

PROC CORR is used to produce the correlations. Since the output is not very compact, ODS is used to suppress the normal printed output (ods listing close), output the Pearson correlations to an output data set P (PearsonCorr=p), and output the Kendall correlations to an output data set K (KendallCorr=k). The listing is reopened for normal output (ods listing), the two tables are merged renaming the variables to identify the correlation type, the subject number is pulled out of the subject variable names, and the results are printed.
```

ods output KendallCorr=k PearsonCorr=p;
ods listing close;
proc corr nosimple noprob kendall pearson
data=results(where=(w=.));
title2 'Holdout Validation Results';
var p_depend_;
with t_depend_;
by notsorted _depvar_;
run;
ods listing;

```
```

data both(keep=subject pearson kendall);
length Subject 8;
merge p(rename=(p_depend_=Pearson))
k(rename=(p_depend_=Kendall));
subject = input(substr(_depvar_, 14, 2), best2.);
run;
proc print; run;

```

Here are the results.
\begin{tabular}{rrrr}
\multicolumn{4}{c}{\begin{tabular}{r}
Frozen Diet Entrees \\
Holdout Validation Results
\end{tabular}} \\
Obs & Subject & Pearson & Kendall \\
& & & \\
1 & 1 & 0.93848 & 0.66667 \\
2 & 2 & 0.94340 & 1.00000 \\
3 & 3 & 0.99038 & 1.00000 \\
4 & 4 & 0.97980 & 1.00000 \\
5 & 5 & 0.98930 & 1.00000 \\
6 & 6 & 0.98649 & 1.00000 \\
7 & 7 & 0.99029 & 1.00000 \\
8 & 8 & 0.99296 & 1.00000 \\
9 & 9 & 0.99873 & 1.00000 \\
10 & 10 & 0.99973 & 1.00000 \\
11 & 11 & -0.98184 & -1.00000 \\
12 & 12 & 0.92920 & 1.00000
\end{tabular}

Most of the correlations look great! However, the results from subject 11 look suspect. Subject 11's holdout correlations are negative. We can return to page 414 and look at the conjoint results. Subject 11 has an \(R^{2}\) of 0.2393 . In contrast, all of the other subjects have an \(R^{2}\) over 0.95 . Subject 11 almost certainly did not take the task seriously, so his or her results will be discarded.
```

data results2;
set results;
if not (index(_depvar_, '11'));
run;
data utils2;
set utils;
if not (index(_depvar_, '11'));
run;

```

\section*{Simulations}

The next steps display simulation observations. The most preferred combinations are printed for each subject.
```

proc sort data=results2(where=(w=0)) out=sims(drop=\&_trgind);
by _depvar_ descending p_depend_;
run;
data sims; /* Pull out first 10 for each subject. */
set sims;
by _depvar_;
retain n 0;
if first._depvar_ then n = 0;
n = n + 1;
if n le 10;
drop w _depend_ t_depend_ n _name_ _type_ intercept;
run;
proc print data=sims label;
by _depvar_ ;
title2 'Simulations Sorted by Decreasing Predicted Utility';
title3 'Just the Ten Most Preferred Combinations are Printed';
label p_depend_ = 'Predicted Utility';
run;

```
 Frozen Diet Entrees
Simulations Sorted by Decreasing Predicted Utility
Just the Ten Most Preferred Combinations are Printed
Dependent Variable Transformation(Name)=Identity (Subj01)
 Predicted
Obs Utility Ingredient Fat Price Calories
1 25.0556 Chicken 2 Grams \$1.99 250
2 24.0556 Turkey 2 Grams \(\$ 1.99 \quad 250\)
3 22.0556 Chicken 2 Grams \(\$ 2.29 \quad 250\)
4 21.3889 Chicken 2 Grams \(\$ 1.99 \quad 350\)
5 21.3889 Beef 2 Grams \$1.99 250
6 21.0556 Turkey 2 Grams \$2.29 250
\(7 \quad 20.3889 \quad\) Turkey 2 Grams \(\$ 1.99 \quad 350\)
8 18.3889 Chicken 2 Grams \(\$ 2.59 \quad 250\)
9 18.3889 Chicken 2 Grams \(\$ 2.29 \quad 350\)
10 18.3889 Beef 2 Grams \$2.29 250

Dependent Variable Transformation(Name)=Identity(Subj02)
\begin{tabular}{ccllll}
& \begin{tabular}{c}
Predicted \\
Utility
\end{tabular} & Ingredient & Fat & Price & Calories \\
& & & & & \\
11 & 23.4444 & Turkey & 2 Grams & \(\$ 1.99\) & 250 \\
12 & 22.6111 & Beef & 2 Grams & \(\$ 1.99\) & 250 \\
13 & 21.7778 & Turkey & 2 Grams & \(\$ 2.29\) & 250 \\
14 & 21.4444 & Chicken & 2 Grams & \(\$ 1.99\) & 250 \\
15 & 20.9444 & Beef & 2 Grams & \(\$ 2.29\) & 250 \\
16 & 20.7778 & Turkey & 2 Grams & \(\$ 1.99\) & 350 \\
17 & 19.9444 & Beef & 2 Grams & \(\$ 1.99\) & 350 \\
18 & 19.7778 & Chicken & 2 Grams & \(\$ 2.29\) & 250 \\
19 & 19.7778 & Turkey & 2 Grams & \(\$ 2.59\) & 250 \\
20 & 19.1111 & Turkey & 2 Grams & \(\$ 2.29\) & 350
\end{tabular}
----------- Dependent Variable Transformation(Name)=Identity(Subj03) -------------
\begin{tabular}{lclllll}
& \begin{tabular}{c}
Predicted \\
Utility
\end{tabular} & Ingredient & Fat & Price & Calories \\
& & & & & \\
21 & 24.0000 & Chicken & 2 Grams & \(\$ 1.99\) & 250 \\
22 & 23.6667 & Turkey & 2 Grams & \(\$ 1.99\) & 250 \\
23 & 22.3333 & Beef & 2 Grams & \(\$ 1.99\) & 250 \\
24 & 21.6667 & Chicken & 2 Grams & \(\$ 2.29\) & 250 \\
25 & 21.3333 & Chicken & 2 Grams & \(\$ 1.99\) & 350 \\
26 & 21.3333 & Turkey & 2 Grams & \(\$ 2.29\) & 250 \\
27 & 21.0000 & Turkey & 2 Grams & \(\$ 1.99\) & 350 \\
28 & 20.0000 & Beef & 2 Grams & \(\$ 2.29\) & 250 \\
29 & 19.6667 & Beef & 2 & Grams & \(\$ 1.99\) & 350 \\
30 & 19.0000 & Chicken & 2 & Grams & \(\$ 2.29\) & 350
\end{tabular}

\section*{Dependent Variable Transformation(Name)=Identity(Subj04)}

Predicted
\begin{tabular}{llllll}
Obs & Utility & Ingredient & Fat & Price & Calories \\
& & & & & \\
31 & 24.2778 & Turkey & 2 Grams & \(\$ 1.99\) & 250 \\
32 & 23.6111 & Beef & 2 Grams & \(\$ 1.99\) & 250 \\
33 & 21.6111 & Turkey & 2 Grams & \(\$ 2.29\) & 250 \\
34 & 20.9444 & Beef & 2 Grams & \(\$ 2.29\) & 250 \\
35 & 20.9444 & Turkey & 5 Grams & \(\$ 1.99\) & 250 \\
36 & 20.7778 & Chicken & 2 Grams & \(\$ 1.99\) & 250 \\
37 & 20.2778 & Beef & 5 Grams & \(\$ 1.99\) & 250 \\
38 & 18.4444 & Turkey & 8 Grams & \(\$ 1.99\) & 250 \\
39 & 18.2778 & Turkey & 5 Grams & \(\$ 2.29\) & 250 \\
40 & 18.1111 & Chicken & 2 Grams & \(\$ 2.29\) & 250
\end{tabular}

Dependent Variable Transformation(Name)=Identity(Subj05)
\begin{tabular}{ccllll}
& \begin{tabular}{c}
Predicted \\
Obs
\end{tabular} & Utility & Ingredient & Fat & Price
\end{tabular} Calories

Dependent Variable Transformation(Name)=Identity(Subj06)
\begin{tabular}{cclllll}
& \begin{tabular}{c}
Predicted \\
Obs
\end{tabular} & Utility & Ingredient & Fat & Price & Calories \\
& & & & & \\
51 & 24.5556 & Chicken & 2 Grams & \(\$ 1.99\) & 250 \\
52 & 24.0556 & Beef & 2 Grams & \(\$ 1.99\) & 250 \\
53 & 21.7222 & Turkey & 2 Grams & \(\$ 1.99\) & 250 \\
54 & 21.3333 & Chicken & 2 Grams & \(\$ 1.99\) & 350 \\
55 & 20.8333 & Beef & 2 Grams & \(\$ 1.99\) & 350 \\
56 & 20.5556 & Chicken & 5 Grams & \(\$ 1.99\) & 250 \\
57 & 20.0556 & Beef & 5 Grams & \(\$ 1.99\) & 250 \\
58 & 18.5000 & Turkey & 2 Grams & \(\$ 1.99\) & 350 \\
59 & 18.2222 & Chicken & 8 Grams & \(\$ 1.99\) & 250 \\
60 & 17.7222 & Beef & 8 Grams & \(\$ 1.99\) & 250
\end{tabular}

Dependent Variable Transformation(Name)=Identity (Subj07)
\begin{tabular}{ccllll}
& \begin{tabular}{c}
Predicted \\
Utility
\end{tabular} & Ingredient & Fat & Price & Calories \\
& & & & & \\
61 & 23.0556 & Beef & 2 Grams & \(\$ 1.99\) & 250 \\
62 & 22.5556 & Chicken & 2 Grams & \(\$ 1.99\) & 250 \\
63 & 21.8889 & Beef & 2 Grams & \(\$ 2.29\) & 250 \\
64 & 21.3889 & Chicken & 2 Grams & \(\$ 2.29\) & 250 \\
65 & 21.3889 & Turkey & 2 Grams & \(\$ 1.99\) & 250 \\
66 & 21.0556 & Beef & 2 Grams & \(\$ 1.99\) & 350 \\
67 & 20.5556 & Chicken & 2 Grams & \(\$ 1.99\) & 350 \\
68 & 20.2222 & Turkey & 2 Grams & \(\$ 2.29\) & 250 \\
69 & 19.8889 & Beef & 2 Grams & \(\$ 2.29\) & 350 \\
70 & 19.5556 & Beef & 2 Grams & \(\$ 2.59\) & 250
\end{tabular}

Dependent Variable Transformation(Name)=Identity(Subj08)
\begin{tabular}{ccllllc}
\multicolumn{3}{c}{\begin{tabular}{c}
Predicted \\
Obs
\end{tabular}} & Utility & Ingredient & Fat & Price
\end{tabular} Calories
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Predicted & & & & & \\
\hline Obs & Utility & Ingredient & & Fat & Price & Calories \\
\hline 81 & 22.3889 & Chicken & 2 & Grams & \$1.99 & 250 \\
\hline 82 & 22.2222 & Turkey & 2 & Grams & \$1.99 & 250 \\
\hline 83 & 20.7222 & Beef & 2 & Grams & \$1.99 & 250 \\
\hline 84 & 20.5000 & Chicken & 2 & Grams & \$1.99 & 350 \\
\hline 85 & 20.3333 & Turkey & 2 & Grams & \$1.99 & 350 \\
\hline 86 & 20.2222 & Chicken & 5 & Grams & \$1.99 & 250 \\
\hline 87 & 20.0556 & Turkey & 5 & Grams & \$1.99 & 250 \\
\hline 88 & 18.8333 & Beef & 2 & Grams & \$1.99 & 350 \\
\hline 89 & 18.5556 & Beef & 5 & Grams & \$1.99 & 250 \\
\hline 90 & 18.3333 & Chicken & 5 & Grams & \$1.99 & 350 \\
\hline
\end{tabular}

Dependent Variable Transformation(Name)=Identity(Subj10)
\begin{tabular}{rclllll}
& \begin{tabular}{c}
Predicted \\
Obs
\end{tabular} & Utility & Ingredient & Fat & Price & Calories \\
& & & & & \\
91 & 23.1111 & Beef & 2 Grams & \(\$ 1.99\) & 250 \\
92 & 22.6111 & Turkey & 2 Grams & \(\$ 1.99\) & 250 \\
93 & 20.7778 & Chicken & 2 Grams & \(\$ 1.99\) & 250 \\
94 & 20.2778 & Beef & 5 Grams & \(\$ 1.99\) & 250 \\
95 & 20.1111 & Beef & 2 Grams & \(\$ 1.99\) & 350 \\
96 & 19.7778 & Turkey & 5 Grams & \(\$ 1.99\) & 250 \\
97 & 19.6111 & Turkey & 2 Grams & \(\$ 1.99\) & 350 \\
98 & 18.6111 & Beef & 8 Grams & \(\$ 1.99\) & 250 \\
99 & 18.1111 & Turkey & 8 Grams & \(\$ 1.99\) & 250 \\
100 & 17.9444 & Chicken & 5 Grams & \(\$ 1.99\) & 250
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Obs & Predicted Utility & Ingredient & & Fat & Price & Calories \\
\hline 101 & 25.1667 & Chicken & 2 & Grams & \$1.99 & 250 \\
\hline 102 & 25.0000 & Beef & 2 & Grams & \$1.99 & 250 \\
\hline 103 & 22.8333 & Turkey & 2 & Grams & \$1.99 & 250 \\
\hline 104 & 21.3333 & Chicken & 2 & Grams & \$2.29 & 250 \\
\hline 105 & 21.1667 & Chicken & 2 & Grams & \$1.99 & 350 \\
\hline 106 & 21.1667 & Beef & 2 & Grams & \$2.29 & 250 \\
\hline 107 & 21.0000 & Beef & 2 & Grams & \$1.99 & 350 \\
\hline 108 & 19.0000 & Chicken & 2 & Grams & \$2.59 & 250 \\
\hline 109 & 19.0000 & Turkey & 2 & Grams & \$2.29 & 250 \\
\hline 110 & 18.8333 & Beef & 2 & Grams & \$2.59 & 250 \\
\hline
\end{tabular}

\section*{Summarizing Results Across Subjects}

Conjoint analyses are performed on an individual basis, but usually the goal is to summarize the results across subjects. The outtest= data set contains all of the information in the printed output and can be manipulated to create additional reports including a list of the individual \(R^{2} s\) and the average of the importance values across subjects. Here is a listing of the variables in the outtest= data set.
```

proc contents data=utils2 position;
ods select position;
title2 'Variables in the OUTTEST= Data Set';
run;

```

\begin{tabular}{rllll}
7 & Value & Num & 8 & Value \\
8 & NumDF & Num & 8 & Num DF \\
9 & DenDF & Num & 8 & Den DF \\
10 & SSq & Num & 8 & Sum of Squares \\
11 & MeanSquare & Num & 8 & Mean Square \\
12 & F & Num & 8 & F Value \\
13 & NumericP & Num & 8 & Numeric (Approximate) p Value \\
14 & P & Char & 9 & Formatted p Value \\
15 & LowerLimit & Num & 8 & \(95 \%\) Lower Confidence Limit \\
16 & UpperLimit & Num & 8 & \(95 \%\) Upper Confidence Limit \\
17 & StdError & Num & 8 & Standard Error \\
18 & Importance & Num & 8 & Importance (\% Utility Range) \\
19 & Label & Char & 256 & Label
\end{tabular}

The individual \(\mathrm{R}^{2} \mathrm{~s}\) are displayed by printing the Value variable for observations whose Statistic value is "R-Square".
```

proc print data=utils2 label;
title2 'R-Squares';
id _depvar_;
var value;
format value 4.2;
where statistic = 'R-Square';
label value = 'R-Square' _depvar_ = 'Subject';
run;

```
\begin{tabular}{lc}
\multicolumn{2}{c}{\begin{tabular}{c}
Frozen Diet Entrees \\
R-Squares
\end{tabular}} \\
& \\
Subject & R-Square \\
& \\
Identity(Subj01) & 0.96 \\
Identity(Subj02) & 0.98 \\
Identity (Subj03) & 0.98 \\
Identity (Subj04) & 0.98 \\
Identity (Subj05) & 0.99 \\
Identity (Subj06) & 0.96 \\
Identity (Subj07) & 0.99 \\
Identity(Subj08) & 0.99 \\
Identity (Subj09) & 0.99 \\
Identity (Subj10) & 0.99 \\
Identity (Subj12) & 0.97
\end{tabular}

The next steps extract the importance values and create a table. The DATA step extracts the importance values and creates row and column labels. The PROC TRANSPOSE step creates a subjects by attributes matrix from a vector (of the number of subjects times the number of attribute values). PROC PRINT displays the importance values, and PROC MEANS displays the average importances.
```

data im;
set utils2;
if n(importance); /* Exclude all missing, including specials.*/
_depvar_ = scan(_depvar_, 2); /* Discard transformation. */
label = scan(label, 1, ','); /* Use up to comma for label. */
keep importance _depvar_ label;
run;
proc transpose data=im out=im(drop=_name_ _label_);
id label;
by notsorted _depvar_;
var importance;
label _depvar_ = 'Subject';
run;
proc print label;
title2 'Importances';
format _numeric_ 2.;
id _depvar_;
run;
proc means mean;
title2 'Average Importances';
run;

```

Frozen Diet Entrees
Importances
\begin{tabular}{lcccc}
Subject & Ingredient & Fat & Price & Calories \\
& & & & \\
Subj01 & 13 & 50 & 24 & 13 \\
Subj02 & 8 & 65 & 15 & 11 \\
Subj03 & 7 & 62 & 21 & 11 \\
Subj04 & 13 & 22 & 25 & 39 \\
Subj05 & 7 & 17 & 64 & 12 \\
Subj06 & 11 & 25 & 52 & 13 \\
Subj07 & 7 & 68 & 15 & 9 \\
Subj08 & 4 & 21 & 65 & 10 \\
Subj09 & 7 & 18 & 66 & 8 \\
Subj10 & 10 & 19 & 59 & 13 \\
Subj12 & 9 & 52 & 24 & 15
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Frozen Diet Entrees} \\
\hline \multicolumn{2}{|l|}{Average Importances} \\
\hline The MEAN & ocedure \\
\hline Variable & Mean \\
\hline Ingredient & 8.9069044 \\
\hline Fat & 38.0953010 \\
\hline Price & 39.0198700 \\
\hline Calories & 13.9779245 \\
\hline
\end{tabular}

On the average, price is the most important attribute followed very closely by fat content. These two attributes on the average account for \(77 \%\) of preference. Calories and main ingredient account for the remaining \(23 \%\). Note that everyone does not have the same pattern of importance values. However, it is a little hard to compare subjects just by looking at the numbers.

We can make a nicer display of importances with stars flagging the most important attributes for each product as follows. These steps replace each importance variable with its formatted value followed by zero stars for \(0-30\), one star for \(30-45\), two stars for \(45-60\), three stars for \(60-75\), and so on. The value returned by the ceil function is the number of characters that are extracted from the string
```

, ******'.
data im2;
set im;
label c1 = 'Ingredient' c2 = 'Fat' c3 = 'Price' c4 = 'Calories';
c1 = put(ingredient, 2.) || substr(' ******', 1, ceil(ingredient / 15));
c2 = put(fat , 2.) || substr(' ******', 1, ceil(fat / 15));
c3 = put(price , 2.) || substr(' ******', 1, ceil(price / 15));
c4 = put(calories , 2.) || substr(' ******', 1, ceil(calories / 15));
run;
proc print label;
title2 'Importances';
var c1-c4;
id _depvar_;
run;

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Frozen Diet Entrees Importances} \\
\hline Subject & Ingredient & Fat & & Pri & & Calories \\
\hline Subj01 & 13 & 50 & ** & 24 & & 13 \\
\hline Subj02 & 8 & 65 & *** & 15 & & 11 \\
\hline Subj03 & 7 & 62 & *** & 21 & & 11 \\
\hline Subj04 & 13 & 22 & & 25 & & 39 \\
\hline Subj05 & 7 & 17 & & 64 & *** & 12 \\
\hline Subj06 & 11 & 25 & & 52 & ** & 13 \\
\hline Subj07 & 7 & 68 & *** & 15 & & 9 \\
\hline Subj08 & 4 & 21 & & 65 & *** & 10 \\
\hline Subj09 & 7 & 18 & & 66 & *** & 8 \\
\hline Subj10 & 10 & 19 & & 59 & ** & 13 \\
\hline Subj12 & 9 & 52 & ** & 24 & & 15 \\
\hline
\end{tabular}

Subject 4 is more concerned about calories. However, most individuals seem to fall into one of two groups, either primarily price conscious then fat conscious, or primarily fat conscious then price conscious.

Both the out= data set and the outtest= data set contain the part-worth utilities. In the out= data set, they are contained in the observations whose _type_ value is 'M COEFFI'. The part-worth utilities are the multiple regression coefficients. The names of the variables that contain the part-worth utilities are stored in the macro variable \&_trgind, which is automatically created by PROC TRANSREG.
```

proc print data=results2 label;
title2 'Part-Worth Utilities';
where _type_ = 'M COEFFI';
id _name_;
var \&_trgind;
run;

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Frozen Diet Entrees Part-Worth Utilities} \\
\hline _NAME_ & Ingredient, Chicken & Ingre B & \[
\begin{aligned}
& \text { Lent, } \quad \mathrm{I} \\
& \text { ef }
\end{aligned}
\] & Ingredient, Turkey & Fat, 8 Grams & Fat, 5 Grams \\
\hline Subj01 & 1.55556 & -2 & & 0.55556 & -6.94444 & -0.11111 \\
\hline Subj02 & -1.05556 & & 111 & 0.94444 & -7.72222 & 0.11111 \\
\hline Subj03 & 0.66667 & -1 & & 0.33333 & -7.66667 & -0.16667 \\
\hline Subj04 & -2.11111 & & 222 & 1.38889 & -2.77778 & -0.27778 \\
\hline Subj05 & 0.55556 & & & -1.11111 & -1.77778 & -0.27778 \\
\hline Subj06 & 1.11111 & & 111 & -1.72222 & -2.88889 & -0.55556 \\
\hline Subj07 & 0.22222 & & & -0.94444 & -7.61111 & -0.27778 \\
\hline Subj08 & 0.50000 & -0. & 000 & 0.00000 & -2.33333 & 0.00000 \\
\hline Subj09 & 0.61111 & -1. & & 0.44444 & -2.05556 & -0.05556 \\
\hline Subj10 & -1.38889 & & & 0.44444 & -2.05556 & -0.38889 \\
\hline Subj12 & 0.83333 & & & -1.50000 & -6.16667 & -1.16667 \\
\hline _NAME_ & \begin{tabular}{l}
Fat, 2 \\
Grams
\end{tabular} & \[
\begin{array}{r}
\text { Price, } \\
\$ 2.59
\end{array}
\] & \[
\begin{array}{r}
\text { Price, } \\
\$ 2.29
\end{array}
\] & \[
\begin{aligned}
& \text { Price, } \\
& \$ 1.99
\end{aligned}
\] & \[
\begin{gathered}
\text { Calories, } \\
350
\end{gathered}
\] & \[
\begin{gathered}
\text { Calories, } \\
250
\end{gathered}
\] \\
\hline Subj01 & 7.05556 & -3.44444 & 0.22222 & 23.22222 & -1.83333 & 1.83333 \\
\hline Subj02 & 7.61111 & -1.88889 & 0.11111 & 11.77778 & -1.33333 & 1.33333 \\
\hline Subj03 & 7.83333 & -2.66667 & 0.16667 & 72.50000 & -1.33333 & 1.33333 \\
\hline Subj04 & 3.05556 & -3.44444 & 0.38889 & 93.05556 & -5.05556 & 5.05556 \\
\hline Subj05 & 2.05556 & -7.27778 & 0.22222 & 27.05556 & -1.33333 & 1.33333 \\
\hline Subj06 & 3.44444 & -6.22222 & -0.88889 & 97.11111 & -1.61111 & 1.61111 \\
\hline Subj07 & 7.88889 & -1.94444 & 0.38889 & 91.55556 & -1.00000 & 1.00000 \\
\hline Subj08 & 2.33333 & -7.33333 & -0.00000 & \(0 \quad 7.33333\) & -1.16667 & 1.16667 \\
\hline Subj09 & 2.11111 & -7.38889 & -0.05556 & \(6 \quad 7.44444\) & -0.94444 & 0.94444 \\
\hline Subj10 & 2.44444 & -7.22222 & 0.27778 & \(8 \quad 6.94444\) & -1.50000 & 1.50000 \\
\hline Subj12 & 7.33333 & -2.83333 & -0.50000 & \(0 \quad 3.33333\) & -2.00000 & 2.00000 \\
\hline
\end{tabular}

These part-worth utilities can be clustered, for example using PROC FASTCLUS.
```

proc fastclus data=results2 maxclusters=3 out=clusts;
where _type_ = 'M COEFFI';
id _name_;
var \&_trgind;
run;
proc sort; by cluster; run;
proc print label;
title2 'Part-Worth Utilities, Clustered';
by cluster;
id _name_;
var \&_trgind;
run;

```

Frozen Diet Entrees
Part-Worth Utilities, Clustered
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline _NAME_ & Ingredient Chicken & Ingre & \[
\begin{aligned}
& \text { ient, } \\
& \text { ef }
\end{aligned}
\] & Ingredient, Turkey & Fat, 8 Grams & Fat, 5 Grams \\
\hline Subj05 & 0.55556 & & 556 & -1.11111 & -1.77778 & -0.27778 \\
\hline Subj06 & 1.11111 & & 111 & -1.72222 & -2.88889 & -0.55556 \\
\hline Subj08 & 0.50000 & & 000 & 0.00000 & -2.33333 & 0.00000 \\
\hline Subj09 & 0.61111 & & 556 & 0.44444 & -2.05556 & -0.05556 \\
\hline Subj10 & -1.38889 & & 444 & 0.44444 & -2.05556 & -0.38889 \\
\hline _NAME_ & \begin{tabular}{l}
Fat, 2 \\
Grams
\end{tabular} & Price, \$2. 59 & \[
\begin{array}{r}
\text { Price, } \\
\$ 2.29
\end{array}
\] & \begin{tabular}{l}
Price, \\
\$1.99
\end{tabular} & \[
\begin{gathered}
\text { Calories, } \\
350
\end{gathered}
\] & \[
\begin{gathered}
\text { Calories, } \\
250
\end{gathered}
\] \\
\hline Subj05 & 2.05556 & -7.27778 & 0.22222 & \(2 \quad 7.05556\) & -1.33333 & 1.33333 \\
\hline Subj06 & 3.44444 & -6.22222 & -0.88889 & 97.11111 & -1.61111 & 1.61111 \\
\hline Subj08 & 2.33333 & -7.33333 & -0.00000 & \(0 \quad 7.33333\) & -1.16667 & 1.16667 \\
\hline Subj09 & 2.11111 & -7.38889 & -0.05556 & \(6 \quad 7.44444\) & -0.94444 & 0.94444 \\
\hline Subj10 & 2.44444 & -7.22222 & 0.27778 & \(8 \quad 6.94444\) & -1.50000 & 1.50000 \\
\hline \multicolumn{7}{|c|}{Cluster=2} \\
\hline _NAME_ & Ingredient, Chicken & \multicolumn{2}{|l|}{Ingredient, Beef} & Ingredient, Turkey & Fat, 8 Grams & Fat, 5 Grams \\
\hline Subj01 & 1.55556 & \multicolumn{2}{|c|}{-2.11111} & 0.55556 & -6.94444 & -0.11111 \\
\hline Subj02 & -1.05556 & \multicolumn{2}{|c|}{0.11111} & 0.94444 & -7.72222 & 0.11111 \\
\hline Subj03 & 0.66667 & \multicolumn{2}{|c|}{-1.00000} & 0.33333 & -7.66667 & -0.16667 \\
\hline Subj07 & 0.22222 & \multicolumn{2}{|c|}{0.72222} & -0.94444 & -7.61111 & -0.27778 \\
\hline Subj12 & 0.83333 & \multicolumn{2}{|c|}{0.66667} & -1.50000 & -6.16667 & -1.16667 \\
\hline _NAME_ & \begin{tabular}{l}
Fat, 2 \\
Grams
\end{tabular} & \[
\begin{array}{r}
\text { Price, } \\
\$ 2.59
\end{array}
\] & \[
\begin{array}{r}
\text { Price, } \\
\$ 2.29
\end{array}
\] & \[
\begin{aligned}
& \text { Price, } \\
& \$ 1.99
\end{aligned}
\] & \[
\begin{gathered}
\text { Calories, } \\
350
\end{gathered}
\] & \[
\begin{gathered}
\text { Calories, } \\
250
\end{gathered}
\] \\
\hline Subj01 & 7.05556 & -3.44444 & 0.22222 & 23.22222 & -1.83333 & 1.83333 \\
\hline Subj02 & 7.61111 & -1.88889 & 0.11111 & 11.77778 & -1.33333 & 1.33333 \\
\hline Subj03 & 7.83333 & -2.66667 & 0.16667 & 72.50000 & -1.33333 & 1.33333 \\
\hline Subj07 & 7.88889 & -1.94444 & 0.38889 & 91.55556 & -1.00000 & 1.00000 \\
\hline Subj12 & 7.33333 & -2.83333 & -0.50000 & \(0 \quad 3.33333\) & -2.00000 & 2.00000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline _NAME_ & Ingredient, Chicken & \multicolumn{2}{|l|}{Ingredient, Beef} & Ingredient, Turkey & Fat, 8 Grams & Fat, 5 Grams \\
\hline Subj04 & -2.11111 & 0.7 & & 1.38889 & -2.77778 & -0.27778 \\
\hline _NAME_ & \begin{tabular}{l}
Fat, 2 \\
Grams
\end{tabular} & Price,
\[
\$ 2.59
\] & \[
\begin{aligned}
& \text { Price, } \\
& \$ 2.29
\end{aligned}
\] & Price, \$1. 99 & \[
\begin{gathered}
\text { Calories, } \\
350
\end{gathered}
\] & \[
\begin{gathered}
\text { Calories, } \\
250
\end{gathered}
\] \\
\hline Subj04 & 3.05556 & \(-3.44444\) & 0.38889 & 3.05556 & -5.05556 & 5.05556 \\
\hline
\end{tabular}

The clusters reflect what we saw looking at the importance information. Subject 4 , who is the only subject that is primarily calorie conscious, is in a separate cluster from everyone else. Cluster 1 subjects \(5,6,8,9\), and 10 are primarily price conscious. Cluster 2 subjects \(1,2,3,7\), and 12 are primarily fat conscious.

\section*{Spaghetti Sauce}

This example uses conjoint analysis in a study of spaghetti sauce preferences. The goal is to investigate the main effects for all of the attributes and the interaction of brand and price, and to simulate market share. Rating scale data are gathered from a group of subjects. The example has eight parts.
- An efficient experimental design is generated with the \%MktEx macro.
- Descriptions of the spaghetti sauces are generated.
- Data are collected, entered, and processed.
- The metric conjoint analysis is performed with PROC TRANSREG.
- Market share is simulated with the maximum utility model.
- Market share is simulated with the Bradley-Terry-Luce and logit models.
- The simulators are compared.
- Change in market share is investigated.

\section*{Create an Efficient Experimental Design with the \%MktEx Macro}

In this example, subjects were asked to rate their interest in purchasing hypothetical spaghetti sauces. The table shows the attributes, the attribute levels, and the number of \(d f\) associated with each effect.
\begin{tabular}{|l|l|r|}
\hline \multicolumn{3}{|l|}{ Experimental Design } \\
\hline Effects & Levels & \(d f\) \\
\hline Intercept & & 1 \\
Brand & Pregu, Sundance, Tomato Garden & 2 \\
Meat Content & Vegetarian, Meat, Italian Sausage & 2 \\
Mushroom Content & Mushrooms, No Mention & 1 \\
Natural Ingredients & All Natural Ingredients, No Mention & 1 \\
Price & \(\$ 1.99, \$ 2.29, \$ 2.49, \$ 2.79, \$ 2.99\) & 4 \\
Brand \(\times\) Price & & 8 \\
\hline
\end{tabular}

The brand names "Pregu", "Sundance", and "Tomato Garden" are artificial. Usually, real brand names would be used - your client's or company's brand and the competitors' brands. The absence of a feature (for example, no mushrooms) is not mentioned in the product description, hence the "No Mention" in the table.

In this design there are 19 model \(d f\). A design with more than 19 runs must be generated if there are to be error \(d f\). A popular heuristic is to limit the design size to at most 30 runs. In this example, 30 runs allow us to have two observations in each of the 15 brand by price cells. Note however that when subjects are required to make that many judgments, there is the risk that the quality of the data will be poor. Caution should be used when generating designs with this many runs. We can use the \(\% \mathrm{MktRuns}\) macro to evaluate this and other design sizes. See page 479 for macro documentation
and information on installing and using SAS autocall macros. We specify the number of levels of each factor as the argument.
```

title 'Spaghetti Sauces';
%mktruns( 3 3 2 2 5 )

```

* - \(100 \%\) Efficient Design can be made with the MktEx Macro.

We see that 30 is a reasonable size, although it cannot be divided by \(9=3 \times 3\) and \(4=2 \times 2\), so perfect orthogonality will not be possible. We would need a much larger size like 60 or 180 to do better. Note that this output states "Saturated=11" referring to a main-effects model. In this example, we are also interested in the brand by price interaction. We can run the \%MktRuns macro again, this time specifying the three-level factor, the five-level factor and the \(3 \times 5\) interaction as one 15 -level factor.
\%mktruns (32215)
```

                    Spaghetti Sauces
    Design Summary
                Number of
                Levels Frequency
                2 2
                3 1
                15 1
    Saturated = 19
    Full Factorial = 180
    Some Reasonable Cannot Be
Design Sizes Violations Divided By
$\left.\begin{array}{rrrr}180 & * & 0 & \\ 60 & 1 & 45 & \\ 90 & 1 & 4 & \\ 120 & 1 & 45 & \\ 30 & 2 & 4 & 45 \\ 150 & 2 & 4 & 45 \\ 210 & 2 & 4 & 45 \\ 24 & 4 & 15 & 30 \\ 36 & 4 & 15 & 30 \\ 36 & 4 & 15 & 30\end{array}\right]$

*     - 100% Efficient Design can be made with the MktEx Macro.

```

Now the output states "Saturated \(=19\) ", which includes the \(8 d f\) for the interaction. We see as before that 30 cannot be divided by \(4=2 \times 2\). We also see that 30 cannot be divide by \(45=3 \times 15\) so each level of meat content will not appear equally often in each brand/price cell. Since we would need a much larger size to do better, we will use 30 runs.

The next steps create and evaluate the design. First, formats for each of the factors are created using PROC FORMAT. The \%MktEx macro is called to create the design. The factors \(\mathrm{x} 1=\mathrm{Brand}\) and \(\mathrm{x} 2=\) Meat are designated as three-level factors, \(\mathrm{x} 3=\) Mushroom and \(\mathrm{x} 4=\) Ingredients as two-level factors, and \(\mathrm{x} 5=\) Price as a five-level factor. The interact \(=1 * 5\) option specifies that the interaction between the first and fifth factors must be estimable (\(\mathrm{x} 1 \times \mathrm{x} 5\) which is brand by price), \(\mathrm{n}=30\) specifies the number of runs, and seed=289 specifies the random number seed. The where macro provides restrictions that eliminate unrealistic combinations. Specifically, products at the cheapest price, \(\$ 1.99\), with meat, and products with Italian Sausage with All Natural Ingredients are eliminated from consideration.

We impose restrictions with the \(\% M k t E x\) macro by writing a macro, with IML statements, that quantifies the badness of each run of the design. The variable bad is set to zero when everything is fine, and values larger than zero when the row of the design does not conform to the restrictions. Ideally, when there are multiple restrictions, as there are here, the variable bad should be set to the number of violations, so the macro can know when it is moving in the right direction as it changes the design. Our first
restriction (contribution to the badness value) is (\(\mathrm{x} 2=3 \& \mathrm{x} 4=1\)) and our second is (\(\mathrm{x} 5=1 \&\) \((x 2=2 \mid x 2=3)\)), where \& means and and | means or. The restrictions correspond to (Meat \(=\) 'Italian Sausage' \& Ingredients = 'All Natural') and (Price \(=1.99\) \& (Meat \(=\) 'Meat' । Meat = 'Italian Sausage')). Each of these Boolean or logical expressions evaluates to 1 when the expression is true and 0 when it is false. The sum of the two restrictions is: 0 - no problem, 1 - one restriction violation, or 2 - two restriction violations.

The \%MktLab macro assigns actual descriptive factor names instead of the default x1-x5 and formats for the levels. The default input to the \%MktLab macro is the data set RANDOMIZED, which is the randomized design created by the \(\% \mathrm{MktEx}\) macro.

The default output from the \%MktLab macro is a data set called FINAL. We instead use the out= option to store the results in a permanent SAS data set. The \%MktEx macro is used to display the frequencies for each level, the two-way frequencies, and the number of times each product occurs in the design (five-way frequencies).
```

title 'Spaghetti Sauces';
proc format;
value br 1='Pregu' 2='Sundance' 3='Tomato Garden';
value me 1='Vegetarian' 2='Meat' 3='Italian Sausage';
value mu 1='Mushrooms' 2='No Mention';
value in 1='All Natural' 2='No Mention';
value pr 1='1.99' 2='2.29' 3='2.49' 4='2.79' 5='2.99';
run;
%macro where;
bad = (x2 = 3 \& x4 = 1) + (x5 = 1 \& (x2 = 2 | x2 = 3));
%mend;
%mktex(3 3 2 2 5, interact=1*5, n=30, seed=289, restrictions=where)
%mktlab(vars=Brand Meat Mushroom Ingredients Price,
statements=format brand br. meat me. mushroom mu.
ingredients in. price pr.,
out=sasuser.spag);
%mkteval;
proc print data=sasuser.spag; run;

```

Here is some of the output from the \%MktEx macro.

\footnotetext{
\({ }^{\boldsymbol{\top}}\) In the restrictions macro, you must use the logical symbols \(\mid \& \wedge \neg><>=<==\wedge=\neg=\) and not the logical words
OR AND NOT GT LT GE LE EQ NE.
}
\begin{tabular}{|c|c|c|c|c|}
\hline & & Spaghetti & auces & \\
\hline & & Algorithm Sear & h History & \\
\hline Design & Row, Col & Current D-Efficiency & Best D-Efficiency & Notes \\
\hline 1 & Start & 92.6280 & & Can \\
\hline 1 & 21 & 92.6280 & 92.6280 & Conforms \\
\hline 1 & End & 92.6280 & & \\
\hline 2 & Start & 78.9640 & & Tab, Unb \\
\hline 2 & 281 & 91.5726 & & Conforms \\
\hline 2 & End & 91.6084 & & \\
\hline 3 & Start & 78.9640 & & Tab, Unb \\
\hline 3 & 11 & 91.5434 & & Conforms \\
\hline 3 & End & 91.6084 & & \\
\hline 4 & Start & 77.5906 & & Tab, Ran \\
\hline 4 & 281 & 91.9486 & & Conforms \\
\hline 4 & 54 & 92.6280 & 92.6280 & \\
\hline 4 & End & 92.6280 & & \\
\hline - & & & & \\
\hline - & & & & \\
\hline - & & & & \\
\hline 21 & Start & 74.7430 & & Ran, Mut, Ann \\
\hline 21 & 241 & 89.9706 & & Conforms \\
\hline 21 & End & 91.6084 & & \\
\hline & & Spaghetti S & auces & \\
\hline & & Design Search & History & \\
\hline & & Current & Best & \\
\hline Design & Row, Col & D-Efficiency & D-Efficiency & Notes \\
\hline 0 & Initial & 92.6280 & 92.6280 & Ini \\
\hline 1 & Start & 92.6280 & & Can \\
\hline 1 & 21 & 92.6280 & 92.6280 & Conforms \\
\hline 1 & End & 92.6280 & & \\
\hline
\end{tabular}
```

                    Spaghetti Sauces
                Design Refinement History
    | Design | Row, Col | Current | Best |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | D-Efficiency | D-Efficiency | Notes |
| 0 | Initial | 92.6280 | 92.6280 | Ini |

```

Pre, Mut, Ann Conforms
\(1 \quad 2 \quad 1 \quad 91.2145\)

1 End 91.6084

6 Start 91.1998 Pre,Mut,Ann
\(6 \quad 2 \quad 1 \quad 91.6084 \quad\) Conforms
```

NOTE: Stopping since it appears that no improvement is possible.
Spaghetti Sauces
The OPTEX Procedure
Class Level Information
Class Levels -Values--
$\begin{array}{lllll}\mathrm{x} 1 & 3 & 2\end{array}$
$\begin{array}{llll}x 2 & 1 & 2 & 3\end{array}$
x3 212
$x 4 \quad 2 \quad 12$
$x 5 \quad 5 \quad 12345$
Spaghetti Sauces
The OPTEX Procedure

```


The \(D\)-Efficiency looks reasonable at 92.63 . For this problem, the full-factorial design is small (180 runs), and the macro found the same \(D\)-efficiency several times. This suggests that we have probably
indeed found the optimal design for this situation. Here is the output from the \%MktEval macro.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{\begin{tabular}{l}
Spaghetti Sauces \\
Canonical Correlations Between the Factors \\
There are 2 Canonical Correlations Greater Than 0.316
\end{tabular}} \\
\hline & & Brand & Meat & Mushroom & Ingredients & Price \\
\hline & Brand & 1 & 0.21 & 0 & 0.17 & 0 \\
\hline & Meat & 0.21 & 1 & 0.08 & 0.42 & 0.52 \\
\hline & Mushroom & 0 & 0.08 & 1 & 0 & 0 \\
\hline & Ingredients & 0.17 & 0.42 & 0 & 1 & 0.17 \\
\hline & Price & 0 & 0.52 & 0 & 0.17 & 1 \\
\hline \multicolumn{7}{|c|}{Spaghetti Sauces} \\
\hline \multicolumn{7}{|c|}{Canonical Correlations > 0.316 Between the Factors} \\
\hline \multicolumn{7}{|c|}{There are 2 Canonical Correlations Greater Than 0.316} \\
\hline \multicolumn{7}{|c|}{r r Square} \\
\hline \multicolumn{7}{|c|}{Meat Price 0.52} \\
\hline \multicolumn{3}{|c|}{Meat} & redients & 0.42 & 0.17 & \\
\hline \multicolumn{7}{|c|}{Spaghetti Sauces} \\
\hline \multicolumn{7}{|c|}{Summary of Frequencies} \\
\hline \multicolumn{7}{|c|}{There are 2 Canonical Correlations Greater Than 0.316 * - Indicates Unequal Frequencies} \\
\hline \multicolumn{7}{|c|}{Frequencies} \\
\hline & Brand & & 10 & 1010 & & \\
\hline \multirow[t]{2}{*}{*} & Meat & & 15 & 96 & & \\
\hline & Mushroom & & 15 & & & \\
\hline \multirow[t]{2}{*}{*} & Ingredie & & 12 & & & \\
\hline & Price & & 66 & 666 & & \\
\hline \multirow[t]{2}{*}{*} & Brand Me & & 43 & 35416 & 22 & \\
\hline & Brand Mu & room & 55 & 5555 & & \\
\hline \multirow[t]{2}{*}{*} & Brand In & edients & 37 & 5546 & & \\
\hline & Brand Pr & & 22 & 22222 & 2222222 & \\
\hline * & Meat Mus & oom & 78 & 5433 & & \\
\hline * & Meat Ing & dients & 78 & 5406 & & \\
\hline * & Meat Pri & & 63 & 22202 & 2320121 & \\
\hline \multirow[t]{2}{*}{*} & Mushroom & ngredie & s 69 & 69 & & \\
\hline & Mushroom & rice & 33 & 33333 & 333 & \\
\hline \multirow[t]{2}{*}{*} & Ingredie & s Price & 33 & 22233 & 444 & \\
\hline & N-Way & & \(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\) & \[
\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{array}
\] & \[
\begin{array}{lllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & & &
\end{array}
\] & \[
\begin{array}{llll}
1 & 1 & 1
\end{array}
\] \\
\hline
\end{tabular}

The meat and price factors are correlated, as are the meat and ingredients factors. This is not surprising since we excluded cells for these factor combinations and hence forced some correlations. The rest of the correlations are small.

The frequencies look good. The n-way frequencies at the end of this listing show that each product occurs only once. Each brand, price, and brand/price combination occurs equally often, as does each mushroom level. There are more vegetarian sauces (the first formatted level) than either of the meat sauces because of the restrictions that meat cannot occur at the lowest price and Italian sausage cannot be paired with all-natural ingredients. The design is shown next.
\begin{tabular}{clllll}
Obs & Brand & \multicolumn{3}{c}{ Spaghetti } & Sauces \\
& & Meat & Mushroom & Ingredients & Price \\
1 & Pregu & Meat & No Mention & No Mention & 2.79 \\
2 & Tomato Garden & Vegetarian & No Mention & No Mention & 2.79 \\
3 & Pregu & Meat & Mushrooms & All Natural & 2.29 \\
4 & Tomato Garden & Vegetarian & Mushrooms & All Natural & 2.49 \\
5 & Sundance & Vegetarian & Mushrooms & No Mention & 1.99 \\
6 & Pregu & Italian Sausage & No Mention & No Mention & 2.49 \\
7 & Tomato Garden & Vegetarian & No Mention & No Mention & 2.99 \\
8 & Tomato Garden & Italian Sausage & Mushrooms & No Mention & 2.29 \\
9 & Pregu & Vegetarian & Mushrooms & No Mention & 2.49 \\
10 & Pregu & Vegetarian & No Mention & No Mention & 2.29 \\
11 & Sundance & Vegetarian & Mushrooms & No Mention & 2.79 \\
12 & Tomato Garden & Vegetarian & Mushrooms & No Mention & 1.99 \\
13 & Sundance & Meat & No Mention & No Mention & 2.29 \\
14 & Sundance & Meat & Italian Sausage & Mushrooms & No Mention \\
15 & Pregu & Italian Sausage & Mushrooms & No Mention & 2.99 \\
16 & Tomato Garden & No Mention & 2.99 \\
17 & Sundance & Vegetarian & Mushrooms & All Natural & 2.29 \\
18 & Pregu & Meat & Mushrooms & All Natural & 2.99 \\
19 & Tomato Garden & Meat & Meat & No Mention & No Mention \\
20 & Sundance & Mushrooms & All Natural & 2.49 \\
21 & Pregu & Vegetarian & No Mention & All Natural & 1.99 \\
22 & Sundance & Meat & No Mention & All Natural & 2.79 \\
23 & Tomato Garden & Vegetarian & No Mention & All Natural & 1.99 \\
24 & Sundance & Italian Sausage & No Mention & No Mention & 2.49 \\
25 & Sundance & Vegetarian & No Mention & All Natural & 1.99 \\
26 & Sundance & Vegetarian & No Mention & All Natural & 2.99 \\
27 & Pregu & Italian Sausage & No Mention & No Mention & 2.99 \\
28 & Tomato Garden & Vegetarian & No Mention & All Natural & 2.29 \\
29 & Pregu & Vegetarian & Mushrooms & No Mention & 1.99 \\
30 & Tomato Garden & Meat & Mushrooms & All Natural & 2.79 \\
& & & & &
\end{tabular}

\section*{Generating the Questionnaire}

Next, preparations are made for data collection. A DATA step is used to print descriptions of each product combination. Here is an example:

Try Pregu brand vegetarian spaghetti sauce, now with mushrooms. A 26 ounce jar serves four adults for only \$1.99.

Remember that "No Mention" is not mentioned. The following step prints the questionnaires including a cover sheet.
```

options ls=80 ps=74 nonumber nodate;
title;
data _null_;
set sasuser.spag;
length lines \$ 500 aline \$ 60;
file print linesleft=ll;
* Format meat level, preserve 'Italian' capitalization;
aline = lowcase(put(meat, me.));
if aline =: 'ita' then substr(aline, 1, 1) = 'I';
* Format meat differently for 'vegetarian';
if meat > 1
then lines = 'Try ' || trim(put(brand, br.)) ||
' brand spaghetti sauce with ' || aline;
else lines = 'Try ' || trim(put(brand, br.)) ||
' brand ' || trim(aline) || ' spaghetti sauce ';
* Add mushrooms, natural ingredients to text line;
n = (put(ingredients, in.) =: 'All');
m = (put(mushroom, mu.) =: 'Mus');
if n or m then do;
lines = trim(lines) || ', now with';
if m then do;
lines = trim(lines) || , , || lowcase(put(mushroom, mu.));
if n then lines = trim(lines) || ' and';
end;
if n then lines = trim(lines) || , , ||
lowcase(put(ingredients, in.)) || ' ingredients';
end;
* Add price;
lines = trim(lines) ||
'. A 26 ounce jar serves four adults for only \$' ||
put(price, pr.) || '.';

```
```

* Print cover page, with subject number, instructions, and rating scale;
if _n_ = 1 then do;
put ///// +41 'Subject: _-_---_-' ////
+5 'Please rate your willingness to purchase the following' /
+5 'products on a nine point scale.' ///
+9 '1 Definitely Would Not Purchase This Product' ///
+9 '2' ///
+9 '3 Probably Would Not Purchase This Product' ///
+9 '4' ///
+9 '5 May or May Not Purchase This Product' ///
+9 '6' ///
+9 '7 Probably Would Purchase This Product' ///
+9 '8' ///
+9 '9 Definitely Would Purchase This Product' /////
+5 'Please rate every product and be sure to rate' /
+5 'each product only once.' //////
+5 'Thank you for your participation!';
put _page_;
end;
if ll < 8 then put _page_;
* Break up description, print on several lines;
start = 1;
do l = 1 to 10 until(aline = , ');

```
 * Find a good place to split, blank or punctuation;
 stop = start + 60;
 do i = stop to start by -1 while(substr (lines, i, 1) ne ' '); end;
 do \(j=i\) to \(\max (s t a r t, i-8)\) by -1 ;
 if substr(lines, \(j, 1\)) in ('.', ',') then do; \(i=j ; j=0\); end;
 end;
 stop \(=\) i; len = stop + 1 - start;
 aline = substr(lines, start, len);
 start = stop + 1;
 if \(1=1\) then put +5 _n_ 2. ') ' aline;
 else put +9 aline;
 end;
* Print rating scale;
put +9 'Definitely \(\quad\) +9 'Would \(\quad\) D 4 Definitely , /
 +9 'Would Not \(14 \begin{array}{llllllllll} & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \text { Would }\end{array}\)
run;
options ls=80 ps=60 nonumber nodate;

In the interest of space, not all questions are printed.

Subject: \(\qquad\)

Please rate your willingness to purchase the following products on a nine point scale.

1 Definitely Would Not Purchase This Product

2

3 Probably Would Not Purchase This Product

4

5 May or May Not Purchase This Product

6

7 Probably Would Purchase This Product

8

9 Definitely Would Purchase This Product

Please rate every product and be sure to rate each product only once.

Thank you for your participation!
1) Try Pregu brand spaghetti sauce with meat. A 26 ounce jar serves four adults for only \$2.79.

Definitely Definitely
\(\begin{array}{lllllllllll}\text { Would Not } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \text { Would }\end{array}\)
Purchase
Purchase
2) Try Tomato Garden brand vegetarian spaghetti sauce.

A 26 ounce jar serves four adults for only \$2.79.
\begin{tabular}{lllllllllllll}
Definitely \\
Would Not & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \begin{tabular}{l}
Definitely \\
Would \\
Purchase
\end{tabular} & &
\end{tabular}
3) Try Pregu brand spaghetti sauce with meat, now with mushrooms and all natural ingredients. A 26 ounce jar serves four adults for only \$2.29.

Definitely Definitely
Would Not \(1 \begin{array}{llllllllll} & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \text { Would }\end{array}\)
Purchase
Purchase
4) Try Tomato Garden brand vegetarian spaghetti sauce, now with mushrooms and all natural ingredients. A 26 ounce jar serves four adults for only \(\$ 2.49\).
\begin{tabular}{lllllllllll}
Definitely \\
Would Not & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \begin{tabular}{l}
Definitely \\
Would \\
Purchase
\end{tabular} \\
Purchase
\end{tabular}
5) Try Sundance brand vegetarian spaghetti sauce, now with mushrooms. A 26 ounce jar serves four adults for only \$1.99.
\begin{tabular}{llllllllllll}
Definitely \\
Would Not & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \begin{tabular}{l}
Definitely \\
Would \\
Purchase
\end{tabular} \\
Purchase
\end{tabular}
6) Try Pregu brand spaghetti sauce with Italian sausage.

A 26 ounce jar serves four adults for only \$2.49.

Definitely Definitely
Would Not \(1 \begin{array}{llllllllll} & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \text { Would }\end{array}\)
Purchase Purchase
7) Try Tomato Garden brand vegetarian spaghetti sauce.

A 26 ounce jar serves four adults for only \$2.99.

Definitely
Definitely
Would Not \(1 \begin{array}{llllllllll} & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \text { Would }\end{array}\)
Purchase
Purchase
```

30) Try Tomato Garden brand spaghetti sauce with meat, now with
mushrooms and all natural ingredients. A 26 ounce jar
serves four adults for only \$2.79.
Definitely Definitely
Would Not 1
Purchase
Purchase
```

\section*{Data Processing}

The data are entered next. Some cases have ordinary '.' missing values. This code was used at data entry for no response. When there were multiple responses or the response was not clear, the special underscore missing value was used. The statement missing _ specifies that underscore missing values are to be expected in the data. The input statement reads the subject number and the 30 ratings. A name like Subj001, Subj002, ..., Subj030 is created from the subject number. If there are any missing data, all data for that subject are excluded by the if nmiss(of rate:) \(=0\) statement.
```

title 'Spaghetti Sauces';
data rawdata;
missing _;
input subj @5 (rate1-rate30) (1.);
name = compress('Sub' || put(subj, z3.));
if nmiss(of rate:) = 0;
datalines;
1 319591129691132168146121171191
2749173216928911175549891841791
3449491116819413186158171961791
.
14 1139812951994_9466149198915699
.
192214922399981121.1116161941991
;

```

Next, the data are transposed from one row per subject and 30 columns to one column per subject and 30 rows, one for each product rated. Then the data are merged with the experimental design.
```

proc transpose data=rawdata(drop=subj) out=temp(drop=_name_);
id name;
run;
data inputdata; merge sasuser.spag temp; run;

```

\section*{Metric Conjoint Analysis}

Next, we use PROC TRANSREG to perform the conjoint analysis.
```

ods exclude notes mvanova anova;
proc transreg data=inputdata utilities short separators=', ', '
lprefix=0 outtest=utils method=morals;
title2 'Conjoint Analysis';
model identity(sub:) =
class(brand | price meat mushroom ingredients / zero=sum);
output p ireplace out=results1 coefficients;
run;

```

The utilities option requests conjoint analysis output, and the short option suppresses the iteration histories. The lprefix=0 option specifies that zero variable name characters are to be used to construct the labels for the part-worths; the labels will simply consist of formatted values. The outtest= option creates an output SAS data set, UTILS, that contains all of the statistical results. The method=morals, algorithm fits the conjoint analysis model separately for each subject. We specify ods exclude notes mvanova anova to exclude ANOVA information (which we usually want to ignore) and provide more parsimonious output.

The model statement names the ratings for each subject as dependent variables and the factors as independent variables. Since this is a metric conjoint analysis, identity is specified for the ratings. The identity transformation is the no-transformation option, which is used for variables that need to enter the model with no further manipulations. The factors are specified as class variables, and the zero=sum option is specified to constrain the parameter estimates to sum to zero within each effect. The brand | price specification asks for a simple brand effect, a simple price effect, and the brand * price interaction.

The p option in the output statement requests predicted values, the ireplace option suppresses the output of transformed independent variables, and the coefficients option requests that the partworth utilities be output. These options control the contents of the out=results data set, which contains the ratings, predicted utilities for each product, indicator variables, and the part-worth utilities.

In the interest of space, only the results for the first subject are printed here. Recall that we used an ods exclude statement and we used PROC TEMPLATE on page 366 to customize the output from PROC TRANSREG.
```

Conjoint Analysis

```

The TRANSREG Procedure

Class Level Information
Class Levels Values
\begin{tabular}{lcccccl}
Brand & 3 & Pregu & Sundance & Tomato Garden \\
Price & 5 & 1.99 & 2.29 & 2.49 & 2.79 & 2.99 \\
Meat & 3 & Vegetarian & Meat & Italian Sausage \\
Mushroom & 2 & Mushrooms & No Mention & \\
Ingredients & 2 & All Natural & No Mention & \\
& & & & 30
\end{tabular}

Conjoint Analysis

The TRANSREG Procedure

Identity(Sub001)
Algorithm converged.
The TRANSREG Procedure Hypothesis Tests for Identity(Sub001)
\begin{tabular}{lrrr}
Root MSE & 2.09608 & R-Square & 0.8344 \\
Dependent Mean & 3.73333 & Adj R-Sq & 0.5635 \\
Coeff Var & 56.14499 & &
\end{tabular}

Part-Worth Utilities
\begin{tabular}{lrrr}
Label & Utility & \begin{tabular}{r}
Standard \\
Error
\end{tabular} & \begin{tabular}{r}
Importance \\
(\% Utility \\
Range)
\end{tabular} \\
Intercept & 3.0675 & 0.45364 & \\
Pregu & 2.0903 & 0.55937 & 28.924 \\
Sundance & 0.2973 & 0.55886 & \\
Tomato Garden & -2.3876 & 0.55205 &
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 1.99 & -0.6836 & 0.91331 & 7.134 \\
\hline 2.29 & 0.3815 & 0.77035 & \\
\hline 2.49 & 0.4209 & 0.78975 & \\
\hline 2.79 & -0.5397 & 0.79677 & \\
\hline 2.99 & 0.4209 & 0.78975 & \\
\hline Pregu, 1.99 & 0.7430 & 1.09161 & 15.639 \\
\hline Pregu, 2.29 & 0.9491 & 1.13055 & \\
\hline Pregu, 2.49 & -0.7433 & 1.14528 & \\
\hline Pregu, 2.79 & -1.0115 & 1.13157 & \\
\hline Pregu, 2.99 & 0.0626 & 1.13769 & \\
\hline Sundance, 1.99 & 0.0361 & 1.09135 & \\
\hline Sundance, 2.29 & -1.2578 & 1.09310 & \\
\hline Sundance, 2.49 & -0.1443 & 1.16287 & \\
\hline Sundance, 2.79 & 1.1633 & 1.09574 & \\
\hline Sundance, 2.99 & 0.2027 & 1.12077 & \\
\hline Tomato Garden, 1.99 & -0.7791 & 1.08788 & \\
\hline Tomato Garden, 2.29 & 0.3087 & 1.16798 & \\
\hline Tomato Garden, 2.49 & 0.8876 & 1.16026 & \\
\hline Tomato Garden, 2.79 & -0.1518 & 1.10376 & \\
\hline Tomato Garden, 2.99 & -0.2654 & 1.13455 & \\
\hline Vegetarian & 2.2828 & 0.68783 & 27.813 \\
\hline Meat & -0.2596 & 0.70138 & \\
\hline Italian Sausage & -2.0231 & 0.86266 & \\
\hline Mushrooms & 1.5514 & 0.38441 & 20.042 \\
\hline No Mention & -1.5514 & 0.38441 & \\
\hline All Natural & -0.0347 & 0.45814 & 0.448 \\
\hline No Mention & 0.0347 & 0.45814 & \\
\hline
\end{tabular}

The next steps process the outtest= data set, saving the \(\mathrm{R}^{2}\), adjusted \(\mathrm{R}^{2}\), and \(d f\). Subjects whose adjusted \(\mathrm{R}^{2}\) is less than \(0.3\left(\mathrm{R}^{2}\right.\) approximately 0.73\()\) are flagged for exclusion. We want the final analysis to be based on subjects who seemed to be taking the task seriously. The next steps flag the subjects whose fit seems bad and create a macro variable \&droplist that contains a list of variables to be dropped from the final analysis.
```

data model;
set utils;
if statistic in ('R-Square', 'Adj R-Sq', 'Model');
Subj = scan(_depvar_, 2);
if statistic = 'Model' then do;
value = numdf;
statistic = 'Num DF';
output;
value = dendf;
statistic = 'Den DF';
output;
value = dendf + numdf + 1;
statistic = 'N';
end;
output;
keep statistic value subj;
run;
proc transpose data=model out=summ;
by subj;
idlabel statistic;
id statistic;
run;
data summ2(drop=list);
length list \$ 1000;
retain list;
set summ end=eof;
if adj_r_sq < 0.3 then do;
Small = '*';
list = trim(list) || , , || subj;
end;
if eof then call symput('droplist', trim(list));
run;
%put \&droplist;
proc print label data=summ2(drop=_name_ _label_); run;

```

The outtest= data set contains for each subject the ANOVA, \(\mathrm{R}^{2}\), and part-worth utility tables. The numerator \(d f\) is found in the variable NumDF, the denominator \(d f\) is found in the variable DenDF, and the \(R^{2}\) and adjusted \(R^{2}\) are found in the variable Value. The first DATA step processes the outtest= data set, stores all of the statistics of interest in the variable Value, and discards the extra observations and variables. The PROC TRANSPOSE step creates a data set with one observation per subject. Here is the \&droplist macro variable.

Sub011 Sub021 Sub031 Sub051 Sub071 Sub081 Sub092 Sub093 Sub094 Sub096
Here is some of the \(\mathrm{R}^{2}\) and \(d f\) summary. We see the \(d f\) are right, and most of the \(\mathrm{R}^{2}\) 's look good.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Obs} & \multirow[b]{2}{*}{Subj} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Num } \\
\text { DF }
\end{gathered}
\]} & \multicolumn{5}{|l|}{Conjoint Analysis} \\
\hline & & & Den DF & N & R-Square & \[
\begin{aligned}
& \text { Adj } \\
& \text { R-Sq }
\end{aligned}
\] & Small \\
\hline 1 & Sub001 & 18 & 11 & 30 & 0.83441 & 0.56345 & \\
\hline 2 & Sub002 & 18 & 11 & 30 & 0.91844 & 0.78497 & \\
\hline 3 & Sub003 & 18 & 11 & 30 & 0.92908 & 0.81302 & \\
\hline 10 & Sub010 & 18 & 11 & 30 & 0.97643 & 0.93786 & \\
\hline 84 & Sub091 & 18 & 11 & 30 & 0.85048 & 0.60581 & \\
\hline 85 & Sub092 & 18 & 11 & 30 & 0.64600 & 0.06673 & * \\
\hline 86 & Sub093 & 18 & 11 & 30 & 0.45024 & -0.44936 & * \\
\hline 87 & Sub094 & 18 & 11 & 30 & 0.62250 & 0.00477 & * \\
\hline 88 & Sub095 & 18 & 11 & 30 & 0.85996 & 0.63081 & \\
\hline 89 & Sub096 & 18 & 11 & 30 & 0.73321 & 0.29664 & * \\
\hline 90 & Sub097 & 18 & 11 & 30 & 0.94155 & 0.84589 & \\
\hline 91 & Sub099 & 18 & 11 & 30 & 0.88920 & 0.70789 & \\
\hline 92 & Sub100 & 18 & 11 & 30 & 0.90330 & 0.74507 & \\
\hline
\end{tabular}

We can run the conjoint again, this time using the drop=\&droplist data set option to drop the subjects with poor fit. In the interest of space, the noprint option was specified on this step. The printed output will be the same as in the previous step, except for the fact that a few subject's tables are deleted.
```

proc transreg data=inputdata(drop=\&droplist) utilities short noprint
separators='' ', ' lprefix=0 outtest=utils method=morals;
title2 'Conjoint Analysis';
model identity(sub:) =
class(brand | price meat mushroom ingredients / zero=sum);
output p ireplace out=results2 coefficients;
run;

```

\section*{Simulating Market Share}

In many conjoint analysis studies, the conjoint analysis is not the primary goal. The conjoint analysis is used to generate part-worth utilities, which are then used as input to consumer choice and market share simulators. The end result for a product is its expected "preference share," which when properly weighted can be used to predict the proportion of times that the product will be purchased. The effects on market share of introducing new products can also be simulated.

One of the most popular ways to simulate market share is with the maximum utility model, which assumes each subject will buy with probability one the product for which he or she has the highest utility. The probabilities for each product are averaged across subjects to get predicted market share.

Other simulation methods include the Bradley-Terry-Luce (BTL) model and the logit model. Unlike the maximum utility model, the BTL and the logit models do not assign all of the probability of choice to the most preferred alternative. Probability is a continuous function of predicted utility. In the maximum utility model, probability of choice is a binary step function of utility. In the BTL model, probability of choice is a linear function of predicted utility. In the logit model, probability of choice is an increasing nonlinear logit function of predicted utility. The BTL model computes the probabilities by dividing each utility by the sum of the predicted utilities within each subject. The logit model divides the exponentiated predicted utilities by the sum of exponentiated utilities, again within subject.
\[
\begin{array}{ll}
\text { Maximum Utility: } p_{i j k}= & 1.0 \text { if } y_{i j k}=\operatorname{MAX}\left(y_{i j k}\right), \\
& \\
& p_{i j k}=y_{i j k} / \sum \sum \sum y_{i j k} \\
\text { BTL: } & p_{i j k}=\exp \left(y_{i j k}\right) / \sum \sum \sum \exp \left(y_{i j k}\right)
\end{array}
\]

The following plot shows the different assumptions made by the three choice simulators. This plot shows expected market share for a subject with utilities ranging from one to nine.

\section*{Simulator Comparisons}

The maximum utility line is flat at zero until it reaches the maximum utility, where it jumps to 1.0 . The BTL line increases from 0.02 to 0.20 as utility ranges from 1 to 9 . The logit function increases exponentially, with small utilities mapping to near-zero probabilities and the largest utility mapping to a proportion of 0.63 .

The maximum utility, BTL, and logit models are based on different assumptions and produce different results. The maximum utility model has the advantage of being scale-free. Any strictly monotonic transformation of each subject's predicted utilities will produce the same market share. However, this model is unstable because it assigns a zero probability of choice to all alternatives that do not have the maximum predicted utility, including those that have predicted utilities near the maximum. The disadvantage of the BTL and logit models is that results are not invariant under linear transformations of the predicted utilities. These methods are considered inappropriate by some researchers for this reason. With negative predicted utilities, the BTL method produces negative probabilities, which are
invalid. The BTL results change when a constant is added to the predicted utilities but do not change when a constant is multiplied by the predicted utilities. Conversely, the logit results change when a constant is multiplied by the predicted utilities but do not change when a constant is added to the predicted utilities. The BTL method is not often used in practice, the logit model is sometimes used, and the maximum utility model is most often used. Refer to Finkbeiner (1988) for a discussion of conjoint analysis choice simulators. Do not confuse a logit model choice simulator and the multinomial logit model; they are quite different.

The three simulation methods will produce different results. This is because all three methods make different assumptions about how consumers translate utility into choice. To see why the models differ, imagine a product that is everyone's second choice. Further imagine that there is wide-spread disagreement on first choice. Every other product is someone's first choice, and all other products are preferred about equally often. In the maximum utility model, this second choice product will have zero probability of choice because no one would choose it first. In the other models, it should be the most preferred, because for every individual it will have a high, near-maximum probability of choice. Of course, preference patterns are not usually as weird as the one just described. If consumers are perfectly rational and always choose the alternative with the highest utility, then the maximum utility model is correct. However, you need to be aware that your results will depend on the choice of simulator model and in BTL and logit, the scaling of the utilities. One reason why the discrete choice model is popular in marketing research is discrete choice models choices directly, whereas conjoint simulates choices indirectly.

Here is the code that made the plot. You can try this program with different minima and maxima to see the effects of linear transformations of the predicted utilities.
```

%let min = 1;
%let max = 9;
%let by = 1;
%let list = \&min to \&max by \&by;
data a;
sumb = 0;
suml = 0;
do u = \&list;
logit = exp(u);
btl = u;
sumb = sumb + btl;
suml = suml + logit;
end;
do u = \&list;
logit = exp(u);
btl = u;
max = abs(u - (\&max)) < (0.5 * (\&by));
btl = btl / sumb;
logit = logit / suml;
output;
end;
run;

```
```

goptions ftext=swiss colors=(black) hsize=4.5in vsize=4.5in;
proc gplot;
title h=1.5 'Simulator Comparisons';
plot max * u = 1 btl * u = 2 logit * u = 3 /
vaxis=axis2 haxis=axis1 overlay frame;
symbol1 v=M i=step;
symbol2 v=B i=join;
symbol3 v=L i=spline;
axis1 order=(\&list) label=('Utility');
axis2 order=(0 to 1 by 0.1)
label=(angle=90 "Probability of Choice");
note move=(2.5cm, 9.2cm)
font=swissu 'B - ' font=swiss 'Bradley-Terry-Luce';
note move=(2.5cm, 8.7cm)
font=swissu 'L - ' font=swiss 'Logit';
note move=(2.5cm, 8.2cm)
font=swissu 'M - ' font=swiss 'Maximum Utility';
run; quit;

```

\section*{Simulating Market Share, Maximum Utility Model}

This section shows how to use the predicted utilities from a conjoint analysis to simulate choice and predict market share. The end result for a hypothetical product is its expected market share, which is a prediction of the proportion of times that the product will be purchased. Note however, that a term like "expected market share," while widely used, is a misnomer. Without purchase volume data, it is unlikely that these numbers would mirror true market share. Nevertheless, conjoint analysis is a useful and popular marketing research technique.

A SAS macro is used to simulate market share. It takes a method=morals output data set from PROC TRANSREG and creates a data set with expected market share for each combination. First, market share is computed with the maximum utility model. The macro finds the most preferred combination(s) for each subject, which are those combinations with the largest predicted utility, and assigns the probability that each combination will be purchased. Typically for each subject, one product will have a probability of purchase of 1.0 , and all other produces will have zero probability of purchase. However, when two predicted utilities are tied for the maximum, that subject will have two probabilities of 0.5 and the rest will be zero. The probabilities are averaged across subjects for each product to get market share. Subjects can be differentially weighted.
```

    /*------------------------------------------*/
    /* Simulate Market Share */
    /*----------------------------------------*/
    %macro sim(data=_last_, /* SAS data set with utilities. */
idvars=, /* Additional variables to display with */
/* market share results. */
weights=, /* By default, each subject contributes */
/* equally to the market share */
/* computations. To differentially */
/* weight the subjects, specify a vector */
/* of weights, one per subject. */
/* Separate the weights by blanks. */
out=shares, /* Output data set name. */
method=max /* max - maximum utility model. */
/* btl - Bradley-Terry-Luce model. */
/* logit - logit model. */
/* WARNING: The Bradley-Terry-Luce model */
/* and the logit model results are not */
/* invariant under linear */
/* transformations of the utilities. */
); /*-------------------------------------------*/

```
options nonotes;
\(\%\) if \&method = btl or \&method = logit \%then
\%put WARNING: The Bradley-Terry-Luce model and the logit model results are not invariant under linear transformations of the utilities.;
\%else \%if \&method ne max \%then \%do;
\%put WARNING: Invalid method \&method.. Assuming method=max.; \%let method = max;
\%end;
* Eliminate coefficient observations, if any;
data temp1;
set \&data(where=(_type_ = 'SCORE' or _type_ = ' '));
run;
* Determine number of runs and subjects.;
proc sql;
create table temp2 as select nruns, count (nruns) as nsubs, count(distinct nruns) as chk
from (select count (_depvar_) as nruns
from temp1 where _type_ in ('SCORE', , ') group by _depvar_);
quit;
```

data _null_;
set temp2;
call symput('nruns', compress(put(nruns, 5.0)));
call symput('nsubs', compress(put(nsubs, 5.0)));
if chk > 1 then do;
put 'ERROR: Corrupt input data set.';
call symput('okay', 'no');
end;
else call symput('okay', 'yes');
run;
%if \&okay ne yes %then %do;
proc print;
title2 'Number of runs should be constant across subjects';
run;
%goto endit;
%end;
%else %put NOTE: \&nruns runs and \&nsubs subjects.;
%let w = %scan(\&weights, %eval(\&nsubs + 1), %str( ));
%if %length(\&w) > 0 %then %do;
%put ERROR: Too many weights.;
%goto endit;
%end;

```
* Form nruns by nsubs data set of utilities;
data temp2;
 keep _u1 - _u\&nsubs \&idvars;
 array u[\&nsubs] _u1 - _u\&nsubs;
 do \(j=1\) to \&nruns;
 * Read ID variables;
 set temp1 (keep=\&idvars) point \(=j\);
 * Read utilities;
 \(\mathrm{k}=\mathrm{j}\);
 do \(i=1\) to \&nsubs;
 set temp1 (keep=p_depend_) point \(=k\);
 u[i] = p_depend_;
 \(\% i f\) \&method \(=\) logit \(\%\) then \(u[i]=\exp (u[i]) ;\);
 \(\mathrm{k}=\mathrm{k}+\) \&nruns;
 end;
 output;
 end;
 stop;
 run;
```

* Set up for maximum utility model;
%if \&method = max %then %do;
    * Compute maximum utility for each subject;
proc means data=temp2 noprint;
var _u1-_u\&nsubs;
output out=temp1 max=_sum1 - _sum\&nsubs;
run;
    * Flag maximum utility;
data temp2(keep=_u1 - _u\&nsubs \&idvars);
if _n_ = 1 then set temp1(drop=_type_ _freq_);
array u[\&nsubs] _u1 - _u\&nsubs;
array m[\&nsubs] _sum1 - _sum\&nsubs;
set temp2;
do i = 1 to \&nsubs;
u[i] = ((u[i] - m[i]) > -1e-8); /* < 1e-8 is considered 0 */
end;
run;
%end;
* Compute sum for each subject;
proc means data=temp2 noprint;
var _u1-_u\&nsubs;
output out=temp1 sum=_sum1 - _sum\&nsubs;
run;
* Compute expected market share;
data \&out(keep=share \&idvars);
if _n_ = 1 then set temp1(drop=_type_ _freq_);
array u[\&nsubs] _u1 - _u\&nsubs;
array m[\&nsubs] _sum1 - _sum\&nsubs;
set temp2;
    * Compute final probabilities;
do i = 1 to \&nsubs;
u[i] = u[i] / m[i];
end;
    * Compute expected market share;
%if %length(\&weights) = 0 %then %do;
Share = mean(of _u1 - _u\&nsubs);
%end;

```
```

    %else %do;
        Share = 0;
    wsum = 0;
    %do i = 1 %to &nsubs;
        %let w = %scan(&weights, &i, %str( ));
        %if %length(&w) = 0 %then %let w = .;
        if &w < O then do;
            if _n_ > 1 then stop;
                put "ERROR: Invalid weight &w..";
                call symput('okay', 'no');
                end;
            share = share + &w * _u&i;
            wsum = wsum + &w;
            %end;
    share = share / wsum;
    %end;
    run;
options notes;
%if \&okay ne yes %then %goto endit;
proc sort;
by descending share \&idvars;
run;
proc print label noobs;
title2 'Expected Market Share';
title3 %if \&method = max %then "Maximum Utility Model";
%else %if \&method = btl %then "Bradley-Terry-Luce Model";
%else "Logit Model";;
run;
%endit:
%mend;
title 'Spaghetti Sauces';
%sim(data=results2, out=maxutils, method=max,
idvars=price brand meat mushroom ingredients);

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Spaghetti Sauces Expected Market Share Maximum Utility Model} \\
\hline Brand & Price & Meat & Mushroom & Ingredients & Share \\
\hline Sundance & 1.99 & Vegetarian & Mushrooms & No Mention & 0.18293 \\
\hline Pregu & 1.99 & Vegetarian & No Mention & All Natural & 0.14228 \\
\hline Tomato Garden & 2.29 & Italian Sausage & Mushrooms & No Mention & 0.12195 \\
\hline Pregu & 2.29 & Vegetarian & No Mention & No Mention & 0.10976 \\
\hline Pregu & 1.99 & Vegetarian & Mushrooms & No Mention & 0.10366 \\
\hline Tomato Garden & 1.99 & Vegetarian & Mushrooms & No Mention & 0.09146 \\
\hline Tomato Garden & 1.99 & Vegetarian & No Mention & All Natural & 0.07520 \\
\hline Sundance & 2.29 & Vegetarian & Mushrooms & All Natural & 0.07317 \\
\hline Sundance & 1.99 & Vegetarian & No Mention & All Natural & 0.05081 \\
\hline Pregu & 2.29 & Meat & Mushrooms & All Natural & 0.02439 \\
\hline Sundance & 2.29 & Meat & No Mention & No Mention & 0.01220 \\
\hline Sundance & 2.49 & Italian Sausage & No Mention & No Mention & 0.01220 \\
\hline Tomato Garden & 2.29 & Vegetarian & No Mention & All Natural & 0.00000 \\
\hline Pregu & 2.49 & Vegetarian & Mushrooms & No Mention & 0.00000 \\
\hline Pregu & 2.49 & Italian Sausage & No Mention & No Mention & 0.00000 \\
\hline Sundance & 2.49 & Meat & Mushrooms & All Natural & 0.00000 \\
\hline Tomato Garden & 2.49 & Vegetarian & Mushrooms & All Natural & 0.00000 \\
\hline Tomato Garden & 2.49 & Meat & No Mention & No Mention & 0.00000 \\
\hline Pregu & 2.79 & Meat & No Mention & No Mention & 0.00000 \\
\hline Pregu & 2.79 & Italian Sausage & Mushrooms & No Mention & 0.00000 \\
\hline Sundance & 2.79 & Vegetarian & Mushrooms & No Mention & 0.00000 \\
\hline Sundance & 2.79 & Meat & No Mention & All Natural & 0.00000 \\
\hline Tomato Garden & 2.79 & Vegetarian & No Mention & No Mention & 0.00000 \\
\hline Tomato Garden & 2.79 & Meat & Mushrooms & All Natural & 0.00000 \\
\hline Pregu & 2.99 & Meat & Mushrooms & All Natural & 0.00000 \\
\hline Pregu & 2.99 & Italian Sausage & No Mention & No Mention & 0.00000 \\
\hline Sundance & 2.99 & Vegetarian & No Mention & All Natural & 0.00000 \\
\hline Sundance & 2.99 & Meat & Mushrooms & No Mention & 0.00000 \\
\hline Tomato Garden & 2.99 & Vegetarian & No Mention & No Mention & 0.00000 \\
\hline Tomato Garden & 2.99 & Italian Sausage & Mushrooms & No Mention & 0.00000 \\
\hline
\end{tabular}

The largest market share (\(18.29 \%\)) is for Sundance brand vegetarian sauce with mushrooms costing \(\$ 1.99\). The next largest share (\(14.23 \%\)) is Pregu brand vegetarian sauce with all natural ingredients costing \(\$ 1.99\). Five of the seven most preferred sauces all cost \(\$ 1.99\) - the minimum. It is not clear from this simulation if any brand is the leader.

\section*{Simulating Market Share, Bradley-Terry-Luce and Logit Models}

The Bradley-Terry-Luce model and the logit model are also available in the \%SIM macro.
```

title 'Spaghetti Sauces';
%sim(data=results2, out=btl, method=btl,
idvars=price brand meat mushroom ingredients);
%sim(data=results2, out=logit, method=logit,
idvars=price brand meat mushroom ingredients);

```

\author{
Spaghetti Sauces \\ Expected Market Share Bradley-Terry-Luce Model
}
\begin{tabular}{llllll}
Brand & Price & Meat & Mushroom & Ingredients & Share \\
& & & & & \\
Pregu & 1.99 & Vegetarian & Mushrooms & No Mention & 0.053479 \\
Sundance & 1.99 & Vegetarian & Mushrooms & No Mention & 0.052990 \\
Tomato Garden & 1.99 & Vegetarian & Mushrooms & No Mention & 0.051751 \\
Pregu & 1.99 & Vegetarian & No Mention & All Natural & 0.050683 \\
Sundance & 1.99 & Vegetarian & No Mention & All Natural & 0.050193 \\
Tomato Garden & 1.99 & Vegetarian & No Mention & All Natural & 0.048955 \\
Sundance & 2.29 & Vegetarian & Mushrooms & All Natural & 0.048236 \\
Pregu & 2.29 & Vegetarian & No Mention & No Mention & 0.043972 \\
Tomato Garden & 2.29 & Vegetarian & No Mention & All Natural & 0.042035 \\
Pregu & 2.49 & Vegetarian & Mushrooms & No Mention & 0.041532 \\
Pregu & 2.29 & Meat & Mushrooms & All Natural & 0.041063 \\
Sundance & 2.29 & Meat & No Mention & No Mention & 0.036321 \\
Tomato Garden & 2.29 & Italian Sausage & Mushrooms & No Mention & 0.032995 \\
Sundance & 2.79 & Vegetarian & Mushrooms & No Mention & 0.032067 \\
Sundance & 2.49 & Meat & Mushrooms & All Natural & 0.031310 \\
Tomato Garden & 2.49 & Vegetarian & Mushrooms & All Natural & 0.031057 \\
Sundance & 2.99 & Vegetarian & No Mention & All Natural & 0.026879 \\
Pregu & 2.49 & Italian Sausage & No Mention & No Mention & 0.026046 \\
Pregu & 2.99 & Meat & Mushrooms & All Natural & 0.025318 \\
Pregu & 2.79 & Meat & No Mention & No Mention & 0.025038 \\
Tomato Garden & 2.79 & Vegetarian & No Mention & No Mention & 0.024325 \\
Pregu & 2.79 & Italian Sausage & Mushrooms & No Mention & 0.024263 \\
Sundance & 2.49 & Italian Sausage & No Mention & No Mention & 0.022383 \\
Sundance & 2.99 & Meat & Mushrooms & No Mention & 0.022264 \\
Tomato Garden & 2.99 & Vegetarian & No Mention & No Mention & 0.022113 \\
Sundance & 2.79 & Meat & No Mention & All Natural & 0.021858 \\
Tomato Garden & 2.79 & Meat & Mushrooms & All Natural & 0.021415 \\
Tomato Garden & 2.49 & Meat & No Mention & No Mention & 0.019142 \\
Pregu & 2.99 & Italian Sausage & No Mention & No Mention & 0.016391 \\
Tomato Garden & 2.99 & Italian Sausage & Mushrooms & No Mention & 0.013926 \\
& & & & &
\end{tabular}

\author{
Spaghetti Sauces \\ Expected Market Share \\ Logit Model
}
\begin{tabular}{llllll}
Brand & Price & Meat & Mushroom & Ingredients & Share \\
& & & & & \\
Sundance & 1.99 & Vegetarian & Mushrooms & No Mention & 0.10463 \\
Pregu & 1.99 & Vegetarian & No Mention & All Natural & 0.09621 \\
Tomato Garden & 1.99 & Vegetarian & Mushrooms & No Mention & 0.09001 \\
Pregu & 1.99 & Vegetarian & Mushrooms & No Mention & 0.08358 \\
Pregu & 2.29 & Vegetarian & No Mention & No Mention & 0.07755 \\
Sundance & 2.29 & Vegetarian & Mushrooms & All Natural & 0.07102 \\
Tomato Garden & 1.99 & Vegetarian & No Mention & All Natural & 0.06872 \\
Tomato Garden & 2.29 & Italian Sausage & Mushrooms & No Mention & 0.06735 \\
Sundance & 1.99 & Vegetarian & No Mention & All Natural & 0.06419 \\
Pregu & 2.29 & Meat & Mushrooms & All Natural & 0.04137 \\
Pregu & 2.49 & Vegetarian & Mushrooms & No Mention & 0.03578 \\
Sundance & 2.29 & Meat & No Mention & No Mention & 0.03273 \\
Sundance & 2.49 & Italian Sausage & No Mention & No Mention & 0.02081 \\
Tomato Garden & 2.99 & Italian Sausage & Mushrooms & No Mention & 0.02055 \\
Sundance & 2.79 & Vegetarian & Mushrooms & No Mention & 0.02022 \\
Tomato Garden & 2.29 & Vegetarian & No Mention & All Natural & 0.01996 \\
Pregu & 2.79 & Italian Sausage & Mushrooms & No Mention & 0.01233 \\
Pregu & 2.49 & Italian Sausage & No Mention & No Mention & 0.01199 \\
Sundance & 2.49 & Meat & Mushrooms & All Natural & 0.01010 \\
Sundance & 2.99 & Meat & Mushrooms & No Mention & 0.00964 \\
Pregu & 2.79 & Meat & No Mention & No Mention & 0.00763 \\
Pregu & 2.99 & Italian Sausage & No Mention & No Mention & 0.00637 \\
Pregu & 2.99 & Meat & Mushrooms & All Natural & 0.00547 \\
Tomato Garden & 2.49 & Vegetarian & Mushrooms & All Natural & 0.00538 \\
Tomato Garden & 2.79 & Meat & Mushrooms & All Natural & 0.00516 \\
Sundance & 2.99 & Vegetarian & No Mention & All Natural & 0.00399 \\
Sundance & 2.79 & Meat & No Mention & All Natural & 0.00266 \\
Tomato Garden & 2.79 & Vegetarian & No Mention & No Mention & 0.00209 \\
Tomato Garden & 2.99 & Vegetarian & No Mention & No Mention & 0.00162 \\
Tomato Garden & 2.49 & Meat & No Mention & No Mention & 0.00088 \\
& & & & &
\end{tabular}

The three methods produce different results.

\section*{Change in Market Share}

The following steps simulate what would happen to the market if new products were introduced. Simulation observations are added to the data set and given zero weight. The conjoint analyses are rerun to compute the predicted utilities for the active observations and the simulations. The maximum utility model is used.

Recall that the design has numeric variables with values like 1, 2, and 3. Formats are used to print the descriptions of the levels of the attributes. The first thing we want to do is read in products
to simulate. We could read in values like 1, 2, and 3 or we could read in more descriptive values and convert them to numerics using informats. We chose the latter approach. First we use PROC FORMAT to create the informats. Previously, we created formats with PROC FORMAT by specifying a value statement followed by pairs of the form numeric-value=descriptive-character-string. We create an informat with PROC FORMAT by specifying an invalue statement followed by pairs of the form descriptive-character-string=numeric-value.
```

title 'Spaghetti Sauces';
proc format;
invalue inbrand 'Preg'=1 'Sun' =2 'Tom' =3;
invalue inmeat 'Veg' =1 'Meat'=2 'Ital'=3;
invalue inmush 'Mush'=1 'No' =2;
invalue iningre 'Nat' =1 'No' =2;
invalue inprice '1.99'=1 '2.29'=2 '2.49'=3 '2.79'=4 '2.99'=5;
run;

```

Next, we read the observations we want to consider for a sample market using the informats we just created. An input statement specification of the form "variable: informat" reads values starting with the first nonblank character.
```

data simulat;
input brand : inbrand.
meat : inmeat.
mushroom : inmush.
ingredients : iningre.
price : inprice.;
datalines;
Preg Veg Mush Nat 1.99
Sun Veg Mush Nat 1.99
Tom Veg Mush Nat 1.99
Preg Meat Mush Nat 2.49
Sun Meat Mush Nat 2.49
Tom Meat Mush Nat 2.49
Preg Ital Mush Nat 2.79
Sun Ital Mush Nat 2.79
Tom Ital Mush Nat 2.79
;

```

Next, the original input data set is combined with the simulation observations. The subjects with poor fit are dropped and a weight variable is created to flag the simulation observations. The weight variable is not strictly necessary since all of the simulation observations will have missing values on the ratings so will be excluded from the analysis that way. Still, it is good practice to explicitly use weights to exclude observations.
```

data inputdata2(drop=\&droplist);
set inputdata(in=w) simulat;
Weight = w;
run;

```
proc print;
title2 'Simulation Observations Have a Weight of Zero';
id weight;
var brand -- price;
run;

Spaghetti Sauces
Simulation Observations Have a Weight of Zero
\begin{tabular}{|c|c|c|c|c|c|}
\hline Weight & Brand & Meat & Mushroom & Ingredients & Price \\
\hline 1 & Pregu & Meat & No Mention & No Mention & 2.79 \\
\hline 1 & Tomato Garden & Vegetarian & No Mention & No Mention & 2.79 \\
\hline 1 & Pregu & Meat & Mushrooms & All Natural & 2.29 \\
\hline 1 & Tomato Garden & Vegetarian & Mushrooms & All Natural & 2.49 \\
\hline 1 & Sundance & Vegetarian & Mushrooms & No Mention & 1.99 \\
\hline 1 & Pregu & Italian Sausage & No Mention & No Mention & 2.49 \\
\hline 1 & Tomato Garden & Vegetarian & No Mention & No Mention & 2.99 \\
\hline 1 & Tomato Garden & Italian Sausage & Mushrooms & No Mention & 2.29 \\
\hline 1 & Pregu & Vegetarian & Mushrooms & No Mention & 2.49 \\
\hline 1 & Pregu & Vegetarian & No Mention & No Mention & 2.29 \\
\hline 1 & Sundance & Vegetarian & Mushrooms & No Mention & 2.79 \\
\hline 1 & Tomato Garden & Vegetarian & Mushrooms & No Mention & 1.99 \\
\hline 1 & Sundance & Meat & No Mention & No Mention & 2.29 \\
\hline 1 & Sundance & Meat & Mushrooms & No Mention & 2.99 \\
\hline 1 & Pregu & Italian Sausage & Mushrooms & No Mention & 2.79 \\
\hline 1 & Tomato Garden & Italian Sausage & Mushrooms & No Mention & 2.99 \\
\hline 1 & Sundance & Vegetarian & Mushrooms & All Natural & 2.29 \\
\hline 1 & Pregu & Meat & Mushrooms & All Natural & 2.99 \\
\hline 1 & Tomato Garden & Meat & No Mention & No Mention & 2.49 \\
\hline 1 & Sundance & Meat & Mushrooms & All Natural & 2.49 \\
\hline 1 & Pregu & Vegetarian & No Mention & All Natural & 1.99 \\
\hline 1 & Sundance & Meat & No Mention & All Natural & 2.79 \\
\hline 1 & Tomato Garden & Vegetarian & No Mention & All Natural & 1.99 \\
\hline 1 & Sundance & Italian Sausage & No Mention & No Mention & 2.49 \\
\hline 1 & Sundance & Vegetarian & No Mention & All Natural & 1.99 \\
\hline 1 & Sundance & Vegetarian & No Mention & All Natural & 2.99 \\
\hline 1 & Pregu & Italian Sausage & No Mention & No Mention & 2.99 \\
\hline 1 & Tomato Garden & Vegetarian & No Mention & All Natural & 2.29 \\
\hline 1 & Pregu & Vegetarian & Mushrooms & No Mention & 1.99 \\
\hline 1 & Tomato Garden & Meat & Mushrooms & All Natural & 2.79 \\
\hline 0 & Pregu & Vegetarian & Mushrooms & All Natural & 1.99 \\
\hline 0 & Sundance & Vegetarian & Mushrooms & All Natural & 1.99 \\
\hline 0 & Tomato Garden & Vegetarian & Mushrooms & All Natural & 1.99 \\
\hline 0 & Pregu & Meat & Mushrooms & All Natural & 2.49 \\
\hline 0 & Sundance & Meat & Mushrooms & All Natural & 2.49 \\
\hline
\end{tabular}
\begin{tabular}{lllllll}
0 & Tomato Garden & Meat & Mushrooms & All Natural & 2.49 \\
0 & Pregu & Italian Sausage & Mushrooms & All Natural & 2.79 \\
0 & Sundance & Italian Sausage & Mushrooms & All Natural & 2.79 \\
0 & Tomato Garden & Italian Sausage & Mushrooms & All Natural & 2.79
\end{tabular}

The next steps run the conjoint analyses suppressing the printed output using the noprint option. The statement weight weight is specified since we want the simulation observations (which have zero weight) excluded from contributing to the analysis. However, the procedure will still compute an expected utility for every observation including observations with zero, missing, and negative weights. The outtest= data set is created like before so we can check to make sure the \(d f\) and \(\mathrm{R}^{2}\) look reasonable.
```

ods exclude notes mvanova anova;
proc transreg data=inputdata2 utilities short noprint
separators=', ' lprefix=0 method=morals outtest=utils;
title2 'Conjoint Analysis';
model identity(sub:) =
class(brand | price meat mushroom ingredients / zero=sum);
output p ireplace out=results3 coefficients;
weight weight;
run;
data model;
set utils;
if statistic in ('R-Square', 'Adj R-Sq', 'Model');
Subj = scan(_depvar_, 2);
if statistic = 'Model' then do;
value = numdf;
statistic = 'Num DF';
output;
value = dendf;
statistic = 'Den DF';
output;
value = dendf + numdf + 1;
statistic = 'N';
end;
output;
keep statistic value subj;
run;
proc transpose data=model out=summ;
by subj;
idlabel statistic;
id statistic;
run;
proc print label data=summ(drop=_name_ _label_); run;

```

The SAS log tells us that the nine simulation observations were deleted both because of zero weight and because of missing values in the dependent variables.

NOTE: 9 observations were deleted from the analysis but not from the output data set due to missing values.
NOTE: 9 observations were deleted from the analysis but not from the output data set due to nonpositive weights.
NOTE: A total of 9 observations were deleted.
The \(d f\) and \(\mathrm{R}^{2}\) results, some of which are shown next, look fine.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Spaghetti Sauces Conjoint Analysis} \\
\hline Obs & Subj & Num DF & Den DF & N & R-Square & \[
\begin{aligned}
& \mathrm{Adj} \\
& \mathrm{R}-\mathrm{Sq}
\end{aligned}
\] \\
\hline 1 & Sub001 & 18 & 11 & 30 & 0.83441 & 0.56345 \\
\hline 2 & Sub002 & 18 & 11 & 30 & 0.91844 & 0.78497 \\
\hline 3 & Sub003 & 18 & 11 & 30 & 0.92908 & 0.81302 \\
\hline . & & & & & & \\
\hline 81 & Sub099 & 18 & 11 & 30 & 0.88920 & 0.70789 \\
\hline 82 & Sub100 & 18 & 11 & 30 & 0.90330 & 0.74507 \\
\hline
\end{tabular}

The simulation observations are pulled out of the out= data set, and the \(\%\) SIM macro is run to simulate market share.
data results4;
set results3;
where weight \(=0\);
run;
\%sim(data=results4, out=shares2, method=max, idvars=price brand meat mushroom ingredients);
\begin{tabular}{llllll}
\hline & \multicolumn{6}{c}{\begin{tabular}{c}
Spaghetti Sauces \\
Expected Market Share \\
Maximum Utility Model
\end{tabular}} \\
Brand & Price & Meat & Mushroom & Ingredients & Share \\
& & & & & \\
Pregu & 1.99 & Vegetarian & Mushrooms & All Natural & 0.35976 \\
Sundance & 1.99 & Vegetarian & Mushrooms & All Natural & 0.29878 \\
Tomato Garden & 1.99 & Vegetarian & Mushrooms & All Natural & 0.19512 \\
Tomato Garden & 2.79 & Italian Sausage & Mushrooms & All Natural & 0.08537 \\
Sundance & 2.79 & Italian Sausage & Mushrooms & All Natural & 0.02439 \\
Pregu & 2.49 & Meat & Mushrooms & All Natural & 0.01220 \\
Sundance & 2.49 & Meat & Mushrooms & All Natural & 0.01220 \\
Pregu & 2.79 & Italian Sausage & Mushrooms & All Natural & 0.01220 \\
Tomato Garden & 2.49 & Meat & Mushrooms & All Natural & 0.00000 \\
& & & & & \\
\hline
\end{tabular}

For this set of products, the inexpensive vegetarian sauces have the greatest market share with Pregu brand preferred over Sundance and Tomato Garden. Now we'll consider adding six more products to the market, the six meat sauces we just saw, but at a lower price.
```

data simulat2;
input brand : inbrand.
meat : inmeat.
mushroom : inmush.
ingredients : iningre.
price : inprice.;
datalines;
Preg Meat Mush Nat 2.29
Sun Meat Mush Nat 2.29
Tom Meat Mush Nat 2.29
Preg Ital Mush Nat 2.49
Sun Ital Mush Nat 2.49
Tom Ital Mush Nat 2.49
;
data inputdata3(drop=\&droplist);
set inputdata(in=w) simulat simulat2;
weight = w;
run;
ods exclude notes mvanova anova;
proc transreg data=inputdata3 utilities short noprint
separators=', ' lprefix=0 method=morals outtest=utils;
title2 'Conjoint Analysis';
model identity(sub:) =
class(brand | price meat mushroom ingredients / zero=sum);
output p ireplace out=results5 coefficients;
weight weight;
run;

```

Now we see that 15 simulation observations were excluded.
NOTE: 15 observations were deleted from the analysis but not from the output data set due to missing values.
NOTE: 15 observations were deleted from the analysis but not from the output data set due to nonpositive weights.
NOTE: A total of 15 observations were deleted.
These steps extract the \(d f\) and \(\mathrm{R}^{2}\).
```

data model;
set utils;
if statistic in ('R-Square', 'Adj R-Sq', 'Model');
Subj = scan(_depvar_, 2);
if statistic = 'Model' then do;
value = numdf;
statistic = 'Num DF';
output;
value = dendf;
statistic = 'Den DF';
output;
value = dendf + numdf + 1;
statistic = 'N';
end;
output;
keep statistic value subj;
run;
proc transpose data=model out=summ;
by subj;
idlabel statistic;
id statistic;
run;
proc print label data=summ(drop=_name_ _label_); run;

```

The \(d f\) and \(\mathrm{R}^{2}\) still look fine.

Now we'll run the simulation with all 15 simulation observations.
```

data results6;
set results5;
where weight = 0;
run;
%sim(data=results6, out=shares3, method=max,
idvars=price brand meat mushroom ingredients);

```
\begin{tabular}{llllll}
\hline & \multicolumn{6}{c}{\begin{tabular}{c}
Spaghetti Sauces \\
Expected Market Share \\
Maximum Utility Model
\end{tabular}} \\
& Price & Meat & Mushroom & Ingredients & Share \\
Brand & & & & \\
Sundance & 1.99 & Vegetarian & Mushrooms & All Natural & 0.25813 \\
Pregu & 1.99 & Vegetarian & Mushrooms & All Natural & 0.20935 \\
Pregu & 2.29 & Meat & Mushrooms & All Natural & 0.19512 \\
Tomato Garden & 1.99 & Vegetarian & Mushrooms & All Natural & 0.15447 \\
Sundance & 2.49 & Italian Sausage & Mushrooms & All Natural & 0.08537 \\
Sundance & 2.29 & Meat & Mushrooms & All Natural & 0.03659 \\
Tomato Garden & 2.49 & Italian Sausage & Mushrooms & All Natural & 0.01829 \\
Tomato Garden & 2.29 & Meat & Mushrooms & All Natural & 0.01220 \\
Pregu & 2.49 & Italian Sausage & Mushrooms & All Natural & 0.01220 \\
Tomato Garden & 2.79 & Italian Sausage & Mushrooms & All Natural & 0.01220 \\
Sundance & 2.79 & Italian Sausage & Mushrooms & All Natural & 0.00610 \\
Pregu & 2.49 & Meat & Mushrooms & All Natural & 0.00000 \\
Sundance & 2.49 & Meat & Mushrooms & All Natural & 0.00000 \\
Tomato Garden & 2.49 & Meat & Mushrooms & All Natural & 0.0000 \\
Pregu & 2.79 & Italian Sausage & Mushrooms & All Natural & 0.00000 \\
& & & & & \\
\hline
\end{tabular}

These steps merge the data set containing the old market shares with the data set containing the new market shares to show the effect of adding the new products.
```

title 'Spaghetti Sauces';
proc sort data=shares2;
by price brand meat mushroom ingredients;
run;
proc sort data=shares3;
by price brand meat mushroom ingredients;
run;
data both;
merge shares2(rename=(share=OldShare)) shares3;
by price brand meat mushroom ingredients;
if oldshare = . then Change = 0;
else change = oldshare;
change = share - change;
run;

```
```

proc sort;
by descending share price brand meat mushroom ingredients;
run;
options missing=' ';
proc print noobs;
title2 'Expected Market Share and Change';
var price brand meat mushroom ingredients
oldshare share change;
format oldshare -- change 6.3;
run;
options missing=.;

```

\section*{Spaghetti Sauces Expected Market Share and Change}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Price} & \multirow[b]{2}{*}{Brand} & \multirow[b]{2}{*}{Meat} & \multirow[b]{2}{*}{Mushroom} & \multicolumn{4}{|c|}{Old} \\
\hline & & & & Ingredients & Share & Share & Change \\
\hline 1.99 & Sundance & Vegetarian & Mushrooms & All Natural & 0.299 & 0.258 & -0.041 \\
\hline 1.99 & Pregu & Vegetarian & Mushrooms & All Natural & 0.360 & 0.209 & -0.150 \\
\hline 2.29 & Pregu & Meat & Mushrooms & All Natural & & 0.195 & 0.195 \\
\hline 1.99 & Tomato Garden & Vegetarian & Mushrooms & All Natural & 0.195 & 0.154 & -0.041 \\
\hline 2.49 & Sundance & Italian Sausage & Mushrooms & All Natural & & 0.085 & 0.085 \\
\hline 2.29 & Sundance & Meat & Mushrooms & All Natural & & 0.037 & 0.037 \\
\hline 2.49 & Tomato Garden & Italian Sausage & Mushrooms & All Natural & & 0.018 & 0.018 \\
\hline 2.29 & Tomato Garden & Meat & Mushrooms & All Natural & & 0.012 & 0.012 \\
\hline 2.49 & Pregu & Italian Sausage & Mushrooms & All Natural & & 0.012 & 0.012 \\
\hline 2.79 & Tomato Garden & Italian Sausage & Mushrooms & All Natural & 0.085 & 0.012 & -0.073 \\
\hline 2.79 & Sundance & Italian Sausage & Mushrooms & All Natural & 0.024 & 0.006 & -0.018 \\
\hline 2.49 & Pregu & Meat & Mushrooms & All Natural & 0.012 & 0.000 & -0.012 \\
\hline 2.49 & Sundance & Meat & Mushrooms & All Natural & 0.012 & 0.000 & -0.012 \\
\hline 2.49 & Tomato Garden & Meat & Mushrooms & All Natural & 0.000 & 0.000 & 0.000 \\
\hline 2.79 & Pregu & Italian Sausage & Mushrooms & All Natural & 0.012 & 0.000 & -0.012 \\
\hline
\end{tabular}

We see that the vegetarian sauces are most preferred, but we predict they would lose share if the new meat sauces were entered in the market. In particular, the Sundance and Pregu meat sauces would gain significant market share under this model.

\section*{PROC TRANSREG Specifications}

PROC TRANSREG (transformation regression) is used to perform conjoint analysis and many other types of analyses, including simple regression, multiple regression, redundancy analysis, canonical correlation, analysis of variance, and external unfolding, all with nonlinear transformations of the variables. This section documents the statements and options available in PROC TRANSREG that are commonly used in conjoint analyses. Refer to "The TRANSREG Procedure" in the SAS/STAT User's Guide for more information on PROC TRANSREG. This section documents only a small subset of the capabilities of PROC TRANSREG.

The following statements are used in the TRANSREG procedure for conjoint analysis:
```

PROC TRANSREG <DATA=SAS-data-set> <OUTTEST=SAS-data-set>
<a-options> <o-options>;
MODEL transform(dependents </ t-options>) =
transform(independents </ t-options>)
<transform(independents </ t-options>) ...> </ a-options>;
OUTPUT <OUT=SAS-data-set> <o-options>;
WEIGHT variable;
ID variables;
BY variables;

```

Specify the proc and model statements to use PROC TRANSREG. The output statement is required to produce an out= output data set, which contains the transformations, indicator variables, and predicted utility for each product. The outtest= data set, which contains the ANOVA, regression, and part-worth utility tables, is requested in the proc statement. All options can be abbreviated to their first three letters.
```

PROC TRANSREG Statement
PROC TRANSREG <DATA=SAS-data-set> <OUTTEST=SAS-data-set>
<a-options> <o-options>;

```

The data= and outtest= options can appear only in the PROC TRANSREG statement. The algorithm options (a-options) appear in the proc or model statement. The output options (o-options) can appear in the proc or output statement.

DATA=SAS-data-set
specifies the input SAS data. If the data= option is not specified, PROC TRANSREG uses the most recently created SAS data set.

\section*{OUTTEST=SAS-data-set}
specifies an output data set that will contain the ANOVA table, \(\mathrm{R}^{2}\), and the conjoint analysis partworth utilities, and the attribute importances.

\section*{Algorithm Options}
```

PROC TRANSREG <DATA=SAS-data-set> <OUTTEST=SAS-data-set>
<a-options> <o-options>;
MODEL transform(dependents </ t-options>) =
transform(independents </ t-options>)
<transform(independents </ t-options>) ...> </ a-options>;
Algorithm options can appear in the proc or model statement as a-options.

```
CONVERGE= \(n\)
specifies the minimum average absolute change in standardized variable scores that is required to continue iterating. By default, converge \(=0.00001\).

DUMMY
requests a canonical initialization. When spline transformations are requested, specify dummy to solve for the optimal transformations without iteration. Iteration is only necessary when there are monotonicity constraints.

\section*{LPREFIX= \(n\)}
specifies the number of first characters of a class variable's label (or name if no label is specified) to use in constructing labels for part-worth utilities. For example, the default label for Brand=Duff is "Brand Duff". If you specify lprefix=0 then the label is simply "Duff".

\section*{MAXITER=n}
specifies the maximum number of iterations. By default, maxiter=30.

NOPRINT
suppresses the display of all output.
```

ORDER=FORMATTED
ORDER=INTERNAL

```
specifies the order in which the CLASS variable levels are reported. The default, order=internal, sorts by unformatted value. Specify order=formatted when you want the levels sorted by formatted value. Sort order is machine dependent. Note that in Version 6 and Version 7 of the SAS System, the default sort order was order=formatted. The default was changed to order=internal in Version 8 to be consistent with Base SAS procedures.

\section*{METHOD=MORALS}

METHOD=UNIVARIATE
specifies the iterative algorithm. Both method=morals and method=univariate fit univariate multiple regression models with the possibility of nonlinear transformations of the variables. They differ in the way they structure the output data set when there is more than one dependent variable. When it can be used, method=univariate is more efficient than method=morals.
You can use method=univariate when no transformations of the independent variables are requested, for example when the independent variables are all designated class, identity, or pspline. In this case, the final set of independent variables will be the same for all subjects. If transformations such as
monotone, identity, spline or mspline are specified for the independent variables, the transformed independent variables may be different for each dependent variable and so must be output separately for each dependent variable. In conjoint analysis, there will typically be one dependent variable for each subject. This is illustrated in the examples.

With method=univariate and more than one dependent variable, PROC TRANSREG creates a data set with the same number of score observations as the original but with more variables. The untransformed dependent variable names are unchanged. The default transformed dependent variable names consist of the prefix " T " and the original variable names. The default predicted value names consist of the prefix " P " and the original variable names. The full set of independent variables appears once.

When more than one dependent variable is specified, method=morals creates a rolled-out data set with the dependent variable in _depend_, its transformation in t_depend_, and its predicted values in p_depend_. The full set of independents is repeated for each (original) dependent variable.

The procedure chooses a default method based on what is specified in the model statement. When transformations of the independent variables are requested, the default method is morals. Otherwise the default method is univariate.

\section*{SEPARATORS=string-1 \({ }^{\text {string-2 }}\),}
specifies separators for creating labels for the part-worth utilities. By default, separators=' , , * ' ("blank" and "blank asterisk blank"). The first value is used to separate variable names and values in interactions. The second value is used to separate interaction components. For example, the default label for Brand=Duff is "Brand Duff". If you specify separators=', ' then the label is "Brand, Duff". Furthermore, the default label for the interaction of Brand=Duff and Price=3.99 is "Brand Duff * Price 3.99". You could specify lprefix=0 and separators=', , © ' to instead create labels like "Duff @ 3.99 ". You use the lprefix=0 option when you want to construct labels using zero characters of the variable name, that is when you want to construct labels from just the formatted level. The option separators=', ' @ ' specifies in the second string a separator of the form "blank at blank". In this case, the first string is ignored because with lprefix \(=0\) there is no name to separate from the level.

\section*{SHORT}
suppresses the iteration histories. For most standard metric conjoint analyses, no iterations are necessary, so specifying short eliminates unnecessary output. PROC TRANSREG will print a message if it ever fails to converge, so it is usually safe to specify the short option.

\section*{UTILITIES}
prints the part-worth utilities and importances table and an ANOVA table. Note that you can use an ods exclude statement to exclude ANOVA tables and unnecessary notes from the conjoint output (see page 367).

\section*{Output Options}
```

PROC TRANSREG <DATA=SAS-data-set> <OUTTEST=SAS-data-set>
<a-options> <o-options>;
OUTPUT <OUT=SAS-data-set> <o-options>;

```

The out= option can only appear in the output statement. The other output options can appear in the proc or output statement as o-options.

\section*{COEFFICIENTS}
outputs the part-worth utilities to the out= data set.

P
includes the predicted values in the out= output data set, which are the predicted utilities for each product. By default, the predicted values variable name is the original dependent variable name prefixed with a "P".

\section*{IREPLACE}
replaces the original independent variables with the transformed independent variables in the output data set. The names of the transformed variables in the output data set correspond to the names of the original independent variables in the input data set.

\section*{OUT=SAS-data-set}
names the output data set. When an output statement is specified without the out= option, PROC TRANSREG creates a data set and uses the DATA \(n\) convention. To create a permanent SAS data set, specify a two-level name. The data set will contain the original input variables, the coded indicator variables, the transformation of the dependent variable, and the optionally predicted utilities for each product.

\section*{RESIDUALS}
outputs to the out= data set the differences between the observed and predicted utilities. By default, the residual variable name is the original dependent variable name prefixed with an " R ".

\section*{Transformations and Expansions}
```

MODEL transform(dependents </ t-options>) =
transform(independents </ t-options>)
<transform(independents </ t-options>) ...> </ a-options>;

```

The operators "*", "I", and "@" from the GLM procedure are available for interactions with class variables.
```

class(a * b ...
c | d ...
e | f ... @ n)

```

For example, this statement fits 100 individual main-effects models:
```

model identity(rating1-rating100) = class(x1-x5 / zero=sum);

```

This fits models with main effects and all two-way interactions:
```

model identity(rating1-rating100) = class(x1|x2|x3|x4|x5@2 / zero=sum);

```

This fits models with main effects and some two-way interactions:
```

model identity(rating1-rating100) = class(x1-x5 x1*x2 x3*x4 / zero=sum);

```

You can also fit separate price functions within each brand by specifying:
```

model identity(rating1-rating100) =
class(brand / zero=none) | spline(price);

```

The list \(\mathrm{x} 1-\mathrm{x} 5\) is equivalent to x 1 x 2 x 3 x 4 x 5 . The vertical bar specifies all main effects and interactions, and the at sign limits the interactions. For example, @2 limits the model to main effects and two-way interactions. The list \(\mathrm{x} 1|\mathrm{x} 2| \mathrm{x} 3|\mathrm{x} 4| \mathrm{x} 5 @ 2\) is equivalent to \(\mathrm{x} 1 \mathrm{x} 2 \mathrm{x} 1 * \mathrm{x} 2 \mathrm{x} 3 \mathrm{x} 1 * \mathrm{x} 3 \mathrm{x} 2 *\) \(\mathrm{x} 3 \mathrm{x} 4 \mathrm{x} 1 * \mathrm{x} 4 \mathrm{x} 2\) * \(\mathrm{x} 4 \mathrm{x} 3 * \mathrm{x} 4 \mathrm{x} 5 \mathrm{x} 1 * \mathrm{x} 5 \mathrm{x} 2 * \mathrm{x} 5 \mathrm{x} 3 * \mathrm{x} 5 \mathrm{x} 4 * \mathrm{x} 5\). The specification \(\mathrm{x} 1 *\) x 2 indicates the two-way interaction between x 1 and x 2 , and \(\mathrm{x} 1 * \mathrm{x} 2 * \mathrm{x} 3\) indicates the three-way interaction between x1, x2, and x3.

Each of the following can be specified in the model statement as a transform. The pspline and class expansions create more than one output variable for each input variable. The rest are transformations that create one output variable for each input variable.

\section*{CLASS}
designates variables for analysis as nominal-scale-of-measurement variables. For conjoint analysis, the zero=sum \(t\)-option is typically specified: class (variables / zero=sum). Variables designated as class variables are expanded to a set of indicator variables. Usually the number output variables for each class variable is the number of different values in the input variables. Dependent variables should not be designated as class variables.

\section*{IDENTITY}
variables are not changed by the iterations. The identity (variables) specification designates interval-scale-of-measurement variables when no transformation is permitted. When small data values mean high preference, you will need to use the reflect transformation option.

MONOTONE
monotonically transforms variables; ties are preserved. When monotone(variables) is used with dependent variables, a nonmetric conjoint analysis is performed. When small data values mean high preference, you will need to use the reflect transformation option. The monotone specification can also be used with independent variables to impose monotonicity on the part-worth utilities. When it is known that monotonicity should exist in an attribute variable, using monotone instead of class for that attribute may improve prediction. An option exists in PROC TRANSREG for optimally untying tied values, but this option should not be used because it almost always produces a degenerate result.

\section*{MSPLINE}
monotonically and smoothly transforms variables. By default, mspline(variables) fits a monotonic quadratic spline with no knots. Knots are specified as t-options, for example mspline(variables / nknots=3) or mspline (variables / knots=5 to 15 by 5). Like monotone, mspline, finds a monotonic transformation. Unlike monotone, mspline places a bound on the \(d f\) (number of knots + degree) used by the transformation. With mspline, it is possible to allow for nonlinearity in the responses and still have error \(d f\). This is not always possible with monotone. When small data values mean high preference, you will need to use the reflect transformation option. You can also use mspline with attribute variables to impose monotonicity on the part-worth utilities.

\section*{PSPLINE}
expands each variable to a piece-wise polynomial spline basis. By default, pspline(variables) uses a cubic spline with no knots. Knots are specified as \(t\)-options. Specify pspline (variable / degree=2) for an attribute variable to fit a quadratic model. For each pspline variable, \(d+k\) output variables are created, where \(d\) is the degree of the polynomial and \(k\) is the number of knots. You should not specify pspline with the dependent variables.

\section*{RANK}
performs a rank transformation, with ranks averaged within ties. Rating-scale data can be transformed to ranks by specifying rank(variables). When small data values mean high preference, you will need to use the reflect transformation option. Typically, rank is only used for dependent variables. For example, if a rating-scale variable has sorted values \(1,1,1,2,3,3,4,5,5,5\), then the rank transformation is \(2,2,2,4,5.5,5.5,7,9,9,9\). A conjoint analysis of the original rating-scale variable will not usually be the same as a conjoint analysis of a rank transformation of the ratings. With ordinal-scale-of-measurement data, it is often good to analyze rank transformations instead of the original data. An alternative is to specify monotone, which performs a nonmetric conjoint analysis. For real data, monotone will always find a better fit than rank, but rank may lead to better prediction.

\section*{SPLINE}
smoothly transforms variables. By default, spline(variables) fits a cubic spline with no knots. Knots are specified as \(t\)-options. Like pspline, spline models nonlinearities in the attributes.

\section*{Transformation Options}
```

MODEL transform(dependents </ t-options>) =
transform(independents </ t-options>)
<transform(independents </ t-options>) ...> </ a-options>;

```

The following are specified in the model statement as \(t\)-options's.

\section*{DEGREE= \(n\)}
specifies the degree of the spline. The defaults are degree=3 (cubic spline) for spline and pspline, and degree \(=2\) (quadratic spline) for mspline. For example, to request a quadratic spline, specify spline (variables / degree=2).

\section*{EVENLY}
is used with the nknots= option to evenly space the knots for splines. For example, if spline(x / nknots \(=2\) evenly) is specified and \(x\) has a minimum of 4 and a maximum of 10 , then the two interior knots are 6 and 8 . Without evenly, the nknots= option places knots at percentiles, so the knots are not evenly spaced.

\section*{KNOTS=numberlist}
specifies the interior knots or break points for splines. By default, there are no knots. For example, to request knots at \(1,2,3,4,5\), specify spline (variable / knots=1 to 5).

NKNOTS= \(k\)
creates \(k\) knots for splines: the first at the \(100 /(k+1)\) percentile, the second at the \(200 /(k+1)\) percentile, and so on. Unless evenly is specified, knots are placed at data values; there is no interpolation. For example, with spline(variable / NKNOTS=3), knots are placed at the twenty-fifth percentile, the median, and the seventy-fifth percentile. By default, nknots=0.

\section*{REFLECT}
reflects the transformation around its mean, \(\mathrm{Y}=-(\mathrm{Y}-\mathrm{Y})+\mathrm{Y}\), after the iterations are completed and before the final standardization and results calculations. This option is particularly useful with the dependent variable. When the dependent variable consists of ranks with the most preferred combination assigned 1.0, identity (variable / reflect) will reflect the transformation so that positive utilities mean high preference.

\section*{ZERO=SUM}
constrains the part-worth utilities to sum to zero within each attribute. The specification class (variables / zero=sum) creates a less than full rank model, but the coefficients are uniquely determined due to the sum-to-zero constraint.

\section*{BY Statement}
```

BY variables;

```

A by statement can be used with PROC TRANSREG to obtain separate analyses on observations in groups defined by the by variables. When a by statement appears, the procedure expects the input data set to be sorted in order of the by variables.

If the input data set is not sorted in ascending order, use one of the following alternatives:
- Use the SORT procedure with a similar by statement to sort the data.
- Use the by statement options notsorted or descending in the by statement for the TRANSREG procedure. As a cautionary note, the notsorted option does not mean that the data are unsorted. It means that the data are arranged in groups (according to values of the by variables), and these groups are not necessarily in alphabetical or increasing numeric order.
- Use the DATASETS procedure (in base SAS software) to create an index on the by variables.

For more information on the by statement, refer to the discussion in SAS Language: Reference. For more information on the DATASETS procedure, refer to the discussion in SAS Procedures Guide.

\section*{ID Statement}
```

ID variables;

```

The id statement includes additional character or numeric variables from the input data set in the out= data set.

\section*{WEIGHT Statement}
```

WEIGHT variable;

```

A weight statement can be used in conjoint analysis to distinguish ordinary active observations, holdouts, and simulation observations. When a weight statement is used, a weighted residual sum of squares is minimized. The observation is used in the analysis only if the value of the weight statement variable is greater than zero. For observations with positive weight, the weight statement has no effect on \(d f\) or number of observations, but the weights affect most other calculations.

Assign each active observation a weight of 1 . Assign each holdout observation a weight that excludes it from the analysis, such as missing. Assign each simulation observation a different weight that excludes it from the analysis, such as zero. Holdouts are rated by the subjects and so have nonmissing values in the dependent variables. Simulation observations are not rated and so have missing values in the dependent variable. It is useful to create a format for the weight variable that distinguishes the three types of observations in the input and output data sets.
```

proc format;
value wf 1 = 'Active'
. = 'Holdout'
0 = 'Simulation';
run;

```

PROC TRANSREG does not distinguish between weights that are zero, missing, or negative. All nonpositive weights exclude the observations from the analysis. The holdout and simulation observations are given different nonpositive values and a format to make them easy to distinguish in subsequent analyses and listings. The part-worth utilities for each attribute are computed using only those observations with positive weight. The predicted utility is computed for all products, even those with nonpositive weights.

\section*{Monotone, Spline, and Monotone Spline Comparisons}

When you choose the transformation of the ratings or rankings, you choose among
```

identity - model the data directly

```
monotone - model an increasing step function of the data
mspline - model a nonlinear but smooth and increasing function of the data
spline - model a smooth function of the data

The following plot shows examples of the different types of functions you can fit in PROC TRANSREG. At the top of the plot are some artificial nonlinear data. Below that is a spline function, created by spline. It is smooth and nonlinear. It follows the overall shape of the data, but smoothes out the smaller bumps. Below that is a monotone spline function, created by mspline. Like the spline function, it is smooth and nonlinear. Unlike the spline function, it is monotonic. The function never decreases; it always rises or stays flat. The monotone spline function follows the overall upward trend in the data, and it shows the changes in upward trend, but it smoothes out all the dips and bumps in the function. Below the monotone spline function is a monotone step function, created by monotone. It is not smooth, but it is monotonic. Like the monotone spline, the monotone step function follows the

\section*{Functions Available in PROC TRANSREG}

Nonlinear Artificial Data

Smooth Spline Function
Smooth Monotone Spline

Monotone Step Function
overall upward trend in the data, and it smoothes out all the dips and bumps in the function. However, the function is not smooth, and it typically requires many more parameters be fit than with monotone splines. Below the monotone step function is a line, created by identity. It is smooth and linear. It follows the overall upward trend in the data, but it smoothes over all the dips, bumps, and changes in upward trend.

Typical conjoint analyses are metric (using identity) or nonmetric (using monotone). While not often used in practice, monotone splines have a lot to recommend them. They allow for nonlinearities in the transformation of preference, but unlike monotone, they are smooth and do not use up all of your error \(d f\). One would typically never use spline on the ratings or rankings in a conjoint analysis, but if for some reason, you had a lot of price points, \(\|\) you could fit a spline function of the price attribute. This would allow for nonlinearities in preferences for different prices while constraining the part-worth utility function to be smooth.

\footnotetext{
"For design efficiency reasons, you typically should not.
}

\section*{Samples of PROC TRANSREG Usage}

Conjoint analysis can be performed in many ways with PROC TRANSREG. This section provides sample specifications for some typical and some more esoteric conjoint analyses. The dependent variables typically contain ratings or rankings of products by a number of subjects. The independent variables, \(\mathrm{x} 1-\mathrm{x} 5\), are the attributes. For metric conjoint analysis, the dependent variable is designated identity. For nonmetric conjoint analysis, monotone is used. Attributes are usually designated as class variables with the restriction that the part-worth utilities within each attribute sum to zero.

The utilities option requests an overall ANOVA table, a table of part-worth utilities, their standard errors, and the importance of each attribute. The p (predicted values) option outputs to a data set the predicted utility for each product. The ireplace option suppresses the separate output of transformed independent variables since the independent variable transformations are the same as the raw independent variables. The weight variable is used to distinguish active observations from holdouts and simulation observations. The reflect transformation option reflects the transformation of the ranking so that large transformed values, positive utility, and positive evaluation will all correspond.

Today, metric conjoint analysis is used more often than nonmetric conjoint analysis, and rating-scale data are collected more often than rankings.

\section*{Metric Conjoint Analysis with Rating-Scale Data}

This is a metric conjoint analysis with rating-scale data.
```

ods exclude notes mvanova anova;
proc transreg data=a utilities short method=morals;
model identity(rating1-rating100) = class(x1-x5 / zero=sum);
output p ireplace;
weight w;
run;

```

\section*{Nonmetric Conjoint Analysis}

This is a nonmetric conjoint analysis specification, which has many parameters for the transformations.
```

ods exclude notes anova liberalanova conservanova
mvanova liberalmvanova conservmvanova;
proc transreg data=a utilities short maxiter=500 method=morals;
model monotone(ranking1-ranking100 / reflect) = class(x1-x5 / zero=sum);
output p ireplace;
weight w;
run;

```

\section*{Monotone Splines}

This is a conjoint analysis that is more restrictive than a nonmetric analysis but less restrictive than a metric conjoint analysis. By default, the monotone spline transformation has two parameters (degree two with no knots).
```

ods exclude notes anova liberalanova conservanova
mvanova liberalmvanova conservmvanova;
proc transreg data=a utilities short maxiter=500 method=morals;
model mspline(ranking1-ranking100 / reflect) =
class(x1-x5 / zero=sum);
output p ireplace;
weight w;
run;

```

If less smoothness is desired, specify knots. For example:
```

ods exclude notes anova liberalanova conservanova
mvanova liberalmvanova conservmvanova;
proc transreg data=a utilities short maxiter=500 method=morals;
model mspline(ranking1-ranking100 / reflect nknots=3) =
class(x1-x5 / zero=sum);
output p ireplace;
weight w;
run;

```

Each knot requires estimation of an additional parameter.

\section*{Constraints on the Utilities}

Here is a metric conjoint analysis specification with linearity constraints imposed on \(x 4\) and monotonicity constraints imposed on x5.
```

ods exclude notes anova liberalanova conservanova
mvanova liberalmvanova conservmvanova
liberalutilities liberalfitstatistics;
proc transreg data=a utilities short maxiter=500 method=morals;
model identity(rating1-rating100) = class(x1-x3 / zero=sum)
identity(x4) monotone(x5);
output p ireplace;
weight w;
run;

```

With the monotonic constraints on the part-worth utilities, PROC TRANSREG prints some extra information, liberal and conservative part-worth utility and fit statistics tables. These tables report the same part-worth utilities, but are based on different methods of counting the number of parameters estimated. The liberal test tables can be suppressed by adding liberalutilities liberalfitstatistics to the ods exclude statement.

Here is another example, specifying monotonic step-function constraints on \(\mathrm{x} 1-\mathrm{x} 5\) and a smooth, monotonic transformation of price:
```

ods exclude notes anova liberalanova conservanova
mvanova liberalmvanova conservmvanova
liberalutilities liberalfitstatistics;
proc transreg data=a utilities short maxiter=500 method=morals;
model identity(rating1-rating100) = monotone(x1-x5) mspline(price);
output p ireplace;
weight w;
run;

```

\section*{A Discontinuous Price Function}

The utility of price may not be a continuous function of price. It has been frequently found that utility is discontinuous at round numbers such as \(\$ 1.00, \$ 2.00, \$ 100, \$ 1000\), and so on. If price has many values in the data set, say over the range \(\$ 1.05\) to \(\$ 3.95\), then a monotone function of price with discontinuities at \(\$ 2.00\) and \(\$ 3.00\) can be requested as follows.
```

ods exclude notes anova liberalanova conservanova
mvanova liberalmvanova conservmvanova
liberalutilities liberalfitstatistics;
proc transreg data=a utilities short maxiter=500 method=morals;
model identity(rating1-rating100) =
class(x1-x5 / zero=sum)
mspline(price / knots=2 2 2 3 3 3);
output p ireplace;
weight w;
run;

```

The monotone spline is degree two. The order of the spline is one greater than the degree; in this case the order is three. When the same knot value is specified order times, the transformation is discontinuous at the knot. Refer to Kuhfeld and Garratt (1992), page 643, for some applications of splines to conjoint analysis.

\title{
Experimental Design \\ and \\ \\ Choice Modeling Macros
} \\ \\ Choice Modeling Macros
}

\section*{Warren F. Kuhfeld}

\begin{abstract}
SAS provides a set of macros for designing experiments and analyzing choice data. Syntax and usage of these macros is discussed in this chapter. An additional macro for scatter plots of labeled points is documented here as well.*
\end{abstract}

\section*{Introduction}

The following SAS autocall macros are used for generating efficient factorial designs, efficient choice designs, processing and evaluating designs, and processing data from choice experiments.
\begin{tabular}{|lll|}
\hline Macro & Page & Purpose \\
\hline \%ChoicEff & 481 & efficient choice design \\
\%MktAllo & 512 & processes allocation data \\
\%MktBal & 515 & balanced main-effects designs \\
\%MktBlock & 518 & block a linear or choice design \\
\%MktDes & 527 & efficient linear experimental design via candidate set search \\
\%MktDups & 534 & identify duplicate choice sets or runs \\
\%MktEval & 542 & evaluate an experimental design \\
\%MktEx & 546 & efficient experimental designs, our flagship factorial-design macro \\
\%MktKey & 576 & aid creation of the key= data set \\
\%MktLab & 577 & relabel, rename and assign levels to design factors \\
\%MktMerge & 588 & merges a choice design with choice data \\
\%MktOrth & 590 & lists 12,356 of the orthogonal designs that \%MktEx can make \\
\%MktRoll & 595 & rolls a linear design into a choice design \\
\%MktRuns & 600 & experimental design size, aids in selecting the number or runs \\
\%PhChoice & 606 & customizes the printed output from a choice model \\
\%PlotIt & 611 & graphical scatter plots of labeled points \\
\hline
\end{tabular}

\footnotetext{
*Copies of this chapter (TS-689H) are available on the web http://support.sas.com/techsup/tnote/tnote_stat.html\#market .
}

Once you have these macros installed, you can call them and use them just as you would use a SAS procedure. Only the syntax for macros is a little different from SAS procedures. Here is an example of making an experimental design with a two-level and 7 three-level factors with 18 runs or profiles.
```

%mktex( 2 3 ** 7, n=18 )

```

\section*{Installation}

If your site has installed the autocall libraries supplied by SAS and uses the standard configuration of SAS supplied software, you need to ensure that the SAS system option mautosource is in effect to begin using the autocall macros. Note however, that if you are using any SAS Version released prior to SAS 9.1, there are differences between the macros used in this documentation and those that were shipped with your Version of SAS. Be sure to get the latest macros from Warren.Kuhfeld@sas.com or the Web. These macros will not work with Version 6.12 , however they should work with Version 8.2 and later versions of SAS. You should install all of these macros, not just one or some. Some of the macros call other macros and will not work if the other macros are not there or if only older versions of the other macros are there. For example, the \%MktEx macro calls: the \%MktRuns macro to parse the factors list, the \%MktDes macro for candidate set generation and search, and the \%MktOrth macro to get the orthogonal array catalog.

The macros do not have to be included (for example, with a \%include statement). They can be called directly once they are properly installed. For more information about autocall libraries, refer to SAS Macro Language: Reference. On a PC for example, the autocall library may be installed in the stat \(\backslash\) sasmacro directory off of your SAS root directory. The name of your SAS root directory could be anything, but it is probably something like \(S A S\) or \(S A S \backslash V 8\). One way to find the right directory is to use Start \(\rightarrow\) Find to find one of the existing autocall macros such as mktdes.sas or plotit.sas. Unix should have a similar directory structure to the PC. The autocall library in Unix may be installed in the stat/sasmacro directory off of your SAS root directory. On MVS, each macro will be a different member of a PDS. For details on installing autocall macros, consult your host documentation.

Usually, an autocall library is a directory containing individual files, each of which contains one macro definition. An autocall library can also be a SAS catalog. To use a directory as a SAS autocall library, store the source code for each macro in a separate file in the directory. The name of the file must be the same as the macro name, typically followed by .sas. For example, the macro \%MktEx must typically be stored in a file named mktex. sas. On most hosts, the reserved fileref sasautos is assigned at invocation time to the autocall library supplied by SAS or another one designated by your site. If you are specifying your own autocall libraries, remember to concatenate the autocall library supplied by SAS with your autocall libraries so that these macros will also be available. For details, refer to your host documentation and SAS macro language documentation.

\section*{\%ChoicEff Macro}

The \%ChoicEff autocall macro is used to find efficient experimental designs for choice experiments. See pages \(260,303,333\), and 340 for examples. You supply sets of candidate alternatives. The macro searches the candidates for an efficient experimental design - a design in which the variances of the parameter estimates are minimized, given an assumed parameter vector \(\boldsymbol{\beta}\).

There are two ways you can use the macro:
- You can create a candidate set of alternatives, and the macro will create a design consisting of choice sets built from the alternatives you supplied. You must designate for each candidate alternative the design alternative(s) for which it is a candidate. For a branded study with \(m\) brands, you must create \(m\) lists of candidate alternatives, one for each brand.
- You can create a candidate set of choice sets, and the macro will build a design from the choice sets that you supplied. Typically, you would only use this approach when there are restrictions across alternatives (certain alternatives may not appear with certain other alternatives).

The \%ChoicEff macro uses a modified Fedorov candidate-set-search algorithm, just like PROC OPTEX and the \%MktEx macro. Typically, you use as a candidate set a full-factorial, fractional-factorial, or a tabled design created with the \%MktEx macro. First, the \%ChoicEff macro either constructs a random initial design from the candidates or it uses an initial design that you specified. The macro considers swapping out every design alternative/set and replacing it with each candidate alternative/set. Swaps that increase efficiency are performed. The process of evaluating and swapping continues until efficiency stabilizes. This process is repeated with different initial designs, and the best design is output for use. The key differences between the \%ChoicEff macro and the \%MktEx macro are as follows. The \%ChoicEff macro requires you to specify the true (or assumed true) parameters and it optimizes the variance matrix for a multinomial logit model, whereas the \(\% \mathrm{MktEx}\) macro optimizes the variance matrix for a linear model, which does not depend on the parameters.

Here is an example. This example creates a design for a generic model with 3 three-level factors. First, the \%MktEx macro is used to create a set of candidate alternatives, where \(\mathrm{x} 1-\mathrm{x} 3\) are the factors. Note that the \(\mathrm{n}=\) specification allows expressions. Our candidate set must also contain flag variables, one for each alternative, that flag which candidates can be used for which alternative(s). Since this is a generic model, each candidate can appear in any alternative, so we need to add flags that are constant: \(f 1=1\) \(f 2=1 f 3=1\). The \(\% M k t E x\) macro does not allow you to create constant factors. Instead, we can use the \(\%\) MktLab macro to add the flag variables, essentially by specifying that we have multiple intercepts. The option int=f1-f3 creates three variables with values all one. The default output data set is called FINAL. Next, the \%ChoicEff macro is run to find an efficient design for the unbranded, purely generic model assuming \(\boldsymbol{\beta}=\mathbf{0}\). Here is the code.
```

%mktex(3 ** 3, n=3**3, seed=238)
%mktlab(int=f1-f3)
%choiceff(data=final, model=class(x1-x3), nsets=9,
flags=f1-f3, beta=zero, seed=145)
proc print; var x1-x3; id set; by set; run;

```

The option data=final names the input data set, model=class (x1-x3) specifies the PROC TRANSREG model statement for coding the design, nsets=9 specifies nine choice sets, flags=f1-f3 specifies the three alternative flag variables, beta=zero specifies all zero parameters, and seed=145 specifies the random number seed. Here is the output.

\begin{tabular}{|c|c|c|c|}
\hline Set & x 1 & x 2 & x3 \\
\hline \multirow[t]{3}{*}{1} & 3 & 3 & 1 \\
\hline & 1 & 2 & 2 \\
\hline & 2 & 1 & 3 \\
\hline \multirow[t]{3}{*}{2} & 3 & 1 & 2 \\
\hline & 2 & 3 & 1 \\
\hline & 1 & 2 & 3 \\
\hline \multirow[t]{3}{*}{3} & 3 & 1 & 3 \\
\hline & 2 & 3 & 2 \\
\hline & 1 & 2 & 1 \\
\hline \multirow[t]{3}{*}{4} & 1 & 1 & 2 \\
\hline & 3 & 3 & 3 \\
\hline & 2 & 2 & 1 \\
\hline \multirow[t]{3}{*}{5} & 3 & 1 & 2 \\
\hline & 2 & 2 & 3 \\
\hline & 1 & 3 & 1 \\
\hline \multirow[t]{3}{*}{6} & 3 & 2 & 1 \\
\hline & 1 & 1 & 3 \\
\hline & 2 & 3 & 2 \\
\hline \multirow[t]{3}{*}{7} & 1 & 2 & 2 \\
\hline & 3 & 3 & 3 \\
\hline & 2 & 1 & 1 \\
\hline \multirow[t]{3}{*}{8} & 3 & 1 & 1 \\
\hline & 1 & 3 & 2 \\
\hline & 2 & 2 & 3 \\
\hline \multirow[t]{3}{*}{9} & 2 & 1 & 1 \\
\hline & 1 & 3 & 3 \\
\hline & 3 & 2 & 2 \\
\hline
\end{tabular}

The output from the \%ChoicEff macro consists of a list of the parameter names, values and labels, followed by two iteration histories (each based on a different random initial design), then a brief report on the most efficient design found, and finally a table with the parameter names, variances, \(d f\), and standard errors. The design is printed using PROC PRINT.

Here is another example. These next steps directly create an optimal design for this generic model and evaluate its efficiency using the \%ChoicEff macro and the initial design options. The DATA step creates a cyclic design. In a cyclic design, the factor levels increase cyclically from one alternative to the next. The levels for a factor for the three alternatives will always be one of the following: \((1,2,3)\) or \((2,3,1)\) or \((3,1,2)\).
```

* Cyclic (Optimal) Design;
data x(keep=f1-f3 x1-x3);
retain f1-f3 1;
d1 = ceil(_n_ / 3); d2 = mod(_n_ - 1, 3) + 1; input d3 @@;
do i = -1 to 1;
x1 = mod(d1 + i, 3) + 1;
x2 = mod(d2 + i, 3) + 1;
x3 = mod(d3 + i, 3) + 1;
output;
end;
datalines;
123312231
;
proc print data=x; var x: f:; run;

```

Here is part of the cyclic design. Notice the cyclical pattern. Each level in the second or third alternative is one greater than the level in the previous alternative, where \(3+1\) is defined to be 1 . The flag variables f1-f3 contain all ones showing that each candidate can be used in any alternative.

This is the code that evaluates the design.
```

\%choiceff(data=x, model=class(x1-x3), nsets=9, flags=f1-f3,
beta=zero, init=x, initvars=x1-x3, intiter=0);

```

The option init=x specifies the initial design, initvars=x1-x3 specifies the factors in the initial design, and intiter \(=0\) specifies the number of internal iterations. Specify intiter=0 when you just want to evaluate the efficiency of a given design. Here is the output from the \%ChoicEff macro.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & n Name & Beta & & \\
\hline & & 1 x 11 & 0 x & & \\
\hline & & 2 x 12 & 0 & & \\
\hline & & 3 x 21 & 0 x & 1 & \\
\hline & & \(4 \quad \mathrm{x} 22\) & 0 & 2 & \\
\hline & & 5 x31 & 0 & 1 & \\
\hline & & 6 x32 & 0 & & \\
\hline Design & Iteration & D-Efficiency & \multicolumn{2}{|l|}{D-Error} & \\
\hline \multirow[t]{17}{*}{1} & 0 & 1.732051 & \multicolumn{2}{|l|}{10.577350} & \\
\hline & & \multicolumn{3}{|l|}{Final Results} & \\
\hline & \multicolumn{2}{|r|}{Design} & & 1 & \\
\hline & \multicolumn{2}{|r|}{Choice Sets} & & 9 & \\
\hline & \multicolumn{2}{|r|}{Alternatives} & & 3 & \\
\hline & \multicolumn{2}{|r|}{D-Efficiency} & 1.732 & & \\
\hline & \multicolumn{2}{|r|}{D-Error} & \multicolumn{2}{|l|}{0.577350} & \\
\hline & \multicolumn{2}{|l|}{Variable} & \multirow[b]{2}{*}{Variance} & \multirow[b]{2}{*}{DF} & Standard \\
\hline & Name & Label & & & Error \\
\hline & x11 & x1 1 & 0.66667 & 1 & 0.81650 \\
\hline & x12 & x1 2 & 0.66667 & 1 & 0.81650 \\
\hline & x21 & x2 1 & 0.66667 & 1 & 0.81650 \\
\hline & x22 & x2 2 & 0.66667 & 1 & 0.81650 \\
\hline & x31 & x3 1 & 0.66667 & 1 & 0.81650 \\
\hline & x32 & x3 2 & 0.66667 & 1 & 0.81650 \\
\hline & \multicolumn{5}{|c|}{\multirow[t]{2}{*}{=}} \\
\hline & & & & & \\
\hline
\end{tabular}

These next steps use the \%MktEx and \%MktRoll macros to create a candidate set of choice sets and the \%ChoicEff macro to search for an efficient design using the candidate-set-swapping algorithm.
```

%mktex(3 ** 9, n=2187)
data key;
input (x1-x3) (\$);
datalines;
x1 x2 x3
x4 x5 x6
x7 x8 x9
;
%mktroll(design=design, key=key, out=rolled)
%choiceff(data=rolled, model=class(x1-x3), nsets=9, nalts=3,
beta=zero, seed=17);

```

The first steps create a candidate set of choice sets. The \%MktEx macro creates a design with nine factors, three for each of the three alternatives. The KEY data set specifies that the first alternative is made from the linear design factors \(\mathrm{x} 1-\mathrm{x} 3\), the second alternative is made from \(\mathrm{x} 4-\mathrm{x} 6\), and the third alternative is made from \(\mathrm{x} 7-\mathrm{x} 9\). The \(\% \mathrm{MktRoll}\) macro turns a linear design into a choice design using the rules specified in the KEY data set.

In the \%ChoicEff macro, the nalts=3 option specifies that there are three alternatives. There must always be a constant number of alternatives in each choice set, even if all of the alternatives will not be used. When a nonconstant number of alternatives is desired, you must use a weight variable to flag those alternatives that the subject will not see. When you swap choice sets, you need to specify nalts=. The output from these steps is not appreciably different from what we saw previously, so it is not shown.

This next example has brand effects and uses the alternative-swapping algorithm.
```

%mktex(3 ** 4, n = 3**4)
%mktlab(data=design, vars=x1-x3 Brand)
data full(drop=i);
set final;
array f[3];
do i = 1 to 3; f[i] = (brand eq i); end;
run;
proc print data=full(obs=9); run;

```

The \%MktEx macro makes the linear candidate design. The \%MktLab macro changes the name of the variable x 4 to Brand while retaining the original names for \(\mathrm{x} 1-\mathrm{x} 3\) and original values for all factors of 1,2 , and 3 . The DATA step creates the flags. The flag \(f 1\) flags brand 1 candidates as available for the first alternative, f2 flags brand 2 candidates as available for the second alternative, and so on. The Boolean expression (brand eq i) evaluates to 1 if true and 0 if false. Here is the first part of the candidate set.
\begin{tabular}{cccccccccc}
\hline Obs & x 1 & x 2 & x 3 & Brand & f 1 & f 2 & f 3 \\
& 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
2 & 1 & 1 & 1 & 2 & 0 & 1 & 0 \\
\hline & 1 & 1 & 1 & 3 & 0 & 0 & 1 \\
\hline & 1 & 1 & 2 & 1 & 1 & 0 & 0 \\
\hline & 1 & 1 & 2 & 2 & 0 & 1 & 0 \\
\hline & 1 & 1 & 2 & 3 & 0 & 0 & 1 \\
\hline
\end{tabular}

Here is the \%ChoicEff macro call for making the design.
```

%choiceff(data=full, seed=151,
model=class(brand brand*x1 brand*x2 brand*x3 / zero=' '),
nsets=15, flags=f1-f3, beta=zero, converge=1e-12);

```

The model= specification states that Brand and x1-x3 are classification or categorical variables and brand effects and brand by attribute interactions (alternative-specific effects) (see page 171) are desired. The zero=' ' specification is like zero=none except zero=none applies to all factors in the specification whereas zero=' ' applies to just the first. This zero=' ' specification specifies that there is no reference level for the first factor (Brand), and last level will by default be the reference category for the other factors (\(\mathrm{x} 1-\mathrm{x} 3\)). Hence, binary variables are created for all three brands, but only two binary variables are created for the 3 three-level factors. We need to do this because we need the alternativespecific effects for all brands, including Brand 3. Notice that the candidate set consists of branded alternatives with flags such that only brand \(n\) is considered for the \(n t h\) alternative of each choice set. In the interest of space, not all of the output is shown. Here is some of the output.

The following is printed to the log.
Redundant Variables:
Brand3
Notice that at each step, the efficiency is zero, but a nonzero ridged value is printed. This model contains a structural-zero coefficient in Brand3. While we need alternative-specific effects for Brand 3 (like Brand3x11 and Brand3x12), we do not need the Brand 3 effect (Brand3) This can be seen from both the Redundant Variables list and from looking at the variance and \(d f\) table. The inclusion of the Brand3 term in the model makes the efficiency of the design zero. However, the \%ChoicEff macro can still optimize the goodness of the design by optimizing a ridged efficiency criterion. That is what is shown in the iteration history. The option converge \(=1 \mathrm{e}-12\) was specified because for this example, iteration stops prematurely with the default convergence criterion. This next step switches to a fullrank coding, dropping the redundant variable Brand3, and using the output from the last step as the initial design.
```

%choiceff(data=full, init=best(keep=index), drop=brand3, seed=522,
model=class(brand brand*x1 brand*x2 brand*x3 / zero=' '),
nsets=15, flags=f1-f3, beta=zero, converge=1e-12);

```

The option drop=brand3 is used to drop the parameter with the zero coefficient. We could have moved the brand specification into its own class specification (separate from the alternative-specific effects) and not specified zero=' , with it (see for example page 489). However, sometimes it is easier to specify a model with more terms than you really need, and then list the terms to drop, so that is what we illustrate here.

In this usage of init= with alternative swapping, the only part of the initial design that is required is the Index variable. It contains indices into the candidate set of the alternatives that are used to make the initial design. This usage is for the situation where the initial design was output from the macro. (In contrast, in the example usage on page 483, the option initvars=x1-x3 was specified because the initial design was not created by the \%ChoicEff macro.) Here is some of the output. Notice that now there are no zero parameters so \(D\)-efficiency can be directly computed.

These next steps handle the same problem, only this time, we use the set-swapping algorithm, and we will specify a parameter vector that is not zero. At first, we will omit the beta= option, just to see the coding. We specified the effects option in the PROC TRANSREG class specification to get \(-1,0\), 1 coding.
```

%mktex(3 ** 9, n=2187, seed=121)
data key;
input (Brand x1-x3) (\$);
datalines;
1 x1 x2 x3
2 x4 x5 x6
3 x7 x8 x9
;
%mktroll(design=design, key=key, alt=brand, out=rolled)
%choiceff(data=rolled, nsets=15, nalts=3,
model=class(brand)
class(brand*x1 brand*x2 brand*x3 / effects zero=' '))

```

The output tells us the parameter names and the order in which we need to specify parameters.
\begin{tabular}{|c|c|c|c|}
\hline n & Name & Beta & Label \\
\hline 1 & Brand1 & . & Brand 1 \\
\hline 2 & Brand2 & . & Brand 2 \\
\hline 3 & Brand1x11 & . & Brand 1 * x1 1 \\
\hline 4 & Brand1x12 & . & Brand 1 * x1 2 \\
\hline 5 & Brand2x11 & & Brand 2 * x1 1 \\
\hline 6 & Brand2x12 & . & Brand 2 * x1 2 \\
\hline 7 & Brand3x11 & . & Brand 3 * x1 1 \\
\hline 8 & Brand3x12 & & Brand 3*x12 \\
\hline 9 & Brand1x21 & . & Brand 1 * x2 1 \\
\hline 10 & Brand1x22 & . & Brand 1 * x2 2 \\
\hline 11 & Brand2x21 & . & Brand 2 * x2 1 \\
\hline 12 & Brand2x22 & . & Brand 2 * x2 2 \\
\hline 13 & Brand3x21 & . & Brand 3*x2 1 \\
\hline 14 & Brand3x22 & . & Brand 3*x2 2 \\
\hline 15 & Brand1x31 & . & Brand 1 * x3 1 \\
\hline 16 & Brand1x32 & . & Brand 1 * x3 2 \\
\hline 17 & Brand2x31 & . & Brand 2 * x3 1 \\
\hline 18 & Brand2x32 & . & Brand 2 * x3 2 \\
\hline 19 & Brand3x31 & & Brand 3 * x3 1 \\
\hline 20 & Brand3x32 & . & Brand 3*x3 2 \\
\hline
\end{tabular}

Now that we are sure we know the order of the parameters, we can specify the assumed betas on the beta= option. These numbers are based on prior research or our expectations of approximately what we expect the parameter estimates will be. We also specified \(n=100\) on this run, which is a sample size we are considering.
```

\%choiceff(data=rolled, nsets=15, nalts=3, $\mathrm{n}=100$, seed=462,
beta=1 $2-0.50 .5-0.750 .75-11$
$-0.50 .5-0.750 .75-11-0.50 .5-0.750 .75-11$,
model=class(brand)
class(brand*x1 brand*x2 brand*x3 / effects zero=' '))

```

Here is some of the output. Notice that parameters and test statistics are incorporated into the output. The \(\mathrm{n}=\) value is incorporated into the variance matrix and hence the efficiency statistics, variances and tests.

These next steps create a design for a cross-effects model with five brands at three prices and a constant alternative. (See the examples beginning on pages 205 and 228 for more information on cross effects.) Note the choice-set-swapping algorithm can handle cross effects but not the alternativeswapping algorithm.
```

%mktex(3 ** 5, n=3**5)

```
```

data key;
input (Brand Price) (\$);
datalines;
1 x1
2 x2
3 x3
4 x4
x5
;
%mktroll(design=design, key=key, alt=brand, out=rolled, keep=x1-x5)
proc print; by set; id set; where set in (1, 48, 101, 243); run;

```

The keep \(=\) option on the \(\% \mathrm{MktRoll}\) macro is used to keep the price variables that are needed to make the cross effects. Here are a few of the candidate choice sets.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Set & Brand & Price & x 1 & x 2 & x3 & x4 & x5 \\
\hline \multirow[t]{6}{*}{1} & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline & 2 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline & 3 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline & 4 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline & 5 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline & & . & 1 & 1 & 1 & 1 & 1 \\
\hline \multirow[t]{6}{*}{48} & 1 & 1 & 1 & 2 & 3 & 1 & 3 \\
\hline & 2 & 2 & 1 & 2 & 3 & 1 & 3 \\
\hline & 3 & 3 & 1 & 2 & 3 & 1 & 3 \\
\hline & 4 & 1 & 1 & 2 & 3 & 1 & 3 \\
\hline & 5 & 3 & 1 & 2 & 3 & 1 & 3 \\
\hline & & . & 1 & 2 & 3 & 1 & 3 \\
\hline \multirow[t]{6}{*}{101} & 1 & 2 & 2 & 1 & 3 & 1 & 2 \\
\hline & 2 & 1 & 2 & 1 & 3 & 1 & 2 \\
\hline & 3 & 3 & 2 & 1 & 3 & 1 & 2 \\
\hline & 4 & 1 & 2 & 1 & 3 & 1 & 2 \\
\hline & 5 & 2 & 2 & 1 & 3 & 1 & 2 \\
\hline & & . & 2 & 1 & 3 & 1 & 2 \\
\hline \multirow[t]{6}{*}{243} & 1 & 3 & 3 & 3 & 3 & 3 & 3 \\
\hline & 2 & 3 & 3 & 3 & 3 & 3 & 3 \\
\hline & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
\hline & 4 & 3 & 3 & 3 & 3 & 3 & 3 \\
\hline & 5 & 3 & 3 & 3 & 3 & 3 & 3 \\
\hline & & . & 3 & 3 & 3 & 3 & 3 \\
\hline
\end{tabular}

Notice that x1 contains the price for Brand 1, x2 contains the price for Brand 2, and so on, and the price of brand \(i\) in a choice set is the same, no matter which alternative it is stored with.

Here is the \%ChoicEff macro call for creating the choice design with cross effects.
```

%choiceff(data=rolled, seed=17,
model=class(brand brand*price / zero=none)
identity(x1-x5) * class(brand / zero=none),
nsets=20, nalts=6, beta=zero);

```

Cross effects are created by interacting the price factors with brand. See pages 212 and 260 for more information about cross effects.

Here is the redundant variable list from the log.
```

Redundant Variables:
Brand1Price3 Brand2Price3 Brand3Price3 Brand4Price3 Brand5Price3 x1Brand1
x2Brand2 x3Brand3 x4Brand4 x5Brand5

```

Next, we will run the macro again, this time requesting a full-rank model. The list of dropped names was created by copying from the redundant variable list. Also, zero=none was changed to zero=' ' so no level would be zeroed for Brand but the last level of Price would be zeroed.
```

\%choiceff (data=rolled, seed=17,
model=class(brand brand*price / zero=' ')
identity (x1-x5) * class(brand / zero=none),
drop=x1Brand1 x2Brand2 x3Brand3 x4Brand4 x5Brand5,
nsets=20, nalts=6, beta=zero);

```

Here is the last part of the output. Notice that we have five brand parameters, two price parameters for each of the five brands, and four cross effect parameters for each of the five brands.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{n} & \multicolumn{2}{|l|}{Variable} & & \multicolumn{2}{|r|}{Standard} \\
\hline & Name & Label & Variance & DF & Error \\
\hline 1 & Brand1 & Brand 1 & 13.8149 & 1 & 3.71683 \\
\hline 2 & Brand2 & Brand 2 & 13.5263 & 1 & 3.67782 \\
\hline 3 & Brand3 & Brand 3 & 13.2895 & 1 & 3.64547 \\
\hline 4 & Brand4 & Brand 4 & 13.5224 & 1 & 3.67728 \\
\hline 5 & Brand5 & Brand 5 & 16.3216 & 1 & 4.04000 \\
\hline 6 & Brand1Price1 & Brand 1 * Price 1 & 2.8825 & 1 & 1.69779 \\
\hline 7 & Brand1Price2 & Brand 1 * Price 2 & 3.5118 & 1 & 1.87399 \\
\hline 8 & Brand2Price1 & Brand 2 * Price 1 & 2.8710 & 1 & 1.69441 \\
\hline 9 & Brand2Price2 & Brand 2 * Price 2 & 3.5999 & 1 & 1.89733 \\
\hline 10 & Brand3Price1 & Brand 3 * Price 1 & 2.8713 & 1 & 1.69448 \\
\hline 11 & Brand3Price2 & Brand 3 * Price 2 & 3.5972 & 1 & 1.89662 \\
\hline 12 & Brand4Price1 & Brand 4 * Price 1 & 2.8710 & 1 & 1.69441 \\
\hline 13 & Brand4Price2 & Brand 4 * Price 2 & 3.5560 & 1 & 1.88574 \\
\hline 14 & Brand5Price1 & Brand 5 * Price 1 & 2.8443 & 1 & 1.68649 \\
\hline 15 & Brand5Price2 & Brand 5 * Price 2 & 3.8397 & 1 & 1.95953 \\
\hline 16 & x1Brand2 & x1 * Brand 2 & 0.7204 & 1 & 0.84878 \\
\hline 17 & x1Brand3 & x1 * Brand 3 & 0.7209 & 1 & 0.84908 \\
\hline 18 & x1Brand4 & x1 * Brand 4 & 0.7204 & 1 & 0.84878 \\
\hline 19 & x1Brand5 & x1 * Brand 5 & 0.7204 & 1 & 0.84877 \\
\hline
\end{tabular}
\begin{tabular}{llllll}
20 & x2Brand1 & x2 * Brand 1 & 0.7178 & 1 & 0.84722 \\
21 & x2Brand3 & x2 * Brand 3 & 0.7178 & 1 & 0.84724 \\
22 & x2Brand4 & x2 * Brand 4 & 0.7178 & 1 & 0.84720 \\
23 & x2Brand5 & x2 * Brand 5 & 0.7248 & 1 & 0.85133 \\
24 & x3Brand1 & x3 * Brand 1 & 0.7178 & 1 & 0.84722 \\
25 & x3Brand2 & x3 * Brand 2 & 0.7178 & 1 & 0.84721 \\
26 & x3Brand4 & x3 * Brand 4 & 0.7178 & 1 & 0.84720 \\
27 & x3Brand5 & x3 * Brand 5 & 0.7248 & 1 & 0.85133 \\
28 & x4Brand1 & x4 * Brand 1 & 0.7178 & 1 & 0.84722 \\
29 & x4Brand2 & x4 * Brand 2 & 0.7178 & 1 & 0.84721 \\
30 & x4Brand3 & x4 \(*\) Brand 3 & 0.7178 & 1 & 0.84724 \\
31 & x4Brand5 & x4 * Brand 5 & 0.7293 & 1 & 0.85402 \\
32 & x5Brand1 & x5 * Brand 1 & 0.7111 & 1 & 0.84325 \\
33 & x5Brand2 & x5 \(*\) Brand 2 & 0.7180 & 1 & 0.84737 \\
34 & \(x 5 B r a n d 3\) & x5 \(*\) Brand 3 & 0.7248 & 1 & 0.85135 \\
35 & x5Brand4 & x5 \(*\) Brand 4 & 0.7179 & 1 & 0.84731
\end{tabular}

In this final \%ChoicEff macro example, the goal is to create a design for a pricing study with ten brands plus a constant alternative. Each brand has a single attribute, price. However, the prices are potentially different for each brand and they do not even have the same numbers of levels. A model is desired with brand and alternative-specific price effects. Here are the design specifications.
\begin{tabular}{|l|c|lllllll|}
\hline Brand & Levels & Prices & & & & & \\
\hline Brand 1 & 8 & 0.89 & 0.94 & 0.99 & 1.04 & 1.09 & 1.14 & 1.19 \\
1.24 \\
Brand 2 & 8 & 0.94 & 0.99 & 1.04 & 1.09 & 1.14 & 1.19 & 1.24 \\
Brand 3 & 6 & 0.99 & 1.04 & 1.09 & 1.14 & 1.19 & 1.24 & \\
Brand 4 & 6 & 0.89 & 0.94 & 0.99 & 1.04 & 1.09 & 1.14 & \\
Brand 5 & 6 & 1.04 & 1.09 & 1.14 & 1.19 & 1.24 & 1.29 & \\
Brand 6 & 4 & 0.89 & 0.99 & 1.09 & 1.19 & & & \\
Brand 7 & 4 & 0.99 & 1.09 & 1.19 & 1.29 & & & \\
Brand 8 & 4 & 0.94 & 0.99 & 1.14 & 1.19 & & & \\
Brand 9 & 4 & 1.09 & 1.14 & 1.19 & 1.24 & & & \\
Brand 10 & 4 & 1.14 & 1.19 & 1.24 & 1.29 & & & \\
\hline
\end{tabular}

There are two challenging aspects of this problem: creating the candidate set and coping with the price asymmetries. The candidate set must contain 8 rows for the eight Brand 1 prices, 8 rows for the eight Brand 2 prices, 6 rows for the six Brand 3 prices, ..., and 4 rows for the four Brand 10 prices. It also must contain a constant alternative. Furthermore, if we are to use the alternative-swapping algorithm, the candidate set must contain 11 flag variables, each of which will designate the appropriate group of alternatives. We could run the \(\% \mathrm{MktEx}\) macro ten times to make a candidate set for each of the brands, but since we have only one factor per brand, it would be much easier to generate the candidate set with a DATA step. Before we discuss the code, here is the candidate set that we need.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Brand & Price & f1 & f2 & f3 & f4 & f5 & f6 & f7 & f8 & f9 & f10 & f11 \\
\hline 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 & 3 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 & 4 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 & 5 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 & 6 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 & 7 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 & 8 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2 & 2 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2 & 3 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2 & 4 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2 & 5 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2 & 6 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2 & 7 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2 & 8 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 3 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 3 & 2 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 3 & 3 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 3 & 4 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 3 & 5 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 3 & 6 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 4 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 4 & 2 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 4 & 3 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 4 & 4 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 4 & 5 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 4 & 6 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 5 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 5 & 2 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 5 & 3 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 5 & 4 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 5 & 5 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 5 & 6 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 6 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
\hline 6 & 2 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
\hline 6 & 3 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
\hline 6 & 4 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
\hline 7 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
\hline 7 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
\hline 7 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
\hline 7 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
\hline 8 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\hline 8 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\hline 8 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\hline 8 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{rllllllllllll}
9 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
9 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
9 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
9 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
10 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
10 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
10 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
10 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
. &. & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{tabular}

It begins with eight alternatives for the eight prices for the first brand (Brand \(=1 \mathrm{f} 1=1, \mathrm{f} 2-\mathrm{f} 11=\) \(0)\). It is followed by eight alternatives for the eight prices for the second brand (Brand \(=2 \mathrm{f} 2=1, \mathrm{f} 1\) \(=0, f 3\) through \(f 11=0)\). At the end is the constant alternative. For now, we do not need to worry about the actual price levels, since price will be treated as a qualitative factor. Here is the code that generated the candidate design.
```

data cand;
array n[10] _temporary_ (8 8 6 6 6 4 4 4 4 4);
retain f1-f11 0;
array f[11];
do Brand = 1 to 10;
f[brand] = 1;
do Price = 1 to n[brand]; output; end;
f[brand] = 0;
end;
brand = .; price = .; f11 = 1; output;
run;
proc print; id brand price; run;

```

It has the statement do Brand \(=1\) to 10 that creates the ten brands, plus an output statement at the end to generate the constant alternative. Inside the do Brand loop is another do loop that creates the n [brand] prices. The n array is a temporary array, which means it will not create any variables to go into the output data set. It just gives us a convenient way to access the number of levels for each of the ten brands.

This call to the \%ChoicEff macro creates the design naming Brand and Price as classification variables. Dummy variables will be created for all nonmissing levels of brand.
```

%choiceff(data=cand, seed=462,
model=class(brand / zero=none) class(brand*price / zero=' '),
nsets=24, flags=f1-f11, beta=zero)

```

Here is some of the output.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Design & Iteration D-Efficiency & \multicolumn{2}{|r|}{D-Error} & \\
\hline & 1 & 00 & & - & \\
\hline & & 10 & & . & \\
\hline & & 0.001445 (Ridged) & & & \\
\hline & & 20 & & . & \\
\hline & & 0.001445 (Ridged) & & & \\
\hline & Design & Iteration D-Efficiency & D & ror & \\
\hline & 2 & 00 & & . & \\
\hline & & 10 & & . & \\
\hline & & 0.001445 (Ridged) & & & \\
\hline & & 20 & & . & \\
\hline & & 0.001445 (Ridged) & & & \\
\hline & & Final Results & & & \\
\hline & & Design & 1 & & \\
\hline & & Choice Sets & 24 & & \\
\hline & & Alternatives & 11 & & \\
\hline & & D-Efficiency & 0 & & \\
\hline & & D-Error & - & & \\
\hline & & & & & Standard \\
\hline n & Variable Name & Label & Variance & DF & Error \\
\hline 1 & Brand1 & Brand 1 & 4.51944 & 1 & 2.12590 \\
\hline 2 & Brand2 & Brand 2 & 4.50242 & 1 & 2.12189 \\
\hline 3 & Brand3 & Brand 3 & 3.50008 & 1 & 1.87085 \\
\hline 4 & Brand4 & Brand 4 & 3.49251 & 1 & 1.86882 \\
\hline 5 & Brand5 & Brand 5 & 3.48040 & 1 & 1.86558 \\
\hline 6 & Brand6 & Brand 6 & 2.46342 & 1 & 1.56953 \\
\hline 7 & Brand7 & Brand 7 & 2.46617 & 1 & 1.57041 \\
\hline 8 & Brand8 & Brand 8 & 2.47129 & 1 & 1.57203 \\
\hline 9 & Brand9 & Brand 9 & 2.47975 & 1 & 1.57472 \\
\hline 10 & Brand10 & Brand 10 & 2.46659 & 1 & 1.57054 \\
\hline 11 & Brand1Price1 & Brand 1 * Price 1 & 8.18241 & 1 & 2.86049 \\
\hline 12 & Brand1Price2 & Brand 1 * Price 2 & 8.22704 & 1 & 2.86828 \\
\hline 13 & Brand1Price3 & Brand 1 * Price 3 & 8.20656 & 1 & 2.86471 \\
\hline 14 & Brand1Price4 & Brand 1 * Price 4 & 8.28067 & 1 & 2.87762 \\
\hline 15 & Brand1Price5 & Brand 1 * Price 5 & 8.20668 & 1 & 2.86473 \\
\hline 16 & Brand1Price6 & Brand 1 * Price 6 & 8.21663 & 1 & 2.86647 \\
\hline 17 & Brand1Price7 & Brand 1 * Price 7 & 8.25795 & 1 & 2.87366 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 18 & Brand2Price1 & Brand & 2 * Price 1 & 8.16766 & 1 & 2.85791 \\
\hline 19 & Brand2Price2 & Brand & 2 * Price 2 & 8.25283 & 1 & 2.87277 \\
\hline 20 & Brand2Price3 & Brand & 2 * Price 3 & 8.18178 & 1 & 2.86038 \\
\hline 21 & Brand2Price4 & Brand & 2 * Price 4 & 8.22588 & 1 & 2.86808 \\
\hline 22 & Brand2Price5 & Brand & 2 * Price 5 & 8.24887 & 1 & 2.87208 \\
\hline 23 & Brand2Price6 & Brand & 2 * Price 6 & 8.19937 & 1 & 2.86345 \\
\hline 24 & Brand2Price7 & Brand & 2 * Price 7 & 8.21050 & 1 & 2.86540 \\
\hline 25 & Brand3Price1 & Brand & 3 * Price 1 & 6.18856 & 1 & 2.48768 \\
\hline 26 & Brand3Price2 & Brand & 3 * Price 2 & 6.16883 & 1 & 2.48371 \\
\hline 27 & Brand3Price3 & Brand & 3 * Price 3 & 6.22013 & 1 & 2.49402 \\
\hline 28 & Brand3Price4 & Brand & 3 * Price 4 & 6.17914 & 1 & 2.48579 \\
\hline 29 & Brand3Price5 & Brand & 3 * Price 5 & 6.17185 & 1 & 2.48432 \\
\hline 30 & Brand3Price6 & Brand & 3 * Price 6 & . & 0 & . \\
\hline 31 & Brand3Price7 & Brand & 3 * Price 7 & & 0 & \\
\hline 32 & Brand4Price1 & Brand & 4 * Price 1 & 6.16116 & 1 & 2.48217 \\
\hline 33 & Brand4Price2 & Brand & 4 * Price 2 & 6.18716 & 1 & 2.48740 \\
\hline 34 & Brand4Price3 & Brand & 4 * Price 3 & 6.16633 & 1 & 2.48321 \\
\hline 35 & Brand4Price4 & Brand & 4 * Price 4 & 6.25094 & 1 & 2.50019 \\
\hline 36 & Brand4Price5 & Brand & 4 * Price 5 & 6.13517 & 1 & 2.47693 \\
\hline 37 & Brand4Price6 & Brand & 4 * Price 6 & . & 0 & . \\
\hline 38 & Brand4Price7 & Brand & 4 * Price 7 & . & 0 & . \\
\hline 39 & Brand5Price1 & Brand & 5 * Price 1 & 6.15820 & 1 & 2.48157 \\
\hline 40 & Brand5Price2 & Brand & 5 * Price 2 & 6.17572 & 1 & 2.48510 \\
\hline 41 & Brand5Price3 & Brand & 5 * Price 3 & 6.14151 & 1 & 2.47821 \\
\hline 42 & Brand5Price4 & Brand & 5 * Price 4 & 6.17153 & 1 & 2.48426 \\
\hline 43 & Brand5Price5 & Brand & 5 * Price 5 & 6.14552 & 1 & 2.47902 \\
\hline 44 & Brand5Price6 & Brand & 5 * Price 6 & & 0 & \\
\hline 45 & Brand5Price7 & Brand & 5 * Price 7 & . & 0 & . \\
\hline 46 & Brand6Price1 & Brand & 6 * Price 1 & 4.14170 & 1 & 2.03512 \\
\hline 47 & Brand6Price2 & Brand & 6 * Price 2 & 4.15481 & 1 & 2.03834 \\
\hline 48 & Brand6Price3 & Brand & 6 * Price 3 & 4.09000 & 1 & 2.02238 \\
\hline 49 & Brand6Price4 & Brand & 6 * Price 4 & . & 0 & . \\
\hline 50 & Brand6Price5 & Brand & 6 * Price 5 & & 0 & . \\
\hline 51 & Brand6Price6 & Brand & 6 * Price 6 & & 0 & . \\
\hline 52 & Brand6Price7 & Brand & 6 * Price 7 & & 0 & . \\
\hline 53 & Brand7Price1 & Brand & 7 * Price 1 & 4.12837 & 1 & 2.03184 \\
\hline 54 & Brand7Price2 & Brand & 7 * Price 2 & 4.09248 & 1 & 2.02299 \\
\hline 55 & Brand7Price3 & Brand & 7 * Price 3 & 4.16503 & 1 & 2.04084 \\
\hline 56 & Brand7Price4 & Brand & 7 * Price 4 & . & 0 & . \\
\hline 57 & Brand7Price5 & Brand & 7 * Price 5 & & 0 & . \\
\hline 58 & Brand7Price6 & Brand & 7 * Price 6 & & 0 & . \\
\hline 59 & Brand7Price7 & Brand & 7 * Price 7 & . & 0 & . \\
\hline 60 & Brand8Price1 & Brand & 8 * Price 1 & 4.16889 & 1 & 2.04179 \\
\hline 61 & Brand8Price2 & Brand & 8 * Price 2 & 4.16045 & 1 & 2.03972 \\
\hline 62 & Brand8Price3 & Brand & 8 * Price 3 & 4.09355 & 1 & 2.02325 \\
\hline 63 & Brand8Price4 & Brand & 8 * Price 4 & . & 0 & . \\
\hline 64 & Brand8Price5 & Brand & 8 * Price 5 & & 0 & . \\
\hline 65 & Brand8Price6 & Brand & 8 * Price 6 & & 0 & . \\
\hline 66 & Brand8Price7 & Brand & 8 * Price 7 & & 0 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 67 & Brand9Price1 & Brand & 9 * Price 1 & 4.11932 & 1 & 2.02961 \\
\hline 68 & Brand9Price2 & Brand & 9 * Price 2 & 4.15745 & 1 & 2.03898 \\
\hline 69 & Brand9Price3 & Brand & 9 * Price 3 & 4.17574 & 1 & 2.04346 \\
\hline 70 & Brand9Price4 & Brand & 9 * Price 4 & . & 0 & \\
\hline 71 & Brand9Price5 & Brand & 9 * Price 5 & . & 0 & \\
\hline 72 & Brand9Price6 & Brand & 9 * Price 6 & . & 0 & \\
\hline 73 & Brand9Price7 & Brand & 9 * Price 7 & . & 0 & \\
\hline 74 & Brand10Price1 & Brand & 10 * Price 1 & 4.12770 & 1 & 2.03167 \\
\hline 75 & Brand10Price2 & Brand & 10 * Price 2 & 4.12731 & 1 & 2.03158 \\
\hline 76 & Brand10Price3 & Brand & 10 * Price 3 & 4.11729 & 1 & 2.02911 \\
\hline 77 & Brand10Price4 & Brand & 10 * Price 4 & . & 0 & . \\
\hline 78 & Brand10Price5 & Brand & 10 * Price 5 & & 0 & . \\
\hline 79 & Brand10Price6 & Brand & 10 * Price 6 & . & 0 & . \\
\hline 80 & Brand10Price7 & Brand & 10 * Price 7 & & 0 & . \\
\hline & & & & & = & \\
\hline & & & & & 54 & \\
\hline
\end{tabular}

There are singularities in our model, and for the moment, that is fine. We see 10 parameters for Brand . The constant alternative (not shown) is the reference alternative. We see 7 parameters for Brand 1's price (8 prices - \(1=7\)), 7 parameters for Brand 2's price, 5 parameters for Brand 3 's price (6 prices \(1=5\)) , \(\ldots\), and 3 parameters for Brand 10's price (4 prices \(-1=3\)). This all looks correct.

The log file contains the lines:
```

Redundant Variables:
Brand3Price6 Brand3Price7 Brand4Price6 Brand4Price7 Brand5Price6 Brand5Price7
Brand6Price4 Brand6Price5 Brand6Price6 Brand6Price7 Brand7Price4 Brand7Price5
Brand7Price6 Brand7Price7 Brand8Price4 Brand8Price5 Brand8Price6 Brand8Price7
Brand9Price4 Brand9Price5 Brand9Price6 Brand9Price7 Brand1OPrice4 Brand1OPrice5
Brand1OPrice6 Brand1OPrice7

```

Here they are again, manually reformatted to one brand per line:
```

Redundant Variables:
Brand3Price6 Brand3Price7
Brand4Price6 Brand4Price7
Brand5Price6 Brand5Price7
Brand6Price4 Brand6Price5 Brand6Price6 Brand6Price7
Brand7Price4 Brand7Price5 Brand7Price6 Brand7Price7
Brand8Price4 Brand8Price5 Brand8Price6 Brand8Price7
Brand9Price4 Brand9Price5 Brand9Price6 Brand9Price7
Brand10Price4 Brand10Price5 Brand1OPrice6 Brand10Price7

```

For Brands 1 and 2 we have 7 parameters and the last level for price 8 is the reference level and does not appear in the model. The specification class (brand*price / zero=' ') sets the reference level for brand to blank so it will use all 10 brands and uses the ordinary default last level for the reference level for price. This zero= specification names a list of reference levels, blank for the first variable and nothing specified, and hence the default, for the second.

For Brands 3 through 5, level 8 , which does not appear, is the reference level as it is for all the brands. In addition, since these brands have only six levels, two more terms are not estimable, the terms for price levels 6 and 7. Hence the factors Brand3Price6, Brand3Price7, Brand4Price6, Brand4Price7, Brand5Price6, and Brand5Price7 are not needed. Similarly for Brands 6 through 10, we can drop the terms for the fourth through seventh price levels. We can run the macro again, this time deleting all these terms.
```

%choiceff(data=cand, seed=462,
model=class(brand / zero=none) class(brand*price / zero=' '),
nsets=24, flags=f1-f11, beta=zero,
drop=
brand3price6 brand3price7
brand4price6 brand4price7
brand5price6 brand5price7
brand6price4 brand6price5 brand6price6 brand6price7
brand7price4 brand7price5 brand7price6 brand7price7
brand8price4 brand8price5 brand8price6 brand8price7
brand9price4 brand9price5 brand9price6 brand9price7
brand1Oprice4 brand1Oprice5 brand1Oprice6 brand1Oprice7
);

```

Here is some of the output.
\begin{tabular}{|c|c|c|c|}
\hline Design & \multicolumn{2}{|l|}{Iteration D-Efficiency} & D-Error \\
\hline \multirow[t]{3}{*}{1} & 0 & 0.313841 & 3.186325 \\
\hline & 1 & 0.340743 & 2.934765 \\
\hline & 2 & 0.340743 & 2.934765 \\
\hline Design & Iteration D- & \(f\) ficiency & D-Error \\
\hline \multirow[t]{9}{*}{2} & 0 & 0 & \\
\hline & 1 & 0.341011 & 2.932458 \\
\hline & 2 & 0.341011 & 2.932458 \\
\hline & \multicolumn{2}{|r|}{Final Results} & \\
\hline & Design & & \\
\hline & Choice Sets & & \\
\hline & Alternatives & & \\
\hline & D-Efficiency & 0.341 & \\
\hline & D-Error & 2.932 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline n & Variable Name & Label & & Variance & DF & Standard Error \\
\hline 1 & Brand1 & Brand & 1 & 4.50417 & 1 & 2.12230 \\
\hline 2 & Brand2 & Brand & 2 & 4.52567 & 1 & 2.12736 \\
\hline 3 & Brand3 & Brand & 3 & 3.47776 & 1 & 1.86487 \\
\hline 4 & Brand4 & Brand & 4 & 3.48724 & 1 & 1.86742 \\
\hline 5 & Brand5 & Brand & 5 & 3.49982 & 1 & 1.87078 \\
\hline 6 & Brand6 & Brand & 6 & 2.47337 & 1 & 1.57270 \\
\hline 7 & Brand7 & Brand & 7 & 2.45738 & 1 & 1.56760 \\
\hline 8 & Brand8 & Brand & 8 & 2.45142 & 1 & 1.56570 \\
\hline 9 & Brand9 & Brand & 9 & 2.45282 & 1 & 1.56615 \\
\hline 10 & Brand10 & Brand & 10 & 2.44575 & 1 & 1.56389 \\
\hline 11 & Brand1Price1 & Brand & 1 * Price 1 & 8.19264 & 1 & 2.86228 \\
\hline 12 & Brand1Price2 & Brand & 1 * Price 2 & 8.19269 & 1 & 2.86229 \\
\hline 13 & Brand1Price3 & Brand & 1 * Price 3 & 8.18940 & 1 & 2.86171 \\
\hline 14 & Brand1Price4 & Brand & 1 * Price 4 & 8.23067 & 1 & 2.86891 \\
\hline 15 & Brand1Price5 & Brand & 1 * Price 5 & 8.21587 & 1 & 2.86633 \\
\hline 16 & Brand1Price6 & Brand & 1 * Price 6 & 8.19365 & 1 & 2.86246 \\
\hline 17 & Brand1Price7 & Brand & 1 * Price 7 & 8.23031 & 1 & 2.86885 \\
\hline 18 & Brand2Price1 & Brand & 2 * Price 1 & 8.16830 & 1 & 2.85802 \\
\hline 19 & Brand2Price2 & Brand & 2 * Price 2 & 8.23185 & 1 & 2.86912 \\
\hline 20 & Brand2Price3 & Brand & 2 * Price 3 & 8.21687 & 1 & 2.86651 \\
\hline 21 & Brand2Price4 & Brand & 2 * Price 4 & 8.23295 & 1 & 2.86931 \\
\hline 22 & Brand2Price5 & Brand & 2 * Price 5 & 8.27059 & 1 & 2.87586 \\
\hline 23 & Brand2Price6 & Brand & 2 * Price 6 & 8.22612 & 1 & 2.86812 \\
\hline 24 & Brand2Price7 & Brand & 2 * Price 7 & 8.28203 & 1 & 2.87785 \\
\hline 25 & Brand3Price1 & Brand & 3 * Price 1 & 6.15558 & 1 & 2.48104 \\
\hline 26 & Brand3Price2 & Brand & 3 * Price 2 & 6.17640 & 1 & 2.48524 \\
\hline 27 & Brand3Price3 & Brand & 3 * Price 3 & 6.13255 & 1 & 2.47640 \\
\hline 28 & Brand3Price4 & Brand & 3 * Price 4 & 6.14840 & 1 & 2.47960 \\
\hline 29 & Brand3Price5 & Brand & 3 * Price 5 & 6.11249 & 1 & 2.47234 \\
\hline 30 & Brand4Price1 & Brand & 4 * Price 1 & 6.17231 & 1 & 2.48441 \\
\hline 31 & Brand4Price2 & Brand & 4 * Price 2 & 6.22760 & 1 & 2.49552 \\
\hline 32 & Brand4Price3 & Brand & 4 * Price 3 & 6.12111 & 1 & 2.47409 \\
\hline 33 & Brand4Price4 & Brand & 4 * Price 4 & 6.19792 & 1 & 2.48956 \\
\hline 34 & Brand4Price5 & Brand & 4 * Price 5 & 6.12131 & 1 & 2.47413 \\
\hline 35 & Brand5Price1 & Brand & 5 * Price 1 & 6.21514 & 1 & 2.49302 \\
\hline 36 & Brand5Price2 & Brand & 5 * Price 2 & 6.15748 & 1 & 2.48143 \\
\hline 37 & Brand5Price3 & Brand & 5 * Price 3 & 6.17697 & 1 & 2.48535 \\
\hline 38 & Brand5Price4 & Brand & 5 * Price 4 & 6.16121 & 1 & 2.48218 \\
\hline 39 & Brand5Price5 & Brand & 5 * Price 5 & 6.20067 & 1 & 2.49011 \\
\hline 40 & Brand6Price1 & Brand & 6 * Price 1 & 4.16170 & 1 & 2.04002 \\
\hline 41 & Brand6Price2 & Brand & 6 * Price 2 & 4.11324 & 1 & 2.02811 \\
\hline 42 & Brand6Price3 & Brand & 6 * Price 3 & 4.13298 & 1 & 2.03297 \\
\hline 43 & Brand7Price1 & Brand & 7 * Price 1 & 4.10703 & 1 & 2.02658 \\
\hline 44 & Brand7Price2 & Brand & 7 * Price 2 & 4.11083 & 1 & 2.02752 \\
\hline 45 & Brand7Price3 & Brand & 7 * Price 3 & 4.10632 & 1 & 2.02641 \\
\hline
\end{tabular}
\begin{tabular}{lllllll}
46 & Brand8Price1 & Brand \(8 *\) Price 1 & 4.12107 & 1 & 2.03004 \\
47 & Brand8Price2 & Brand \(8 *\) Price 2 & 4.10075 & 1 & 2.02503 \\
48 & Brand8Price3 & Brand \(8 *\) Price 3 & 4.08366 & 1 & 2.02081 \\
49 & Brand9Price1 & Brand \(9 *\) Price 1 & 4.11157 & 1 & 2.02770 \\
50 & Brand9Price2 & Brand \(9 *\) Price 2 & 4.10049 & 1 & 2.02497 \\
51 & Brand9Price3 & Brand 9 * Price 3 & 4.10522 & 1 & 2.02614 \\
52 & Brand10Price1 & Brand 10 * Price 1 & 4.07896 & 1 & 2.01964 \\
53 & Brand10Price2 & Brand 10 * Price 2 & 4.09065 & 1 & 2.02253 \\
54 & Brand10Price3 & Brand 10 * Price 3 & 4.11148 & 1 & 2.02768
\end{tabular}

We can see that we now have all the terms for the final model.
```

proc print data=best(obs=22); id set; by set; var brand price; run;

```

Here are the first two choice sets.

Because of the asymmetry, assigning the actual prices is not as simple as using a format. You could write a lot of code of the form if brand = 1 and price \(=1\) then price \(=0.89\); else \(\ldots\), however that would be difficult. Instead, we will start by transposing our choice design.
```

proc transpose data=best out=lin(keep=x1-x10) prefix=x;
var price; by set;
run;

```
proc print; run;

The transposed data set has one row per choice set and each of the 10 prices for the ten nonconstant alternatives in each choice set. This is the linear version of our choice design. The factors x 1 and x 2 have 8 prices, 1 to 8 , the factors x 3 through x 5 have 6 prices, 1 to 6 . and the factors x 6 through x10 have 4 prices, 1 to 4 .
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Obs & x 1 & x 2 & x3 & x4 & x5 & x6 & x7 & x8 & x9 & x 10 \\
\hline 1 & 2 & 8 & 6 & 6 & 4 & 4 & 2 & 4 & 4 & 3 \\
\hline 2 & 4 & 8 & 4 & 3 & 2 & 4 & 4 & 3 & 4 & 3 \\
\hline 3 & 8 & 4 & 3 & 5 & 5 & 4 & 1 & 4 & 4 & 4 \\
\hline 4 & 2 & 1 & 4 & 3 & 4 & 1 & 1 & 3 & 3 & 2 \\
\hline 5 & 6 & 8 & 6 & 6 & 5 & 2 & 3 & 3 & 3 & 2 \\
\hline 6 & 6 & 1 & 5 & 5 & 2 & 4 & 3 & 4 & 4 & 3 \\
\hline 7 & 8 & 6 & 5 & 6 & 4 & 3 & 3 & 3 & 2 & 4 \\
\hline 8 & 4 & 5 & 2 & 3 & 3 & 3 & 3 & 1 & 3 & 4 \\
\hline 9 & 5 & 3 & 5 & 1 & 6 & 2 & 4 & 1 & 3 & 4 \\
\hline 10 & 3 & 4 & 2 & 2 & 4 & 2 & 4 & 2 & 1 & 1 \\
\hline 11 & 3 & 5 & 5 & 1 & 3 & 3 & 2 & 4 & 2 & 2 \\
\hline 12 & 2 & 3 & 1 & 5 & 1 & 4 & 2 & 2 & 1 & 3 \\
\hline 13 & 6 & 2 & 3 & 3 & 6 & 2 & 3 & 1 & 2 & 3 \\
\hline 14 & 5 & 1 & 1 & 4 & 2 & 3 & 1 & 2 & 3 & 2 \\
\hline 15 & 8 & 6 & 4 & 4 & 5 & 2 & 2 & 2 & 1 & 2 \\
\hline 16 & 5 & 2 & 6 & 5 & 6 & 3 & 4 & 3 & 2 & 1 \\
\hline 17 & 1 & 7 & 1 & 4 & 5 & 1 & 1 & 3 & 1 & 1 \\
\hline 18 & 3 & 3 & 2 & 6 & 6 & 4 & 1 & 1 & 3 & 3 \\
\hline 19 & 4 & 5 & 1 & 2 & 1 & 1 & 3 & 4 & 2 & 1 \\
\hline 20 & 1 & 6 & 3 & 1 & 1 & 3 & 4 & 2 & 4 & 1 \\
\hline 21 & 7 & 7 & 3 & 2 & 1 & 1 & 2 & 2 & 1 & 4 \\
\hline 22 & 7 & 2 & 2 & 4 & 3 & 1 & 1 & 1 & 4 & 1 \\
\hline 23 & 7 & 4 & 4 & 2 & 3 & 1 & 2 & 1 & 2 & 2 \\
\hline 24 & 1 & 7 & 6 & 1 & 2 & 2 & 4 & 4 & 1 & 4 \\
\hline
\end{tabular}

Now we can use formats or other means such as the \%MktLab macro to assign prices within the brand/price factors and then restore the choice design format. Here is the key= data set for the \(\% M k t L a b\) macro. It contains all of the different prices. The \%MktLab macro assigns the prices and the \(\% M k t R o l l\) macro is used to convert our linear design back into a choice design. \({ }^{\dagger}\) The \%MktLab macro uses a KEY data set to specify the prices (see page 577). The \%MktRoll macro uses a different KEY data set to specify which linear design factor applies to which brand (see page 595).

\footnotetext{
\({ }^{\dagger}\) See page 87 for an illustration of linear versus choice designs.
}
```

data key;
input x1-x10;
datalines;
0.89 0.94 0.99 0.89 1.04 0.89 0.99 0.94 1.09 1.14
0.94 0.99 1.04 0.94 1.09 0.99 1.09 0.99 1.14 1.19
0.99 1.04 1.09 0.99 1.14 1.09 1.19 1.14 1.19 1.24
1.04 1.09 1.14 1.04 1.19 1.19 1.29 1.19 1.24 1.29
1.09 1.14 1.19 1.09 1.24
1.14 1.19 1.24 1.14 1.29
1.19 1.24 .
1.24 1.29
;
proc print; run;
%mktlab(data=lin, key=key, out=final)
%mktkey(x1-x10)
data key;
if _n_ le 10 then Brand = put(_n_, 2.);
input Price \$ @@;
datalines;
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10.
;
proc print; run;
%mktroll(design=final,
alt=brand, key=key, out=sasuser.prices)

```
proc print data=sasuser.prices(obs=22); id set; by set; var brand price; run;
Here is the \%MktLab KEY data set.
\begin{tabular}{ccccccccccc}
\hline Obs & x 1 & x 2 & x 3 & x 4 & x 5 & x 6 & x 7 & x 8 & x 9 & x 10 \\
1 & 0.89 & 0.94 & 0.99 & 0.89 & 1.04 & 0.89 & 0.99 & 0.94 & 1.09 & 1.14 \\
2 & 0.94 & 0.99 & 1.04 & 0.94 & 1.09 & 0.99 & 1.09 & 0.99 & 1.14 & 1.19 \\
3 & 0.99 & 1.04 & 1.09 & 0.99 & 1.14 & 1.09 & 1.19 & 1.14 & 1.19 & 1.24 \\
4 & 1.04 & 1.09 & 1.14 & 1.04 & 1.19 & 1.19 & 1.29 & 1.19 & 1.24 & 1.29 \\
5 & 1.09 & 1.14 & 1.19 & 1.09 & 1.24 &. &. &. &. &. \\
6 & 1.14 & 1.19 & 1.24 & 1.14 & 1.29 &. &. &. &. &. \\
7 & 1.19 & 1.24 &. &. &. &. &. &. &. &. \\
8 & 1.24 & 1.29 &. &. &. &. &. &. &. &. \\
\hline
\end{tabular}

Here is the \%MktRoll KEY data set.
\begin{tabular}{cccc}
\hline Obs & Brand & Price \\
& & \\
1 & 1 & x 1 \\
2 & 2 & x 2 \\
3 & 3 & x 3 \\
4 & 4 & x 4 \\
5 & 5 & x 5 \\
6 & 6 & x 6 \\
7 & 7 & x 7 \\
8 & 8 & x 8 \\
9 & 9 & x 9 \\
10 & 10 & x 10 \\
11 & & \\
\hline
\end{tabular}

Here are the first two choice sets with the actual prices assigned.

\section*{\%ChoicEff Macro Options}

The following options can be used with the \%ChoicEff macro.
\begin{tabular}{|l|l|}
\hline Option & Description \\
\hline bestcov=SAS-data-set & covariance matrix for the best design \\
bestout \(=\) SAS-data-set & best design \\
beta=list & true parameters \\
converge \(=n\) & convergence criterion \\
cov=SAS-data-set & all of the covariance matrices \\
data=SAS-data-set & input choice candidate set \\
drop=variable-list & variables to drop from the model \\
fixed=variable-list & variable that flags fixed alternatives \\
flags=variable-list & variables that flag the alternative(s) \\
init=SAS-data-set & input initial design data set \\
initvars=variable-list & initial variables \\
intiter=n & maximum number of internal iterations \\
iter=n & maximum iterations (designs to create) \\
maxiter=n & maximum iterations (designs to create) \\
model=model-specification & model statement list of effects \\
morevars=variable-list & more variables to add to the model \\
n=n & number of observations \\
nalts \(=n\) & number of alternatives \\
nsets \(=n\) & number of choice sets desired \\
options=options-list & binary options \\
out \(=\) SAS-data-set & all designs data set \\
seed \(=n\) & random number seed \\
submat=number-list & submatrix for efficiency calculations \\
types=integer-list & number of sets of each type \\
typevar=variable & choice set types variable \\
weight=weight-variable & optional weight variable \\
\hline
\end{tabular}

\section*{Required Options}

You must specify both the model= and nsets= options and either the flags= or nalts= options. You can omit beta= if you just want a listing of effects, however you must specify beta= to create a design. The rest of the options are optional.

\section*{model \(=\) model-specification}
specifies a PROC TRANSREG model statement list of effects. There are many potential forms for the model specification and a number of options. See the SAS/STAT PROC TRANSREG documentation.

Generic effects example:
```

model=class(x1-x3),

```

Brand and alternative-specific effects example:
```

model=class(b)
class(b*x1 b*x2 b*x3 / effects zero=' '),

```

Brand, alternative-specific, and cross effects:
```

model=class(b b*p / zero=' ')
identity(x1-x5) * class(b / zero=none),

```

See pages 481 through 505 for other examples of model syntax. Furthermore, all of the PROC TRANSREG and \%ChoicEff macro examples from pages 122 through 343 show examples of model syntax for choice models.

\section*{nsets \(=n\)}
specifies the number of choice sets desired.

\section*{Other Required Options}

You must specify exactly one of these next two options. When the candidate set consists of individual alternatives to be swapped, specify the alternative flags with \(f l a g s=\). When the candidate set consists of entire sets of alternatives to be swapped, specify the number of alternatives in each set with nalts=.

\section*{flags \(=\) variable-list}
specifies variables that flag the alternative(s) for which each candidate may be used. There must be one flag variable per alternative. If every candidate can be used in all alternatives, then the flags are constant. For example, with three alternatives, create these constant flags: \(f 1=1 f 2=1 f 3=1\). Otherwise, with three alternatives, specify flags=f1-f3 and create a candidate set where: alternative 1 candidates are indicated by \(f 1=1 \mathrm{f} 2=0 \mathrm{f} 3=0\), alternative 2 candidates are indicated by \(\mathrm{f} 1=0 \mathrm{f} 2=1\) \(f 3=0\), and alternative 3 candidates are indicated by \(f 1=0 \quad f 2=0 \quad f 3=1\).

\section*{nalts \(=n\)}
specifies the number of alternatives in each choice set for the set-swapping algorithm.

\section*{Other Options}

The rest of the parameters are optional. You may specify zero or more of them.

\section*{bestcov \(=S A S\)-data-set}
specifies a name for the data set containing the covariance matrix for the best design. By default, this data set is called BESTCOV.

\section*{bestout \(=S A S\)-data-set}
specifies a name for the data set containing the best design. By default, this data set is called BEST. Often, you will want to specify a two-level name to create a permanent SAS data set so the design will be available later for analysis.

\section*{beta \(=l i s t\)}
specifies the true parameters. By default, when beta \(=\) is not specified, the macro just reports on coding. You can specify beta=zero to assume all zeros. Otherwise specify a number list: beta=1-1 \(2-21\) -1.

\section*{converge \(=n\)}
specifies the \(D\)-efficiency convergence criterion. By default, converge \(=0.005\).
\(\mathbf{c o v}=\) SAS-data-set
specifies a name for the data set containing all of the covariance matrices for all of the designs. By default, this data set is called COV.
data \(=S A S\)-data-set
specifies the input choice candidate set. By default, the macro uses the last data set created.

\section*{drop \(=\) variable-list}
specifies a list of variables to drop from the model. If you specified a less-than-full-rank model= specification, you can use drop= to produce a full rank coding. When there are redundant variables, the macro prints a list that you can use in the drop= option on a subsequent run.

\section*{fixed \(=\) variable-list}
specifies the variable that flags the fixed alternatives. When fixed=variable is specified, the init= data set must contain the named variable, which indicates which alternatives are fixed (cannot be swapped out) and which ones may be changed. Example: fixed=fixed, init=init, initvars=x1-x3. Values of the fixed= variable include:

1 - means this alternative can never be swapped out.
0 - means this alternative is used in the initial design, but it may be swapped out.
. - means this alternative should be randomly initialized, and it may be swapped out.
The fixed= option may be specified only when both init= and initvars= are specified.

\section*{init \(=S A S\)-data-set}
specifies an input initial design data set. Null means a random start. One usage is to specify the bestout= data set for an initial start. When flags= is specified, init= must contain the index variable. Example: init=best(keep=index). When nalts= is specified, init= must contain the choice set variable. Example: init=best (keep=set).
Alternatively, the init= data set can contain an arbitrary design, potentially created outside this macro. In that case, you must also specify initvars=factors, where factors are the factors in the design, for example initvars=x1-x3. When alternatives are swapped, this data set must also contain the flags= variables. When init= is specified with initvars=, the data set may also contain a variable specified on the fixed= option, which indicates which alternatives are fixed, and which ones can be swapped in and out.

\section*{intiter \(=n\)}
specifies the maximum number of internal iterations. Specify intiter=0 to just evaluate efficiency of an existing design. By default, intiter=10.

\section*{initvars \(=\) variable-list}
specifies the factor variables in the init= data set that must match up with the variables in the data= data set. See init=. All of these variables must be of the same type.

\section*{maxiter \(=n\)}
iter \(=n\)
specifies the maximum iterations (designs to create). By default, maxiter=10.

\section*{morevars \(=\) variable-list}
specifies more variables to add to the model. This option gives you the ability to specify a list of variables to copy along as is, through the TRANSREG coding, then add them to the model.
\(\mathbf{n}=n\)
specifies the number of observations to use in the variance matrix formula. By default, \(\mathrm{n}=1\).
options \(=\) options-list
specifies binary options. By default, none of these options are specified. Specify one or more of the following values after options=.
```

coded
prints the coded candidate set.
detail
prints the details of the swaps.
nocode
skips the PROC TRANSREG coding stage, assuming that WORK.TMP_CAND was cre-
ated by a previous step. This is most useful with set swapping when the candidate set can
be big. It is important with options=nocode to note that the effect of morevars= and
drop= in previous runs has already been taken care of, so do not specify them (unless for
instance you want to drop still more variables).

```

\section*{nodups}
prevents the same choice set from coming out more than once. This option does not affect the initialization, so the random initial design may have duplicates. This option forces duplicates out during the iterations, so do not set intiter= to a small value. It may take several iterations to eliminate all duplicates. It is possible that efficiency will decrease as duplicates are forced out. With set swapping, this macro checks the candidate choice set numbers to avoid duplicates. With alternative swapping, this macro checks the candidate alternative index to avoid duplicates. The macro does not look at the actual factors. This makes the checks faster, but if the candidate set contains duplicate choice sets or alternatives, the macro may not succeed in eliminating all duplicates. Run the \(\%\) MktDups macro (which looks at the actual factors) on the design to check and make sure all duplicates are eliminated. If you are using set swapping to make a generic design make sure you run the \%MktDups macro on the candidate set to eliminate duplicate choice sets in advance.

\section*{notests}
suppresses printing the diagonal of the covariance matrix, and hypothesis tests for this \(n\) and \(\boldsymbol{\beta}\). When \(\boldsymbol{\beta}\) is not zero, the results include a Wald test statistic (\(\beta\) divided by the standard error), which is normally distributed, and the probability of a larger squared Wald statistic.
orthcan
orthogonalizes the candidate set.
out \(=S A S\)-data-set
specifies a name for the output SAS data set with all of the final designs. The default is out=results.

\section*{seed \(=n\)}
specifies the random number seed. By default, seed=0, and clock time is used as the random number seed. By specifying a random number seed, results should be reproducible within a SAS release for a particular operating system. However, due to machine differences, some results may not be exactly reproducible on other machines, although you would expect the efficiency differences to be slight.

\section*{submat \(=\) number-list}
specifies a submatrix for which efficiency calculations are desired. Specify an index vector. For example, with 3 three-level factors, a, b, and c, and the model class (a b c a*b), specify submat=1:6, to see the efficiency of just the \(6 \times 6\) matrix of main effects. Specify submat=3:6, to see the efficiency of just the \(4 \times 4\) matrix of b and c main effects.

\section*{types \(=\) integer-list}
specifies the number of sets of each type to put into the design. This option is used when you have multiple types of choice sets and you want the design to consist of only certain numbers of each type. This option can be specified with the set-swapping algorithm. The argument is an integer list. When you specify types=, you must also specify typevar=. Say you are creating a design with 30 choice sets, and you want the first 10 sets to consist of sets whose typevar= variable in the candidate set is type 1 , and you want the rest to be type 2 . You would specify types=10 20 .

\section*{typevar \(=\) variable}
specifies a variable in the candidate data set that contains choice set types. The types must be integers starting with 1 . This option can only be specified with the set-swapping algorithm. When you specify typevar=, you must also specify types=.
weight \(=\) weight-variable
specifies an optional weight variable. Typical usage is with an availability design. Give unavailable alternatives a weight of zero and available alternatives a weight of one. The number of alternatives must always be constant, so varying numbers of alternatives are handled by giving unavailable or unseen alternatives a weight of zero.

\section*{\%ChoicEff Macro Notes}

This macro specifies options nonotes throughout most of its execution. If you want to see all of the notes, submit the statement \%let mktopts = notes; before running the macro.

\section*{\%MktAllo Macro}

The \%MktAllo autocall macro is used for manipulating data for an allocation choice experiment. See page 284 for an example. The \(\% \mathrm{MktAllo}\) macro takes as input a data set with one row for each alternative of each choice set. For example, in a study with 10 brands plus a constant alternative and 27 choice sets, there are \(27 \times 11=297\) observations in the input data set. Here is an example of an input data set. It contains a choice set variable, product attributes (Brand and Price) and a frequency variable (Count) that contains the total number of times that each alternative was chosen.
\begin{tabular}{rrrrrrr}
\hline Obs & Set & Brand & Price & Count \\
& & & & & 0 \\
1 & 1 & & & \\
2 & 1 & Brand & 1 & \(\$ 50\) & 103 \\
3 & 1 & Brand & 2 & \(\$ 75\) & 58 \\
4 & 1 & Brand & 3 & \(\$ 50\) & 318 \\
5 & 1 & Brand & 4 & \(\$ 100\) & 99 \\
6 & 1 & Brand & 5 & \(\$ 100\) & 54 \\
7 & 1 & Brand & 6 & \(\$ 100\) & 83 \\
8 & 1 & Brand & 7 & \(\$ 75\) & 71 \\
9 & 1 & Brand & 8 & \(\$ 75\) & 58 \\
10 & 1 & Brand 9 & \(\$ 75\) & 100 \\
11 & 1 & Brand 10 & \(\$ 50\) & 56 \\
\(\cdot\) & & & & & \\
\(\cdot\) & & & & & \\
- & & & & \\
296 & 27 & Brand 9 & \(\$ 100\) & 94 \\
297 & 27 & Brand 10 & \(\$ 50\) & 65 \\
& & & & \\
\hline
\end{tabular}

The end result is a data set with twice as many observations that contains the number of times each alternative was chosen and the number of times it was not chosen. This data set also contains a variable c with values 1 for first choice and 2 for second or subsequent choice.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Obs & Set & Brand & & Price & Count & c \\
\hline 1 & 1 & & & & 0 & 1 \\
\hline 2 & 1 & & & & 1000 & 2 \\
\hline 3 & 1 & Brand & 1 & \$50 & 103 & 1 \\
\hline 4 & 1 & Brand & 1 & \$50 & 897 & 2 \\
\hline 5 & 1 & Brand & 2 & \$75 & 58 & 1 \\
\hline 6 & 1 & Brand & 2 & \$75 & 942 & 2 \\
\hline 7 & 1 & Brand & 3 & \$50 & 318 & 1 \\
\hline
\end{tabular}
\begin{tabular}{rrlllrl}
8 & 1 & Brand & 3 & \(\$ 50\) & 682 & 2 \\
\(\cdot\) & & & & & & \\
\(\cdot\) & & & & & & \\
\(\cdot\) & & & & & & \\
593 & 27 & Brand 10 & \(\$ 50\) & 65 & 1 \\
594 & 27 & Brand 10 & \(\$ 50\) & 935 & 2
\end{tabular}

Here is an example of usage:
```

%mktallo(data=allocs2, out=allocs3, nalts=11,
vars=set brand price, freq=Count)

```

The option data= names the input data set, out= names the output data set, nalts= specifies the number of alternatives, vars= names the variables in the data set that will be used in the analysis excluding the freq= variable, and freq= names the frequency variable.

\section*{\%MktAllo Macro Options}

The following options can be used with the \%MktAllo macro.
\begin{tabular}{|l|l|}
\hline Option & Description \\
\hline data \(=\) SAS-data-set & input SAS data set \\
freq=variable & frequency variable \\
nalts \(=n\) & number of alternatives \\
out \(=\) SAS-data-set & output SAS data set \\
vars=variable-list & input variables \\
\hline
\end{tabular}

You must specify the nalts=, freq=, and vars= options.
data \(=\) SAS-data-set
specifies the input SAS data set. By default, the macro uses the last data set created.

\section*{freq \(=\) variable}
specifies the frequency variable, which contains the number of times this alternative was chosen. This option must be specified.
nalts \(=n\)
specifies the number of alternatives (including if appropriate the constant alternative). This option must be specified.
out \(=S A S\)-data-set
specifies the output SAS data set. The default is out=allocs.

\section*{vars \(=\) variable-list}
specifies the variables in the data set that will be used in the analysis but not the freq= variable. This option must be specified.

\section*{\%MktAllo Macro Notes}

This macro specifies options nonotes throughout most of its execution. If you want to see all of the notes, submit the statement \%let mktopts = notes; before running the macro.

\section*{\%MktBal Macro}

The \%MktBal macro creates factorial designs using an algorithm that ensures that the design is perfectly balanced, or when the number of levels of a factor does not divide the number of runs, as close to perfectly balanced as possible. Do not use the \%MktBal macro until you have tried the \%MktEx macro and determined that it does not make a design that is balanced enough for your needs. The \%MktEx macro can directly create thousands of orthogonal and balanced designs that the \%MktBal algorithm will never be able to find. Even when the \%MktEx macro cannot create an orthogonal and balanced design, it will usually find a nearly balanced design. Designs created with the \%MktBal macro, while perfectly balanced, may be less efficient than designs found with the \%MktEx macro, and for large problems, the \%MktBal macro can be slow. It is likely that the current algorithm used by the \%MktBal macro will be changed in the future to use some now unknown algorithm that is both faster and better.

The \%MktBal macro is not a full-featured experimental design generator. For example, you cannot specify interactions that you want to estimate or specify restrictions such as which levels may or may not appear together. You must use the \%MktEx macro for that. The \%MktBal macro builds a design by creating a balanced first factor, optimally blocking it to create the second factor, then optimally blocking the first two factors to create the third, and so on. Once it creates all factors, it refines each factor. Each factor is in turn removed from the design, and the rest of the design is reblocked, replacing the initial factor if the new design is more \(D\)-efficient.

Here is a simple example of creating a design with 2 two-level factors and 3 three-level factors in 18 runs. The \%MktEval macro evaluates the results. This design is in fact optimal.
```

%mktbal(2 2 3 3 3, n=18, seed=151)
%mkteval;

```

In all cases, the factors are named \(\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3\), and so on.
This next example, at 120 runs and with factor levels greater than 5 , is starting to get big, and by default, it will run slowly. You can use the maxstarts=, maxtries=, and maxiter= options to make the macro run more quickly. For example, the second example shown next runs much faster than the first.
```

%mktbal(2 3 4 5 6 7 8 9 10, n=120, options=progress, seed=17)
%mktbal(2 3 4 5 6 7 8 9 10, n=120, options=progress, seed=17,
maxstarts=1, maxiter=1, maxtries=1)

```

\section*{\%MktBal Macro Options}

The following options can be used with the \%MktBal macro.
\begin{tabular}{|l|l|}
\hline Option & Description \\
\hline iter \(=n\) & maximum iterations (designs to create) \\
list & list of the numbers of levels \\
maxiter \(=n\) & maximum iterations (designs to create) \\
maxstarts \(=n\) & maximum number of random starts \\
maxtries \(=n\) & times to try refining each factor \\
\(\mathrm{n}=n\) & number of runs in the design \\
options=options-list & binary options \\
out \(=\) SAS-data set & output experimental design \\
seed \(=n\) & random number seed \\
\hline
\end{tabular}

\section*{list}
specifies a list of the numbers of levels of all the factors. For example, for 3 two-level factors specify either 222 or \(2 * * 3\). Lists of numbers, like 223344 or a levels** number of factors syntax like: \(2 * * 23 * * 24 * * 2\) can be used, or both can be combined: \(223 * * 456\). The specification \(3 * * 4\) means 4 three-level factors. You must specify a list. Note that the factor list is a positional parameter. This means it must come first, and unlike all other parameters, it is not specified after a name and an equal sign.
\(\mathbf{n}=n\)
specifies the number of runs in the design. You must specify \(\mathrm{n}=\). You can use the \(\% \mathrm{MktRuns}\) macro to get suggestions for values of \(n=\).
out \(=\) SAS-data set
specifies the output experimental design. The default is out=design.

These next options control some of the details of the \%MktBal macro.

\section*{maxiter \(=n\)}
iter \(=n\)
specifies the maximum iterations (designs to create). By default, maxiter=5.

\section*{maxstarts \(=n\)}
specifies the maximum number of random starts for each factor. With larger values, the macro tends to find slightly better designs at a cost of slower run times. The default is maxstarts=10.

\section*{maxtries \(=n\)}
specifies the maximum number of times to try refining each factor after the initialization stage. The default is maxtries \(=10\).

\section*{options \(=\) options-list}
specifies binary options. By default, none of these options are specified. Specify one or more of the following values after options=.
```

noprint

```
specifies that the final \(D\)-efficiency should not be printed.

\section*{progress}
reports on the macro's progress. For large numbers of factors, a large number or runs, or when the number of levels is large, this macro is slow. The options=progress specification gives you information about which step is being executed.

\section*{seed \(=n\)}
specifies the random number seed. By default, seed=0, and clock time is used to make the random number seed. By specifying a random number seed, results should be reproducible within a SAS release for a particular operating system. However, due to machine differences, some results may not be exactly reproducible on other machines, although you would expect the efficiency differences to be slight.

\section*{\%MktBal Macro Notes}

This macro specifies options nonotes throughout most of its execution. If you want to see all of the notes, submit the statement \%let mktopts = notes; before running the macro.

\section*{\%MktBlock Macro}

The \%MktBlock autocall macro is used to block a choice design or an ordinary linear experimental design. See pages 191 and 248 for examples. When a choice design is too large to show all choice sets to each subject, the design is blocked and a block of choice sets is shown to each subject. For example, if there are 36 choice sets, instead of showing each subject 36 sets, you could instead create 2 blocks and show 2 groups of subjects 18 sets each. You could also create 3 blocks of 12 choice sets or 4 blocks of 9 choice sets. You can also request just one block if you want to see the correlations and frequencies among all of the attributes of all of the alternatives of a choice design.

The design can be in one of two formats. Typically, a choice design has one row for each alternative of each choice set and one column for each of the attributes. Typically, this kind of design is produced by either the \%ChoicEff or \%MktRoll macro. Alternatively, a "linear" design is an intermediate step in preparing some choice designs. \({ }^{\ddagger}\) The linear design has one row for each choice set and one column for each attribute of each alternative. Typically, the linear design is produced by the \%MktEx macro. The output from the \(\% \mathrm{MktBlock}\) macro is a data set containing the design, with the blocking variable added and hence not in the original order, with runs or choice sets nested within blocks.

The macro tries to create a blocking factor that is uncorrelated with every attribute of every alternative. In other words, the macro is trying to optimally add one additional factor, a blocking factor, to the linear design. It is trying to make a factor that is orthogonal to all of the attributes of all of the alternatives. For linear designs, you can usually ask for a blocking factor directly as just another factor in the design, and then use the \%MktLab macro to provide a name like Block, or you can use the \%MktBlock macro.

Here is an example of creating the blocking variable directly.
```

%mktex(3 ** 7, n=27, seed=350)
%mktlab(vars=x1-x6 Block)

```

Here is an example of creating a design and then blocking it.
```

%mktex(3 ** 6, n=27, seed=350)
%mktblock(data=randomized, nblocks=3, seed=377, maxiter=50)

```

The output shows that the blocking factor is uncorrelated with all of the factors in the design. This output comes from the \%MktEval macro, which is called by the \%MktBlock macro.

\footnotetext{
\({ }^{\ddagger}\) See page 87 for an illustration of linear versus choice designs.
}

Canonical Correlations Between the Factors
There are 0 Canonical Correlations Greater Than 0.316
\begin{tabular}{llllllll}
& Block & x 1 & x 2 & x 3 & x 4 & x 5 & x 6 \\
Block & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
x1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
x 2 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
x 3 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
x 4 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
x 5 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
x 6 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{tabular}
\begin{tabular}{|c|c|}
\hline & Frequencies \\
\hline Block & 999 \\
\hline x 1 & 999 \\
\hline x 2 & 999 \\
\hline x3 & 999 \\
\hline x 4 & 999 \\
\hline x5 & 999 \\
\hline x 6 & 999 \\
\hline Block x1 & \(\begin{array}{lllllllll}3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3\end{array}\) \\
\hline Block x2 & \(\begin{array}{lllllllll}3 & 3 & 3 & 3 & 3 & 3 & 3\end{array}\) \\
\hline Block x3 & \(\begin{array}{lllllllll}3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3\end{array}\) \\
\hline Block x4 & \(\begin{array}{lllllllll}3 & 3 & 3 & 3 & 3 & 3 & 3\end{array}\) \\
\hline Block x5 & \(\begin{array}{lllllllll}3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3\end{array}\) \\
\hline Block x6 & \(\begin{array}{lllllllll}3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3\end{array}\) \\
\hline x 1 x 2 & \(\begin{array}{lllllllllll}3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3\end{array}\) \\
\hline x 1 x 3 & \(\begin{array}{lllllllll}3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3\end{array}\) \\
\hline x 1 x 4 & \(\begin{array}{lllllllll}3 & 3 & 3 & 3 & 3 & 3 & 3 & 3\end{array}\) \\
\hline x 1 x 5 & \(\begin{array}{lllllllll}3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3\end{array}\) \\
\hline x1 x6 & \(\begin{array}{lllllllll}3 & 3 & 3 & 3 & 3 & 3 & 3 & 3\end{array}\) \\
\hline x2 x3 & \(\begin{array}{lllllllll}3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3\end{array}\) \\
\hline x 2 x 4 & \(\begin{array}{lllllllll}3 & 3 & 3 & 3 & 3 & 3 & 3 & \end{array}\) \\
\hline x 2 x 5 & \(\begin{array}{lllllllll}3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3\end{array}\) \\
\hline x 2 x 6 & \(\begin{array}{lllllllll}3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3\end{array}\) \\
\hline x3 x4 & \\
\hline x3 x5 & \(\begin{array}{llllllllll}3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3\end{array}\) \\
\hline x3 x6 & \(\begin{array}{lllllllll}3 & 3 & 3 & 3 & 3 & 3 & 3 & 3\end{array}\) \\
\hline x 4 x 5 & \(\begin{array}{llllllllll}3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3\end{array}\) \\
\hline x 4 x 6 & \(\begin{array}{lllllllll}3 & 3 & 3 & 3 & 3 & 3 & 3 & 3\end{array}\) \\
\hline x5 x6 & 333333333 \\
\hline \multirow[t]{2}{*}{N-Way} & \\
\hline & \(\begin{array}{llllllll}1 & 1 & 1 & 1 & 1 & 1\end{array}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Block & & x1 & x2 & x3 & x4 & x5 & x6 \\
\hline \multirow[t]{6}{*}{1} & x1 & 1 & 0.58 & 0 & 0.58 & 0.58 & 0 \\
\hline & x2 & 0.58 & 1 & 0 & 0 & 0.58 & 0.58 \\
\hline & x3 & 0 & 0 & 1 & 0 & 0 & 0 \\
\hline & x 4 & 0.58 & 0 & 0 & 1 & 0.58 & 0.58 \\
\hline & x5 & 0.58 & 0.58 & 0 & 0.58 & 1 & 0.58 \\
\hline & x6 & 0 & 0.58 & 0 & 0.58 & 0.58 & 1 \\
\hline \multirow[t]{6}{*}{2} & x 1 & 1 & 0.58 & 0 & 0.58 & 0.58 & 0 \\
\hline & x2 & 0.58 & 1 & 0 & 0 & 0.58 & 0.58 \\
\hline & x3 & 0 & 0 & 1 & 0 & 0 & 0 \\
\hline & x 4 & 0.58 & 0 & 0 & 1 & 0.58 & 0.58 \\
\hline & x5 & 0.58 & 0.58 & 0 & 0.58 & 1 & 0.58 \\
\hline & x6 & 0 & 0.58 & 0 & 0.58 & 0.58 & 1 \\
\hline \multirow[t]{6}{*}{3} & x1 & 1 & 0.58 & 0 & 0.58 & 0.58 & 0 \\
\hline & x2 & 0.58 & 1 & 0 & 0 & 0.58 & 0.58 \\
\hline & x3 & 0 & 0 & 1 & 0 & 0 & 0 \\
\hline & x4 & 0.58 & 0 & 0 & 1 & 0.58 & 0.58 \\
\hline & x5 & 0.58 & 0.58 & 0 & 0.58 & 1 & 0.58 \\
\hline & x6 & 0 & 0.58 & 0 & 0.58 & 0.58 & 1 \\
\hline
\end{tabular}

Notice that even with a perfect blocking variable like we have in this example, canonical correlations within each block will not be all zero.

Here is the blocked linear design (3 blocks of nine choice sets). Note that in the linear version of the design, there is one row for each choice set and all of the attributes of all of the alternatives are in the same row.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Block & Run & x1 & x 2 & x3 & x 4 & x5 & x 6 \\
\hline \multirow[t]{9}{*}{1} & 1 & 1 & 1 & 3 & 1 & 3 & 1 \\
\hline & 2 & 1 & 1 & 1 & 3 & 1 & 3 \\
\hline & 3 & 1 & 2 & 2 & 1 & 3 & 2 \\
\hline & 4 & 3 & 3 & 2 & 3 & 2 & 1 \\
\hline & 5 & 2 & 1 & 2 & 2 & 1 & 3 \\
\hline & 6 & 3 & 2 & 1 & 2 & 3 & 2 \\
\hline & 7 & 2 & 3 & 1 & 1 & 2 & 1 \\
\hline & 8 & 2 & 3 & 3 & 2 & 1 & 2 \\
\hline & 9 & 3 & 2 & 3 & 3 & 2 & 3 \\
\hline
\end{tabular}
\begin{tabular}{cccccccc}
Block & Run & x 1 & x 2 & x 3 & x 4 & x 5 & x 6 \\
& & & & & & & \\
2 & 1 & 2 & 1 & 3 & 1 & 2 & 2 \\
& 2 & 3 & 1 & 2 & 2 & 3 & 1 \\
& 3 & 2 & 2 & 2 & 1 & 2 & 3 \\
& 4 & 2 & 1 & 1 & 3 & 3 & 1 \\
& 5 & 3 & 3 & 3 & 2 & 3 & 3 \\
& 6 & 3 & 3 & 1 & 1 & 1 & 2 \\
& 7 & 1 & 3 & 2 & 3 & 1 & 2 \\
& 8 & 1 & 2 & 3 & 3 & 1 & 1 \\
& 9 & 1 & 2 & 1 & 2 & 2 & 3 \\
Block & Run & x 1 & x 2 & x 3 & x 4 & x 5 & x 6 \\
& & & & & & & \\
3 & 1 & 3 & 1 & 3 & 1 & 1 & 3 \\
& 2 & 2 & 3 & 2 & 3 & 3 & 3 \\
& 3 & 3 & 2 & 2 & 1 & 1 & 1 \\
& 4 & 1 & 1 & 2 & 2 & 2 & 2 \\
& 5 & 2 & 2 & 1 & 2 & 1 & 1 \\
& 6 & 2 & 2 & 3 & 3 & 3 & 2 \\
& 7 & 3 & 1 & 1 & 3 & 2 & 2 \\
& 8 & 1 & 3 & 1 & 1 & 3 & 3 \\
& 9 & 1 & 3 & 3 & 2 & 2 & 1
\end{tabular}

Next, we will create and block a choice design with two blocks of nine sets instead of blocking the linear version of a choice design.
```

%mktex(3 ** 6, n=3**6)

* Create an efficient choice design;
data key;
input (x1-x3) (\$);
datalines;
x1 x2 x3
x4 x5 x6
;
%mktroll(design=design, key=key, out=out)
%choiceff(data=out, model=class(x1-x3), nsets=18, nalts=2,
beta=zero, options=nodups, seed=151)
* Block the choice design. Ask for 2 blocks;
%mktblock(data=best, nalts=2, nblocks=2, factors=x1-x3, seed=472)

```
(Note that if this had been a branded example, and if you were running SAS version 8.2 or an earlier release, specify id=brand; do not add your brand variable to the factor list. For SAS 9.0 and later SAS releases, it is fine to add your brand variable to the factor list.)

Both the design and the blocking are not as good this time. The variable names in the output are composed of Alt, the alternative number, and the factor name. Since there are two alternatives each composed of three factors plus one blocking variable \((2 \times 3+1=7)\), a \(7 \times 7\) correlation matrix is reported. Here is some of the output.

```

* Alt1_x2 Alt2_x2 0 5 3 1 0 1 4 4 0
* Alt1_x2 Alt2_x3 2 2 4 0 2 0 2 4 2
* Alt1_x3 Alt2_x1 3 3 2 1 1 2 1 1 4
* Alt1_x3 Alt2_x2 2 5 1 2 1 1 1 3 2
* Alt1_x3 Alt2_x3 0 5 3 1 0 3 3 3 0
* Alt2_x1 Alt2_x2 1 3 1 1 3 1 3 3 2
* Alt2_x1 Alt2_x3 0 3 2 2 2 1 2 3 3
* Alt2_x2 Alt2_x3 0 3 2 3 3 3 1 2 1
N-Way
1

```

Note that in this example, the input is a choice design (as opposed to the linear version of a choice design) so the results are in choice design format. There is one row for each alternative of each choice set.

\section*{\%MktBlock Macro Options}

The following options can be used with the \%MktBlock macro.
\begin{tabular}{|l|l|}
\hline Option & Description \\
\hline alt=variable & alternative number variable \\
block=variable & block number variable \\
data=SAS-data-set & either the choice or linear design \\
factors=variable-list & factors in the design \\
id=variable-list & variables to copy to output data set \\
initblock=variable & initial blocking variable \\
iter \(=n\) & times to try to block the design \\
maxiter=n & times to try to block the design \\
nalts \(=n\) & number of alternatives in choice set \\
nblocks=n & number of blocks to create \\
next \(=n\) & where to look for the next exchange \\
out \(=\) SAS-data-set & output data set with the block numbers \\
outr=SAS-data-set & randomized output data set \\
print \(=\) print-options & printing options \\
ridge \(=n\) & ridging factor \\
seed \(=n\) & random number seed \\
set \(=\) variable & choice set number variable \\
vars=variable-list & factors in the design \\
\hline
\end{tabular}

\section*{alt \(=\) variable}
specifies the alternative number variable. If this variable is in the input data set, it is excluded from the factor list. The default is alt=Alt.

\section*{block \(=\) variable}
specifies the block number variable. If this variable is in the input data set, it is excluded from the factor list. The default is block=Block.

\section*{data \(=\) SAS-data-set}
specifies either the choice or linear design. The choice design has one row for each alternative of each choice set and one column for each of the attributes. Typically this design is produced by either the \%ChoicEff or \%MktRoll macro. For choice designs, you must also specify the nalts= option. By default, the macro uses the last data set created. The linear design has one row for each choice set and one column for each attribute of each alternative. Typically this design is produced by the \%MktEx macro. This is the design that is input into the \%MktRoll macro.

\section*{factors \(=\) variable-list}
vars \(=\) variable-list
specifies the factors in the design. By default, all numeric variables are used, except variables with names matching those in the block=, set=, and alt= options. (By default, the variables Block, Set, Run, and Alt are excluded from the factor list.) If you are using version 8.2 or an earlier SAS release
with a branded choice design (assuming the brand factor is called Brand), specify id=Brand. Do not add the brand factor to the factor list unless you are using SAS 9.0 or a later SAS release.

\section*{\(\mathbf{i d}=\) variable-list}
specifies the data= data set variables to copy to the output data set. If you are using version 8.2 or an earlier SAS release with a branded choice design (assuming the brand factor is called Brand), specify id=Brand. Do not add the brand factor to the factor list unless you are using SAS 9.0 or a later SAS release.

\section*{initblock \(=\) variable}
specifies the name of the variable in the data set that is to be used as the initial blocking variable for the first iteration.

\section*{maxiter \(=n\) \\ iter \(=n\)}
specifies the number of times to try to block the design starting with a different random blocking. By default, the macro tries five random starts, and iteratively refines each until \(D\)-efficiency quits improving, then in the end selects the blocking with the best \(D\)-efficiency.

\section*{nalts \(=n\)}
specifies the number of alternatives in each choice set. If you are inputting a choice design, you must specify nalts=, otherwise the macro assumes you are inputting a linear design.

\section*{nblocks \(=n\)}
specifies the number of blocks to create. The option nblocks=1 just reports information about the design. The nblocks= option must be specified.

\section*{next \(=n\)}
specifies how far into the design to go to look for the next exchange. The specification next=1 specifies that the macro should try exchanging the level for each run with the level for the next run and all other runs. The specification next=2 considers exchanges with half of the other runs, which makes the algorithm run more quickly. The macro considers exchanging the level for run \(i\) with run \(i+1\) then uses the next= value to find the next potential exchanges. Other values, including nonintegers can be specified as well. For example next=1.5 considers exchanging observation 1 with observations \(2,4,5\), \(7,8,10,11\), and so on. With smaller values, the macro tends to find a slightly better blocking variable at a cost of much slower run time.
out \(=S A S\)-data-set
specifies the output data set with the block numbers. The default is out=blocked. Often, you will want to specify a two-level name to create a permanent SAS data set so the design will be available later for analysis.

\section*{outr \(=\) SAS-data-set}
specifies the randomized output data set if you would like the design randomly sorted within blocks. Often, you will want to specify a two-level name to create a permanent SAS data set so the design will be available later for analysis.

\section*{print \(=\) print-options}
specifies both the \(\% \mathrm{MktBlock}\) and the \%MktEval macro printing options, which control the printing of the results. The default is print=normal. Values include:
```

corr canonical correlations
list list of big canonical correlations
freqs long frequencies list
summ frequency summaries
block canonical correlations within blocks
design blocked design
note blocking note
all all of the above
noprint no printed output
normal corr list summ block design note
short corr summ note

```
ridge \(=n\)
specifies the value to add to the diagonal of \(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\) to make it nonsingular. Usually, you will not need to change this value. If you do, you probably will not notice any effect. Specify ridge=0 to use a generalized inverse instead of ridging. The default is ridge \(=0.01\).

\section*{seed \(=n\)}
specifies the random number seed. By default, seed=0, and clock time is used to make the random number seed. By specifying a random number seed, results should be reproducible within a SAS release for a particular operating system. However, due to machine differences, some results may not be exactly reproducible on other machines, although you would expect the efficiency differences to be slight.

\section*{set \(=\) variable}
specifies the choice set number variable. When nalts= is specified, the default is Set, otherwise the default is Run. If this variable is in the input data set, it is excluded from the factor list.

\section*{\%MktBlock Macro Notes}

This macro specifies options nonotes throughout most of its execution. If you want to see all of the notes, submit the statement \%let mktopts = notes; before running the macro.

\section*{\%MktDes Macro}

The \%MktDes autocall macro creates efficient experimental designs. Usually, we will not need to call the \%MktDes macro directly. Instead, we will usually use the \%MktEx autocall macro, which calls the \%MktDes macro as one of its many tools. At the heart of the \%MktDes macro are PROC PLAN, PROC FACTEX, and PROC OPTEX. We use a macro instead of calling these procedures directly because the macro has a simpler syntax.

The \%MktDes macro creates efficient experimental designs. You specify the names of the factors and the number of levels for each factor. You also specify the number of runs you want in your final design. Here for example is how you can create a design in 18 runs with 2 two-level factors (x 1 and x 2) and 3 three-level factors (\(\mathrm{x} 3, \mathrm{x} 4\), and x 5).
```

%mktdes(factors=x1-x2=2 x3-x5=3, n=18)

```

You can also optionally specify interactions that you want to be estimable. The macro creates a candidate design in which every effect you want to be estimable is estimable, but the candidate design is bigger than you want. By default, the candidate set is stored in a SAS data set called CAND1. The macro then uses PROC OPTEX to search the candidate design for an efficient final design. By default, the final experimental design is stored in a SAS data set called DESIGN.

When the full-factorial design is small (by default less than 2189 runs, although sizes up to 5000 or 6000 runs are reasonably small), the experimental design problem is straightforward. First, the macro uses PROC PLAN to create a full-factorial candidate set. Next, PROC OPTEX searches the full-factorial candidate set. For very small problems (a few hundred candidates) PROC OPTEX will often find the optimal design, and for larger problems, it may not find the optimal design, but given sufficient iteration (for example, specify iter \(=100\) or more) it will find very good designs. Run time will typically be a few seconds or a few minutes, but it could be longer. Here is a typical example of using the \%MktDes macro to find an optimal nonorthogonal design when the full-factorial design is small (108 runs):
*---2 two-level factors and 3 three-level factors in 18 runs---;
\(\%\) mktdes (factors \(=x 1-x 2=2 \mathrm{x} 3-\mathrm{x} 5=3, \mathrm{n}=18\), maxiter=500)
When the full-factorial design is larger, the macro uses PROC FACTEX to create a fractional-factorial candidate set. In those cases, the methods found in the \%MktEx macro usually make better designs than those found with the \%MktDes macro.

\section*{\%MktDes Macro Options}

The following options can be used with the \%MktDes macro.
\begin{tabular}{|c|c|}
\hline Option & Description \\
\hline ```
big=n
cand=SAS-data-set
classopts=options
coding=name
examine=I | V
facopts=options
factors=factor-list
generate \(=\) options
interact=interaction-list
iter=n
keep \(=n\)
maxiter=n
method=name
\(\mathrm{n}=n \mid\) SATURATED
nlev=n
options=options-list
otherfac=variable-list
otherint=terms
out=SAS-data-set
procopts=options
run= procedure-list
seed \(=n\)
size= \(n \mid\) MIN
step \(=n\)
where \(=\) where-clause
``` & \begin{tabular}{l}
size of big candidate set candidate design \\
class statement options \\
coding \(=\) option \\
matrices that you want to examine \\
PROC FACTEX statement options \\
factors and levels for each factor \\
generate statement options \\
interactions that must be estimable \\
number of designs \\
number of designs to keep \\
number of designs \\
search method \\
number of runs \\
number of levels for pseudo-factors \\
binary options \\
other factors \\
multi-step interaction terms \\
output experimental design \\
PROC OPTEX statement options \\
list of procedures that may be run \\
random number seed \\
candidate-set size \\
step number \\
where clause
\end{tabular} \\
\hline
\end{tabular}

\section*{\(\operatorname{big}=n\)}
specifies the size at which the candidate set is considered to be big. By default, big=2188. If the size of the full-factorial design is less than or equal to this size, and if PROC PLAN is in the run= list, the macro uses PROC PLAN instead of PROC FACTEX to create the candidate set. The default of 2188 is \(\max \left(2^{11}, 3^{7}\right)+1\). Specifying values as large as big=6000 or even slightly more is often reasonable. However, run time is slower as the size of the candidate set increases. The \%MktEx macro coordinateexchange algorithm will usually work better than a candidate-set search when the full-factorial design has more than several thousand runs.

\section*{cand \(=\) SAS-data-set}
specifies the output data set with the candidate design (from PROC FACTEX or PROC PLAN). The default name is Cand followed by the step number, for example: Cand1 for step 1, Cand2 for step 2, and so on. You should only use this option when you are reading an external candidate set. When you specify step= values greater than 1, the macro assumes the default candidate set names, CAND1, CAND2, and so on, were used in previous steps. Specify just a data set name, no data set options.

\section*{classopts \(=\) options}
specifies PROC OPTEX class statement options. The default, is classopts=param=orthref. You probably never want to change this option.

\section*{coding \(=\) name}
specifies the PROC OPTEX coding= option. This option is usually not needed.

\section*{examine \(=\mathrm{I} \mid \mathrm{V}\)}
specifies the matrices that you want to examine. The option examine=I prints the information matrix, \(\mathbf{X}^{\prime} \mathbf{X}\); examine \(=\mathrm{V}\) prints the variance matrix, \(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\); and examine \(=\mathrm{I} \mathrm{V}\) prints both. By default, these matrices are not printed.

\section*{facopts \(=\) options}
specifies PROC FACTEX statement options.

\section*{factors \(=\) factor-list}
specifies the factors and the number of levels for each factor. The factors= option must be specified. All other options are not required. Here is a simple example of creating a design with 10 two-level factors.
```

%mktdes(factors=x1-x10=2)

```

First, a factor list, which is a valid SAS variable list, is specified. The factor list must be followed by an equal sign and an integer, which gives the number of levels. Multiple lists can be specified. For example, to create 5 two-level factors, 5 three-level factors, and 5 five-level factors, specify:
```

%mktdes(factors=x1-x5=2 x6-x10=3 x11-x15=5)

```

By default, this macro creates each factor in a fractional-factorial candidate set from a minimum number of pseudo-factors. Pseudo-factors are not output; they are used to create the factors of interest and then discarded. For example, with nlev=2, a three-level factor \(x 1\) is created from 2 two-level pseudo-factors ( 1 and \(\_2\) ) and their interaction by coding down:
```

(_1=1, _2=1) -> x1=1
(_1=1, _2=2) -> x1=2
(_1=2, _2=1) -> x1=3
(_1=2, _2=2) -> x1=1

```

This creates imbalance - the 1 level appears twice as often as 2 and 3 . Somewhat better balance can be obtained by instead using three pseudo-factors. The number of pseudo-factors may be specified in parentheses after the number of levels. Example:
```

%mktdes(factors=x1-x5=2 x6-x10=3(3))

```

The levels 1 to 8 are coded down to 12312313 , which is better balanced. The cost is candidate-set size may increase and efficiency may actually decrease. Some researchers are willing to sacrifice a little bit of efficiency in order to achieve better balance.

\section*{generate \(=\) options}
specifies the PROC OPTEX generate statement options. By default, additional options are not added to the generate statement.

\section*{interact \(=\) interaction-list}
specifies interactions that must be estimable. By default, no interactions are guaranteed to be estimable.
Examples:
```

interact=x1*x2

```
interact \(=x 1 * x 2\) x3*x4*x5
interact \(=x 1|x 2| x 3|x 4| x 5 @ 2\)

The interaction syntax is like PROC GLM's and many of the other modeling procedures. It uses "*" for simple interactions ( \(\mathrm{x} 1 * \mathrm{x} 2\) is the interaction between x 1 and x 2 ), " 1 " for main effects and interactions ( \(\mathrm{x} 1|\mathrm{x} 2| \mathrm{x} 3\) is the same as \(\mathrm{x} 1 \mathrm{x} 2 \mathrm{x} 1 * \mathrm{x} 2 \mathrm{x} 3 \mathrm{x} 1 * \mathrm{x} 3 \mathrm{x} 2 * \mathrm{x} 3 \mathrm{x} 1 * \mathrm{x} 2 * \mathrm{x} 3\) ) and "@" to eliminate higher-order interactions ( \(\mathrm{x} 1|\mathrm{x} 2| \mathrm{x} 3 @ 2\) eliminates \(\mathrm{x} 1 * \mathrm{x} 2 * \mathrm{x} 3\) and is the same as \(\mathrm{x} 1 \mathrm{x} 2 \mathrm{x} 1 * \mathrm{x} 2 \mathrm{x} 3 \mathrm{x} 1 * \mathrm{x} 3\) \(\mathrm{x} 2 * x 3\) ). The specification "@2" allows only main effects and two-way interactions. Only "@" values of 2 or 3 are allowed.

\section*{iter \(=n\)}
maxiter \(=n\)
specifies the PROC OPTEX iter= option which creates \(n\) designs. By default, iter=10.

\section*{keep \(={ }_{n}\)}
specifies the PROC OPTEX keep= option which keeps the \(n\) best designs. By default, keep=5.

\section*{nlev= \(n\)}
specifies the number of levels from which factors are constructed through pseudo-factors and coding down. The value must be a prime or a power of a prime: \(2,3,4,5,7,8,9,11 \ldots\). This option is used with PROC FACTEX:
```

factors factors / nlev=\&nlev;

```

By default, the macro uses the minimum prime or power of a prime from the factors= list or 2 if no suitable value is found.

\section*{method = name}
specifies the PROC OPTEX method= search method option. The default is method=m_Fedorov (modified Fedorov).

\section*{\(\mathbf{n}=n \mid\) SATURATED}
specifies the PROC OPTEX \(n=\) option, which is the number of runs in the final design. The default is the PROC OPTEX default and depends on the problem. Typically, you will not want to use the default. Instead, you should pick a value using the information produced by the \(\%\) MktRuns macro as guidance (see page 600). The \(n=s a t u r a t e d ~ o p t i o n ~ c r e a t e s ~ a ~ d e s i g n ~ w i t h ~ t h e ~ m i n i m u m ~ n u m b e r ~ o f ~ r u n s . ~\)

\section*{options \(=\) options-list}
specifies binary options. By default, none of these options are specified. Specify one or more of the following values after options=.
check
checks the efficiency of a given design, specified in cand=.
nocode
suppresses printing the PROC PLAN, PROC FACTEX, and PROC OPTEX code.
allcode
shows all code, even code that will not be run.

\section*{otherfac \(=\) variable-list}
specifies other terms to mention in the factors statement of PROC FACTEX. These terms are not guaranteed to be estimable. By default, there are no other factors.

\section*{otherint \(=\) terms}
specifies interaction terms that will only be specified with PROC OPTEX for multi-step macro invocations. By default, no interactions are guaranteed to be estimable. Normally, interactions that are specified via the interact= option affect both the PROC FACTEX and the PROC OPTEX model statements. In multi-step problems, part of an interaction may not be in a particular PROC FACTEX step. In that case, the interaction term must only appear in the PROC OPTEX step. For example, if x 1 is created in one step and x 4 is created in another, and if the \(\mathrm{x} 1 * \mathrm{x} 4\) interaction must be estimable, specify otherint \(=\mathrm{x} 1 * x 4\) on the final step, the one that runs PROC OPTEX.
```

\%mktdes (step=1, factors=x1-x3=2, $n=30$, run=factex)
\%mktdes(step=2, factors=x4-x6=3, $n=30$, run=factex)
\%mktdes(step=3, factors=x7-x9=5, n=30, run=factex optex,
otherint=x1*x4)

```
out \(=\) SAS-data-set
specifies the output experimental design (from PROC OPTEX). By default, out=design. Often, you will want to specify a two-level name to create a permanent SAS data set so the design will be available later for analysis.
procopts \(=\) options
specifies PROC OPTEX statement options. By default, no options are added to the PROC OPTEX statement.

\section*{run \(=\) procedure-list}
specifies the list of procedures that the macro may run. Normally, the macro runs either PROC FACTEX or PROC PLAN and then PROC OPTEX. By default, run=plan factex optex. You can skip steps by omitting procedure names from this list. When both PLAN and FACTEX are in the list, the macro chooses between them based on the size of the full-factorial design and the value of big=.

When PLAN is not in the list, the macro generates code for PROC FACTEX.
seed= \(n\)
specifies the random number seed. By default, seed=0, and clock time is used to make the random number seed. By specifying a random number seed, results should be reproducible within a SAS release for a particular operating system. However, due to machine differences, some results may not be exactly reproducible on other machines, although you would expect the efficiency differences to be slight.

\section*{size \(=n \mid\) MIN}
specifies the candidate-set size. Start with the default size=min and see how big that design is. If you want, subsequently you can specify larger values that are nlev=n multiples of the minimum size. This option is used with PROC FACTEX:
```

size design=\&size;

```

When \(n l e v=n\), increase the size= value by a factor of \(n\) each time. For example, when \(\mathrm{nlev}=2\), increase the size \(=\) value by a factor of two each time. If size=min implies size=128, then \(256,512,1024\), and 2048 are reasonable sizes to try. Integer expressions like size \(=128 * 4\) are allowed.

\section*{step \(=n\)}
specifies the step number. By default, there is only one step. However, sometimes, a better design can be found using a multi-step approach. Do not specify the cand= option on any step of a multi-step run. Consider the problem of making a design with 3 two-level factors, 3 three-level factors, and 3 five-level factors. The simplest approach is to do something like this - create a design from two-level factors using pseudo-factors and coding down.
```

%mktdes(factors=x1-x3=2 x4-x6=3 x7-x9=5, n=30)

```

However, for small problems like this, the following three-step approach will usually be better.
```

%mktdes(step=1, factors=x1-x3=2, n=30, run=factex)
%mktdes(step=2, factors=x4-x6=3, n=30, run=factex)
%mktdes(step=3, factors=x7-x9=5, n=30, run=factex optex)

```

Note however, that the following \%MktEx macro call will usually be better still.
\%mktex (2 2223535555 , \(\mathrm{n}=30\) )
The first \%MktDes macro step uses PROC FACTEX to create a fractional-factorial design for the twolevel factors. The second step uses PROC FACTEX to create a fractional-factorial design for the three-level factors and cross it with the two-level factors. The third step uses PROC FACTEX to create a fractional-factorial design for the five-level factors and cross it with the design for the two and three-level factors and then run PROC OPTEX.

Each step globally stores two macro variables (\&class1 and \&inter1 for the first step, \&class2 and \&inter2 for the second step, ...) that are used to construct the PROC OPTEX class and model statements. When step \(>1\), variables from the previous steps are used in the class and model statements. In this example, the following PROC OPTEX code is created by step 3 :
```

proc optex data=Cand3;
class
x1-x3
x4-x6
x7-x9
/ param=orthref;
model
x1-x3
x4-x6
x7-x9
;
generate n=30 iter=10 keep=5 method=m_fedorov;
output out=Design;
run; quit;

```

This step uses the previously stored macro variables \&class1=x1-x3 and \&class2=x4-x6.
where = where-clause
specifies a SAS where clause for the candidate design, which is used to restrict the candidates. By default, the candidate design is not restricted.

\section*{\%MktDes Macro Notes}

This macro specifies options nonotes throughout much of its execution. If you want to see all of the notes, submit the statement \%let mktopts = notes; before running the macro.

\section*{\%MktDups Macro}

The \%MktDups autocall macro detects duplicate choice sets and duplicate alternatives within generic choice sets. See page 340 for an example. To illustrate, consider a simple experiment with these two choice sets. These choice sets are completely different and are not duplicates.
a b c
a b c
121
111
212
222
112
221
211
122

Now consider these two choice sets:
\begin{tabular}{llllll}
\(a\) & \(b\) & \(c\) & \(a\) & \(b\) & \(c\) \\
1 & 2 & 1 & 2 & 1 & 2 \\
2 & 1 & 2 & 1 & 1 & 2 \\
1 & 1 & 2 & 2 & 1 & 1 \\
2 & 1 & 1 & 1 & 2 & 1
\end{tabular}

They are the same for a generic study because all of the same alternatives are there, they are just in a different order. However, for a branded study they are different. For a branded study, there would be a different brand for each alternative, so the choice sets would be the same only if all the same alternatives appeared in the same order. For both a branded and generic study, these choice sets are duplicates:
\begin{tabular}{llllll}
\(a\) & \(b\) & \(c\) & \(a\) & \(b\) & \(c\) \\
1 & 2 & 1 & 1 & 2 & 1 \\
2 & 1 & 2 & 2 & 1 & 2 \\
1 & 1 & 2 & 1 & 1 & 2 \\
2 & 1 & 1 & 2 & 1 & 1
\end{tabular}

Now consider these choice sets for a generic study.
\begin{tabular}{llllll}
\(a\) & \(b\) & \(c\) & \(a\) & \(b\) & \(c\) \\
1 & 2 & 1 & 1 & 2 & 1 \\
2 & 1 & 1 & 1 & 2 & 1 \\
1 & 1 & 2 & 1 & 1 & 2 \\
2 & 1 & 1 & 2 & 1 & 1
\end{tabular}

First, each of these choice sets has duplicate alternatives (211 in the first and 121 in the second). Second, these two choice sets are flagged as duplicates, even though they are not exactly the same. They are flagged as duplicates because every alternative in choice set one is also in choice set two, and every alternative in choice set two is also in choice set one. In generic studies, two choice sets are considered duplicates unless one has one or more alternatives that are not in the other choice set.

Here is an example. A design is created with the \%ChoicEff macro choice-set-swapping algorithm for a branded study, then the \%MktDups macro is run to check for and eliminate duplicate choice sets.
```

%mktex(3 ** 9, n=27, seed=424)
data key;
input (Brand x1-x3) (\$);
datalines;
Acme x1 x2 x3
Ajax x4 x5 x6
Widgit x7 x8 x9
;
%mktroll(design=randomized, key=key, alt=brand, out=cand);
%choiceff(data=cand, model=class(brand x1-x3), seed=420,
nsets=18, nalts=3, beta=zero);
proc freq; tables set; run;
%mktdups(branded, data=best, factors=brand x1-x3, nalts=3, out=out)
proc freq; tables set; run;

```

The first PROC FREQ output shows us that several candidate choice sets occur more than once in the design.


The \%MktDups macro prints the following information to the log:
```

Design: Branded
Factors: brand x1-x3
Brand
x1 x2 x3
Duplicate Sets: 7

```

The output from the \%MktDups macro contains the following table:
\(\left.\begin{array}{rrr}\hline \text { Choice } \\
\text { Set }\end{array} \begin{array}{r}\text { Duplicate } \\
\text { Choice Sets } \\
\text { To Delete }\end{array}\right]\)\begin{tabular}{c} 
\\
1
\end{tabular}

The first line of the first table tells us that this is a branded design as opposed to generic. The second line tells us the factors as specified on the factors= option. These are followed by the actual variable names for the factors. The last line reports the number of duplicates. The second table tells us that choice set 1 is the same as choice set 5 . Similarly, 2 and 16 are the same as are 3,9 , and 17 , and so on. The out= data set will contain the design with the duplicate choice set eliminated.

Now consider an example with purely generic alternatives.
```

%mktex(2 ** 5, n=2**5, seed=109)
%mktlab(int=f1-f4)
%choiceff(data=final, model=class(x1-x5), seed=93,
nsets=42, flags=f1-f4, beta=zero);
%mktdups(generic, data=best, factors=x1-x5, nalts=4, out=out)

```

The macro produces the following tables:
```

Design:
Factors: x1-x5
x1 x2 x3 x4 x5
Sets w Dup Alts: 1
Duplicate Sets: 1

```
\begin{tabular}{rr} 
& Duplicate \\
Choice & Choice Sets \\
Set & To Delete \\
2 & 25
\end{tabular}

For each choice set listed in the choice set column, either the other choice sets it duplicates are listed or the word Alternatives is printed if the problem is with duplicate alternatives.

Here are just the choice sets with duplication problems:
proc print data=best;
var x1-x5;
id set; by set;
where set in (2, 25,39 );
run;
\begin{tabular}{|c|c|c|c|c|c|}
\hline Set & x 1 & x 2 & x3 & x4 & x5 \\
\hline 2 & 1 & 2 & 1 & 1 & 1 \\
\hline & 2 & 2 & 1 & 1 & 1 \\
\hline & 1 & 1 & 2 & 2 & 2 \\
\hline & 2 & 1 & 2 & 2 & 2 \\
\hline 25 & 1 & 1 & 2 & 2 & 2 \\
\hline & 2 & 1 & 2 & 2 & 2 \\
\hline & 2 & 2 & 1 & 1 & 1 \\
\hline & 1 & 2 & 1 & 1 & 1 \\
\hline 39 & 1 & 1 & 2 & 1 & 1 \\
\hline & 1 & 1 & 2 & 1 & 1 \\
\hline & 2 & 2 & 1 & 2 & 2 \\
\hline & 2 & 2 & 1 & 2 & 2 \\
\hline
\end{tabular}

You can see that the macro detects duplicates even though the alternatives do not always appear in the same order in the different choice sets.

Now consider another example.
```

%mktex(2 ** 6, n=2**6)
data key;
input (x1-x2) (\$) @@;
datalines;
x1 x2 x3 x4 x5 x6
;
%mktroll(design=design, key=key, out=cand);
%mktdups(generic, data=cand, factors=x1-x2, nalts=3, out=out)
proc print; by set; id set; run;

```

Here is some of the output. The output lists, for each set of duplicates, the choice set that will be kept (in the first column) and all the matching choice sets that will be deleted (in the second column).
\begin{tabular}{ll} 
Design: & Generic \\
Factors: & x1-x2 \\
& x1 x2 \\
Sets w Dup Alts: & 40 \\
Duplicate Sets: & 50
\end{tabular}
\begin{tabular}{rr} 
& Duplicate \\
Choice & Choice Sets \\
Set & To Delete
\end{tabular}

1
Alternatives

2
Alternatives

Here are the unique choice sets.
\begin{tabular}{ccccc}
\hline Set & -Alt_ & x1 & x2 \\
& 7 & 1 & 1 & 1 \\
2 & 1 & 2 \\
3 & 2 & 1
\end{tabular}
\begin{tabular}{cccc}
8 & 1 & 1 & 1 \\
& 2 & 1 & 2 \\
& 3 & 2 & 2 \\
12 & 1 & 1 & 1 \\
& 2 & 2 & 1 \\
& 3 & 2 & 2 \\
& 38 & 1 & 1 \\
& 2 & 2 & 1 \\
& 3 & 2 & 2
\end{tabular}

This next example creates a conjoint design \({ }^{\S}\) and tests it for duplicates.
\%mktex ( 3 ** 32 ** 2, n=19, seed=121)
\%mktdups(linear, factors=x1-x5);
Design: Linear
Factors: x1-x5
x1 x2 x3 x4 x5
Duplicate Runs: 2
\begin{tabular}{rr} 
& \begin{tabular}{r} 
Duplicate \\
Runs
\end{tabular} \\
Run & \begin{tabular}{r} 
To Delete
\end{tabular} \\
3 & 4 \\
10 & 11
\end{tabular}

\section*{\%MktDups Macro Options}

The following options can be used with the \%MktDups macro.
\begin{tabular}{|l|l|}
\hline Option & Description \\
\hline data=SAS-data-set & input choice design \\
factors=variable-list & factors in the design \\
nalts=n & number of alternatives \\
options & binary options \\
out=SAS-data-set & output data set \\
outlist=SAS-data-set & output data set with duplicates \\
vars=variable-list & factors in the design \\
\hline
\end{tabular}

\footnotetext{
\({ }^{\text {§ }}\) Normally, we would use 18 runs and not a prime number like 19 that is not divisible by any of the numbers of levels, 2 and 3 . We picked a silly number like 19 to ensure duplicates for this example.
}

\section*{Positional Parameter}

The options list is a positional parameter. This means it must come first, and unlike all other parameters, it is not specified after a name and an equal sign.

\section*{options}

For the first option, specify one or more of the following. You may specify noprint and one of the following: generic, branded, or linear.

\section*{branded}
specifies that since one of the factors is brand, the macro only needs to compare corresponding alternatives in each choice set.

\section*{generic}
specifies a generic design and is the default. This means that there are no brands, so options are interchangeable, so the macro needs to compare each alternative with every other alternative in every choice set.

\section*{linear}
specifies a linear not a choice design. Specify linear for a full-profile conjoint design, for an ANOVA design, or for the linear version of a branded choice design.
noprint
specifies no printed output. This option will be used when you are only interested in the output data set or macro variable.

Example:
\%mktdups(branded noprint, nalts=3)

\section*{Required Options}

This next option is mandatory with choice designs.

\section*{nalts \(=n\)}
specifies the number of alternatives. This option must be specified with generic or branded designs. It is ignored with linear designs. For generic or branded designs, the data= data set must contain nalts= observations for the first choice set, nalts= observations for the second choice set, and so on.

\section*{Other Options}

Here are the other options.
data \(=\) SAS-data-set
specifies the input choice design. By default, the macro uses the last data set created.
out= SAS-data-set
specifies an output data set that contains the design with duplicate choice sets excluded. By default, no data set is created, and the macro just reports on duplicates. Often, you will want to specify a two-level name to create a permanent SAS data set so the design will be available later for analysis.
outlist \(=S A S\)-data-set
specifies the output data set with the list of duplicates. By default, outlist=outdups.
vars= variable-list
factors \(=\) variable-list
specifies the factors in the design. By default, all numeric variables are used.

\section*{\%MktDups Macro Notes}

This macro specifies options nonotes throughout most of its execution. If you want to see all of the notes, submit the statement \%let mktopts = notes; before running the macro.

\section*{\%MktEval Macro}

The \%MktEval autocall macro helps you evaluate an experimental design. There are numerous examples of its usage from pages 113 through 287. The \%MktEval macro reports on balance and orthogonality. Typically, you will call it immediately after running the \(\% \mathrm{MktEx}\) macro. The output from this macro contains two default tables. The first table shows the canonical correlations between pairs of coded factors. A canonical correlation is the maximum correlation between linear combinations of the coded factors. See page 90 for more information about canonical correlations. All zeros off the diagonal show that the design is orthogonal for main effects. Off-diagonal canonical correlations greater than 0.316 \(\left(r^{2}>0.1\right)\) are listed in a separate table.
For nonorthogonal designs and designs with interactions, the canonical-correlation matrix is not a substitute for looking at the variance matrix with the \%MktEx macro. It just provides a quick and more-compact picture of the correlations between the factors. The variance matrix is sensitive to the actual model specified and the coding. The canonical-correlation matrix just tells you if there is some correlation between the main effects. When is a canonical correlation too big? You will have to decide that for yourself. In part, the answer depends on the factors and how the design will be used. A high correlation between the client's and the main competitor's price factor is a serious problem meaning you will need to use a different design. In contrast, a moderate correlation in a choice design between one brand's minor attribute and another brand's minor attribute may be perfectly fine.

The macro also prints one-way, two-way and \(n\)-way frequencies. Equal one-way frequencies occur when the design is balanced. Equal two-way frequencies occur when the design is orthogonal. Equal \(n\)-way frequencies, all equal to one, occur when there are no duplicate runs or choice sets.

Here is a typical usage:
```

%mktex(2 2 3 ** 6, n=18, unbalanced=0, seed=289)

```
\%mkteval;
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & x1 & x2 & x3 & x4 & x5 & x6 & x7 & x8 \\
\hline x1 & 1 & 0.33 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline x2 & 0.33 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline x3 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
\hline x4 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
\hline x5 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\hline x6 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
\hline x7 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
\hline x8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline
\end{tabular}

\footnotetext{
Canonical Correlations > 0.316 Between the Factors There is 1 Canonical Correlation Greater Than 0.316
}
\[
\begin{array}{rrrr} 
& & \text { r } & \text { r Square } \\
\text { x1 } & \text { x2 } & 0.33 & 0.11
\end{array}
\]

\author{
Summary of Frequencies \\ There is 1 Canonical Correlation Greater Than 0.316 \\ * - Indicates Unequal Frequencies
}

\section*{Frequencies}


All factors in this design are perfectly balanced, and almost all are orthogonal, but x 1 and x 2 are correlated with each other.

\section*{\%MktEval Macro Options}

The following options can be used with the \%MktEval macro.
\begin{tabular}{|l|l|}
\hline Option & Description \\
\hline blocks=variable & blocking variable \\
data=SAS-data-set & input data set with design \\
factors=variable-list & factors in the design \\
format=format & format for canonical correlations \\
freqs=frequency-list & frequencies to print \\
list=n & minimum canonical correlation to list \\
outcb=SAS-data-set & within-block canonical correlations \\
outcorr=SAS-data-set & canonical correlation matrix \\
outfreq=SAS-data-set & frequencies \\
outfsum=SAS-data-set & frequency summaries \\
outlist=SAS-data-set & list of largest canonical correlations \\
print=list & controls the printing of the results \\
vars=variable-list & list of the factors \\
\hline
\end{tabular}

\section*{blocks \(=\) variable}
specifies a blocking variable. This option prints separate canonical correlations within each block. By default, there is one block.

\section*{data \(=\) SAS-data-set}
specifies the input SAS data set with the experimental design. By default, the macro uses the last data set created.

\section*{factors \(=\) variable-list}
vars \(=\) variable-list
specifies a list of the factors in the experimental design. The default is all of the numeric variables in the data set.

\section*{freqs \(=\) frequency-list}
specifies the frequencies to print. By default, freqs=1 2 n , and 1 -way, 2 -way, and \(n\)-way frequencies are printed. Do not specify the exact number of ways instead of \(n\). For ways other than \(n\), the macro checks for and prints zero cell frequencies. For \(n\)-ways, the macro does not output or print zero frequencies. Only the full-factorial design will have nonzero cells, so specifying something like freqs=1 220 will make the macro take a long time, and it will try to create huge data sets and will probably run out of memory or disk space before it is done. However, freqs=1 2 n runs very reasonably.

\section*{format \(=\) format}
specifies the format for printing canonical correlations. The default format is 4.2.

\section*{list \(={ }_{n}\)}
specifies the minimum canonical correlation to list. The default is 0.316 , the square root of \(r^{2}=0.1\).
outcorr \(=\) SAS-data-set
specifies the output SAS data set for the canonical correlation matrix. The default data set name is CORR.
outcb \(=S A S\)-data-set
specifies the output SAS data set for the within-block canonical correlation matrices. The default data set name is CB.

\section*{outlist \(=S A S\)-data-set}
specifies the output data set for the list of largest canonical correlations. The default data set name is LIST.
outfreq \(=S A S\)-data-set
specifies the output data set for the frequencies. The default data set name is FREQ.

\section*{outfsum \(=S A S\)-data-set}
specifies the output data set for the frequency summaries. The default data set name is FSUM.
print \(=\) short|corr|list|freqs|summ|all
controls the printing of the results. Specify one or more values from the following list.
```

corr prints the canonical correlations matrix.
block prints the canonical correlations within block.
list prints the list of canonical correlations greater than the list= value.
freqs prints the frequencies, specified by the freqs= option.
summ prints the frequency summaries.
all prints all of the above.
short is the default and is equivalent to: corr list summ block.
noprint specifies no printed output.

```

By default, the frequency list, which contains the factor names, levels, and frequencies is not printed, but the more compact frequency summary list, which contains the factors and frequencies but not the levels is printed.

\section*{\%MktEval Macro Notes}

This macro specifies options nonotes throughout most of its execution. If you want to see all of the notes, submit the statement \%let mktopts = notes; before running the macro.

\section*{\%MktEx Macro}

The \%MktEx autocall macro is designed for marketing researchers and any one else who wants to make good, efficient experimental designs. There are numerous examples of its usage from pages 110 through 338. The \%MktEx macro is designed to be very simple to use and to run in seconds for trivial problems, minutes for small problems, and in less than an hour for larger and difficult problems. This macro is a full-featured linear designer that can handle simple problems like main-effects designs and more complicated problems including designs with interactions and restrictions on which levels can appear together. The macro is particularly designed to easily create the kinds of linear designs that marketing researches need for conjoint and choice experiments. For any linear design problem, you can simply run the macro once, specifying only the number of runs and the numbers of levels of all the factors. You will no longer have to try different algorithms and different approaches to see which one works best. The macro does all of that for you. Kuhfeld, Tobias, and Garratt (2003) state on page 40 "The best approach to design creation is to use the computer as a tool along with traditional design skills, not as a substitute for thinking about the problem." With the \%MktEx macro, we try to automate some of the thought processes of the expert designer.

Here is an example of using the \(\% \mathrm{MktEx}\) macro to create a design with 5 two-level factors, 4 three-level factors, 3 five-level factors, 2 six-level factors, all in 60 runs (rows or conjoint profiles or choice sets).
```

%mktex(2 ** 5 3 ** 4 5 5 5 6 6, n=60)

```

The notation \(m * * \mathrm{n}\) means \(m^{n}\) or \(n m\)-level factors. For example \(2 * * 5\) means \(2 \times 2 \times 2 \times 2 \times 2\) or 5 two-level factors.

The \%MktEx macro creates efficient linear experimental designs using several approaches. The macro will try to directly create an orthogonal design, it will search a set of candidate runs (rows of the design), and it will use a coordinate-exchange algorithm using both random initial designs and also a partial orthogonal design initialization. The macro stops if at any time it finds a perfect, \(100 \%\) efficient, orthogonal and balanced design. This first phase is the algorithm search phase. In it, the macro determines which approach is working best for this problem. At the end of this phase, the macro chooses the method that has produced the best design and performs another set of iterations using exclusively the chosen approach. Finally, the macro performs a third set of iterations where it takes the best design it found so far and tries to improve it.

In all phases, the macro attempts to optimize \(D\)-efficiency (sometimes known as D-optimality), which is a standard measure of the goodness of the experimental design. As \(D\)-efficiency increases, the standard errors of the parameter estimates in the linear model decrease. A perfect design is orthogonal and balanced and has \(100 \% D\)-efficiency. A design is orthogonal when all of the parameter estimates are uncorrelated. A design is balanced when all of the levels within each of the factors occur equally often. A design is orthogonal and balanced when the variance matrix, which is proportional to \(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\) is diagonal, where \(\mathbf{X}\) is a suitable orthogonal coding (see page 91 ) of the design matrix. See page 84 and also Kuhfeld, Tobias, and Garratt (1994), which starts on page 39, for more information on efficient experimental designs.

For most problems, you only need to specify the levels of all the factors and the number of runs. For more complicated problems, you may need to also specify the interactions that you want to be estimable or restrictions on which levels may not appear together. Other than that, you should not need any other options for most problems. This macro is not like other design tools that you have to tell what to do. With this macro, you just tell it what you want, and it figures out a good way to do it. For some problems, the sophisticated user, with a lot of work, may be able to adjust the options
to come up with a better design. However, this macro should always produce a very good design with minimal effort for even the most unsophisticated users.

The \%MktEx macro has the world's largest catalog of orthogonal arrays. The orthogonal arrays are constructed using methods and arrays from a variety of sources, for example: Dey (1985), Wang and Wu (1991), Wang (1996a, 1996b), Hedayat, Sloane, and Stufken (1999), De Cock and Stufken (2000), Zhang, Pang, and Wang (2001), Xu (2002), Sloane (2002), and the SAS FACTEX procedure. Many of the designs were created using difference schemes and the methods of Wang and Wu (1991) and Wang (1996a, 1996b). Other relevant references include Hadamard (1893), Rao (1947), Addelman (1962a, 1962b), Bose (1947), Taguchi (1987), Suen (1989a, 1989b), and Wang and Wu (1989).

When \(\mathrm{n}=n\) is a multiple of 4 , the \(\% \mathrm{MktEx}\) macro can construct orthogonal designs with up to \(n-1\) twolevel factors. The two-level designs are constructed from Hadamard matrices (Hadamard, 1893; Paley, 1933; Williamson, 1944; Hedayat, Sloane, and Stufken, 1999). The next table shows the available sizes up through \(\mathrm{n}=1000\) :
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{16}{|c|}{Hadamard Matrix Sizes Up to n=1000} \\
\hline 4 & 8 & 12 & 16 & 20 & 24 & 28 & 32 & 36 & 40 & 44 & 48 & 52 & 56 & 60 & 64 \\
\hline 68 & 72 & 76 & 80 & 84 & 88 & 92 & 96 & 100 & 104 & 108 & 112 & 116 & 120 & 124 & 128 \\
\hline 132 & 136 & 140 & 144 & 148 & 152 & 156 & 160 & 164 & 168 & 172 & 176 & 180 & 184 & 188 & 192 \\
\hline 196 & 200 & 204 & 208 & 212 & 216 & 220 & 224 & 228 & 232 & 236 & 240 & 244 & 248 & 252 & 256 \\
\hline 264 & 272 & 276 & 280 & 284 & 288 & 296 & 300 & 304 & 308 & 312 & 316 & 320 & 328 & 332 & 336 \\
\hline 344 & 348 & 352 & 360 & 364 & 368 & 376 & 380 & 384 & 388 & 392 & 396 & 400 & 408 & 416 & 420 \\
\hline 424 & 432 & 440 & 444 & 448 & 456 & 460 & 464 & 468 & 472 & 480 & 484 & 488 & 492 & 496 & 500 \\
\hline 504 & 512 & 516 & 524 & 528 & 540 & 544 & 548 & 552 & 556 & 560 & 564 & 568 & 572 & 576 & 588 \\
\hline 592 & 600 & 608 & 616 & 620 & 624 & 628 & 632 & 636 & 640 & 644 & 656 & 660 & 664 & 672 & 676 \\
\hline 684 & 688 & 692 & 696 & 700 & 704 & 708 & 720 & 728 & 736 & 740 & 748 & 752 & 760 & 768 & 776 \\
\hline 780 & 784 & 788 & 792 & 796 & 800 & 804 & 812 & 816 & 820 & 828 & 832 & 840 & 844 & 848 & 860 \\
\hline 864 & 868 & 880 & 884 & 888 & 896 & 900 & 908 & 912 & 916 & 920 & 924 & 928 & 936 & 944 & 948 \\
\hline 960 & 968 & 972 & 976 & 984 & 992 & 1000 & & & & & & & & & \\
\hline
\end{tabular}

Larger sizes are available as well. The \%MktEx macro can construct these designs when \(n\) is a multiple of 4 and one or more of the following hold:
- \(n \leq 256\)
- \(n-1\) is prime
- \(n / 2-1\) is prime and \(\bmod (n / 2,4)=2\)
- \(n\) is a power of \(2(2,4,8,16, \ldots)\) times the size of a smaller Hadamard matrix that is available.

For some of these sizes, the macro can create orthogonal designs with a small number (say \(m\) ) four-level factors in place of \(3 \times m\) of the two-level factors (for example, \(2^{70} 4^{3}\) in 80 runs).

You can see more sizes of Hadamard matrices that the macro knows how to make by running the next program. Note however that the fact that a number appears in this program's listing, does not guarantee that your computer will have enough memory and other resources to create it.
```

data x;
length Method \$ 12;
do n = 4 to 10000 by 4;
HadSize = n; method = , ';
do while(mod(hadsize, 8) eq 0); hadsize = hadsize / 2; end;
ispm1 = 1; ispm2 = mod(hadsize / 2, 4) eq 2;
do i = 2 to sqrt(hadsize) while(ispm1);
ispm1 = mod(hadsize - 1, i);
end;
do i = 2 to sqrt(hadsize / 2) while(ispm2);
ispm2 = mod(hadsize / 2 - 1, i);
end;
if ispm1 then method = 'Paley 1';
else if ispm2 then method = 'Paley 2';
else if hadsize le 256 then method = 'Williamson';
if method ne , , then do; Change = n - lag(n); output; end;
end;
run;
proc print label noobs;
label hadsize = 'Reduced Hadamard Matrix Size';
var n hadsize method change;
run;

```

Here is a simple example of using the \(\%\) MktEx macro to request the \(L_{36}\) design, \(2^{11} 3^{12}\), which has 11 two-level factors and 12 three-level factors.
```

%mktex(n=36)

```

No iterations are needed, and the macro immediately creates the \(L_{36}\), which is \(100 \%\) efficient. This example runs in a few seconds. The factors are always named \(\mathrm{x} 1, \mathrm{x} 2, \ldots\) and the levels are always consecutive integers starting with 1 . You can use the \%MktLab macro to assign different names and levels (see page 577).

By default, the macro creates two output data sets with the design.
- out=Design - the experimental design, sorted by the factor levels.
- outr=Randomized - the randomized experimental design.

The two designs are equivalent and have the same \(D\)-efficiency. The out=Design data set is sorted and hence is usually easier to look at, however the outr=Randomized design is the better one to use. The randomized design has the rows sorted into a random order, and all of the factor levels are randomly reassigned. For example with two-level factors, approximately half of the original \((1,2)\) mappings will be reassigned \((2,1)\). Similarly, with three level factors, the mapping \((1,2,3)\) will be changed to one of the following: \((1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2)\), or \((3,2,1)\). The reassignment of levels is usually not critical for the iteratively derived designs, but it can be very important the orthogonal designs, many of which have all ones in the first row.

The candidate-set search has two parts. First, either PROC PLAN is run to create a full-factorial design for small problems, or PROC FACTEX is run to create a fractional-factorial design for large problems. Either way, this design is a candidate set that in the second part is searched by PROC

OPTEX using the modified Fedorov algorithm. A design is built from a selection of the rows of the candidate set (Fedorov, 1972; Cook and Nachtsheim, 1980). The modified Fedorov algorithm considers each run in the design and each candidate run. Candidate runs are swapped in and design runs are swapped out if the swap improves \(D\)-efficiency.

Next, the \%MktEx macro uses the coordinate-exchange algorithm, based on Meyer and Nachtsheim (1995). The coordinate-exchange algorithm considers each level of each factor, and considers the effect on \(D\)-efficiency of changing a level \((1 \rightarrow 2\), or \(1 \rightarrow 3\), or \(2 \rightarrow 1\), or \(2 \rightarrow 3\), or \(3 \rightarrow 1\), or \(3 \rightarrow 2\), and so on). Exchanges that increase efficiency are performed. Typically, the macro first tries to initialize the design with an orthogonal (or tabled) design (Tab) and a random design (Ran) both. Levels that are not orthogonally initialized may be exchanged for other levels if the exchange increases efficiency.

The initialization may be more complicated. Say you asked for the design \(4^{1} 5^{1} 3^{5}\) in 18 runs. The macro would use the orthogonal design \(3^{6} 6^{1}\) in 18 runs to initialize the three-level factors orthogonally, and the five-level factor with the six-level factor coded down to five levels (and hence unbalanced). The four-level factor would be randomly initialized. The macro would also try the same initialization but with a random rather than unbalanced initialization of the five-level factor, as a minor variation on the first initialization. In the next initialization variation, the macro would use a fully random initialization. If the number of runs requested were smaller than the number or runs in the initial orthogonal design, the macro would initialize the design with just the first \(n\) rows of the orthogonal design. Similarly, if the number of runs requested were larger than the number or runs in the initial orthogonal design, the macro would initialize part of the design with the orthogonal design and the remaining rows and columns randomly. The coordinate-exchange algorithm considers each level of each factor that is not orthogonally initialized, and it exchanges a level if the exchange improves \(D\)-efficiency. When the number or runs in the orthogonal design does not match the number of runs desired, none of the design is initialized orthogonally.

The coordinate-exchange algorithm is not restricted by having a candidate set and hence can potentially consider every possible design. That is, no design is precluded from consideration due to the limitations of a candidate set. In practice, however, both the candidate-set-based and coordinate-exchange algorithms consider only a tiny fraction of the possible designs. When the number of runs in the full-factorial design is very small (say 100 or 200 runs), the modified Fedorov algorithm and coordinate exchange algorithms usually work equally well. When the number of runs in the full-factorial design is small (up to several thousand), the modified Fedorov algorithm is usually superior to coordinate exchange. When the full-factorial design is larger, coordinate exchange is usually the superior approach. However, heuristics like these are sometimes wrong, which is why the macro tries both methods to see which one is really best for each problem.

Next, the \%MktEx macro determines which algorithm (candidate set search, coordinate exchange with partial orthogonal initialization, or coordinate exchange with random initialization) is working best and tries more iterations using that approach. It starts by printing the initial (Ini) best efficiency.

Next, the \%MktEx macro tries to improve the best design it found previously. Using the previous best design as an initialization (Pre), and random mutations of the initialization (Mut) and simulated annealing (Ann), the macro uses the coordinate-exchange algorithm to try to find a better design. This step is important because the best design that the macro found may be an intermediate design and may not be the final design at the end of an iteration. Sometimes the iterations deliberately make the designs less efficient, and sometimes, the macro never finds a design as efficient or more efficient again. Hence it is worthwhile to see if the best design found so far can be improved. At the end, PROC OPTEX is called to print the levels of each factor and the final \(D\)-efficiency.

Random mutations involve adding random noise to the initial design before iterations start (levels are randomly changed). This may eliminate the perfect balance that will often be in the initial design. By default, random mutations are used with designs with fully random initializations and in the design refinement step; orthogonal initial designs are not mutated.

Coordinate exchange can be combined with the simulated annealing optimization technique (Kirkpatrick, Gellat, and Vecchi 1983). Annealing refers to the cooling of a liquid in a heat bath. The structure of the solid depends on the rate of cooling. Coordinate exchange without simulated annealing seeks to maximize \(D\)-efficiency at every step. Coordinate exchange with simulated annealing allows \(D\)-efficiency to occasionally decrease with a probability that decreases with each iteration. This is analogous to slower cooling, and it helps overcome local optima.

For design 1, for the first level of the first factor, by default, the macro may execute an exchange (say change a 2 to a 1 ) that makes the design worse with probability 0.05 . As more and more exchanges occur, this probability decreases so at the end of the processing of design 1 , exchanges that decrease efficiency are hardly ever done. For design 2 , this same process is repeated, again starting by default with an annealing probability of 0.05 . This often helps the algorithm overcome local efficiency maxima. To envision this, imagine that you are standing on a molehill next to a mountain. The only way you can start going up the mountain is to first step down off the molehill. Once you are on the mountain, you may occasionally hit a dead end, where all you can do is step down and look for a better place to continue going up. Simulated annealing, by occasionally stepping down the efficiency function, often allows the macro to go farther up it than it would otherwise. The simulated annealing is why you will sometimes see designs getting worse in the iteration history. The macro keeps track of the best design, not the final design in each step. By default, annealing is used with designs with fully random initializations and in the design refinement step. Simulated annealing is not used with orthogonally initialized designs.

\section*{\%MktEx Macro Notes}

The \%MktEx macro prints notes to the SAS log to show you what it is doing while it is running. Most of the notes that would normally come out of the macro's procedure and DATA steps are suppressed by default by an options nonotes statement. This macro specifies options nonotes throughout most of its execution. If you want to see all of the notes, submit the statement \(\%\) let mktopts \(=\) notes; before running the macro. This section describes the notes that are normally not suppressed.

The macro will usually start by printing one of the following notes (filling in a value after \(\mathrm{n}=\) ).
```

NOTE: Generating the Hadamard design, n=.
NOTE: Generating the full-factorial design, n=.
NOTE: Generating the fractional-factorial design, n=.
NOTE: Generating the orthogonal array design, n=.

```

These messages tell you which type of orthogonal design the macro is constructing. The design may be the final design, or it may provide an initialization for the coordinate exchange algorithm. In some cases, it may not have the same number of runs, n, as the final design. Usually this step is fast, but constructing some fractional-factorial designs may be time consuming.

If the macro is going to use PROC OPTEX to search a candidate set, it will print this note.
NOTE: Generating the candidate set.

This step will usually be fast. Next, when a candidate set is searched, the macro will print this next note, substituting in values for the ellipses.
```

NOTE: Performing ... searches of ... candidates.

```

This step may be take a while depending on the size of the candidate set and the size of the design. When there are a lot of restrictions and a fractional-factorial candidate set is being used, the candidate set may be so restricted that it does not contain enough information to make the design. In that case, you will get this message.
```

NOTE: The candidate-set initialization failed,
but the MKTEX macro is continuing.

```

Even though part of the macro's algorithm failed, it is not a problem. The macro just goes on to the coordinate-exchange algorithm, which will almost certainly work better than searching any severelyrestricted candidate set.

Sometimes you will get this note.
```

NOTE: Stopping since it appears that no improvement is possible.

```

When the macro keeps finding the same maximum \(D\)-efficiency over and over again in different designs, it may stop early. This may mean that the macro has found the optimal design, or it may mean that the macro keeps finding a very attractive local optimum. Either way, it is unlikely that the macro will do any better. You can control this using the stopearly= option.

The macro has options that control the amount of time it spends trying different techniques. When time expires, the macro may switch to other techniques before it completes the usual maximum number of iterations. When this happens, the macro tells you.
```

NOTE: Switching to a random initialization after ... minutes and
... designs.
NOTE: Quitting the algorithm search after ... minutes and ... designs.
NOTE: Quitting the design search after ... minutes and ... designs.
NOTE: Quitting the refinement step after ... minutes and ... designs.

```

When there are restrictions, or when you specify that you do not want duplicate runs, you may also specify options=accept. This means you are willing to accept designs that violate the restrictions. With options=accept, the macro will tell you if the restrictions are not met.

NOTE: The restrictions were not met.
NOTE: The design has duplicate runs.
The macro ends with one of the following two messages.
NOTE: The MKTEX macro used ... seconds.
NOTE: The MKTEX macro used ... minutes.

\section*{\%MktEx Macro Iteration History}

This section provides information on interpreting the iteration history table produced by the \%MktEx macro. Here is part of a table.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Design} & \multicolumn{3}{|r|}{Algorithm Search History} & \multirow[b]{2}{*}{Notes} \\
\hline & Row, Col & Current D-Efficiency & Best D-Efficiency & \\
\hline 1 & Start & 82.2172 & 82.2172 & Can \\
\hline 1 & End & 82.2172 & & \\
\hline 2 & Start & 78.5039 & & Tab, Ran \\
\hline 2 & 514 & 83.2098 & 83.2098 & \\
\hline 2 & 614 & 83.3917 & 83.3917 & \\
\hline 2 & 615 & 83.5655 & 83.5655 & \\
\hline 2 & \(7 \quad 14\) & 83.7278 & 83.7278 & \\
\hline 2 & \(7 \quad 15\) & 84.0318 & 84.0318 & \\
\hline 2 & \(7 \quad 15\) & 84.3370 & 84.3370 & \\
\hline 2 & 814 & 85.1449 & 85.1449 & \\
\hline . & & & & \\
\hline . & & & & \\
\hline 2 & End & 98.0624 & & \\
\hline . & & & & \\
\hline . & & & & \\
\hline . & & & & \\
\hline 12 & Start & 51.8915 & & Ran, Mut, Ann \\
\hline 12 & End & 93.0214 & & \\
\hline - & & & & \\
\hline . & & & & \\
\hline \multicolumn{5}{|c|}{Design Search History} \\
\hline & & Current & Best & \\
\hline Design & Row, Col & D-Efficiency & D-Efficiency & Notes \\
\hline 0 & Initial & 98.8933 & 98.8933 & Ini \\
\hline 1 & Start & 80.4296 & & Tab, Ran \\
\hline 1 & End & 98.8567 & & \\
\hline . & & & & \\
\hline - & & & & \\
\hline . & & & & \\
\hline
\end{tabular}

Design Refinement History
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Design} & \multirow[b]{2}{*}{Row, Col} & Current & \multicolumn{2}{|l|}{Best} \\
\hline & & D-Efficiency & D-Efficiency & Notes \\
\hline 0 & Initial & 98.9438 & 98.9438 & Ini \\
\hline 1 & Start & 94.7490 & & Pre, Mut, Ann \\
\hline 1 & End & 92.1336 & & \\
\hline
\end{tabular}

The first column, Design, is a design number. Each design corresponds to a complete iteration using a different initialization. Initial designs are numbered zero. The second column is Row, Col, which shows the design row and column that is changing in the coordinate-exchange algorithm. This column also contains Start for displaying the initial efficiency, End for displaying the final efficiency, and Initial for displaying the efficiency of a previously created initial design (perhaps created externally or perhaps created in a previous step). The Current D-Efficiency column contains the \(D\)-efficiency for the design including starting, intermediate and final values. The next column is Best D-Efficiency. Values are put in this column for initial designs and when a design is found that is as good as or better than the previous best design. The last column, Notes, contains assorted algorithm and explanatory details. Values are added to the table at the beginning of an iteration, at the end of an iteration, when a better design is found, and when a design first conforms to restrictions. Details of the candidate search iterations are not shown. Only the \(D\)-efficiency for the best design found through candidate search is shown.

Here are the notes.
\begin{tabular}{ll} 
Can & - the results of a candidate-set search \\
Tab & - tabled (orthogonal array, full, or fractional factorial) initialization (full or in part) \\
Ran & - random initialization (full or in part) \\
Unb & - unbalanced initialization (usually in part) \\
Ini & - initial design \\
Mut & - random mutations of the initial design were performed \\
Ann & - simulated annealing was used in this iteration \\
Pre & - using previous best design as a starting point \\
Conforms & - design conforms to restrictions \\
Violations & - number of restriction violations
\end{tabular}

Often, more than one note appears. For example, the triples Ran, Mut, Ann and Pre, Mut, Ann frequently appear together.

The iteration history consists of three tables.
Algorithm Search History - searches for a design and the best algorithm for this problem
Design Search History - uses the best algorithm to search further
Design Refinement History - tries to refine the best design

\section*{\%MktEx Macro Options}

The following options can be used with the \%MktEx macro.
\begin{tabular}{|l|l|}
\hline Option & Description \\
\hline anneal \(=n 1<n 2<n 3 \gg\) & starting probability for annealing \\
annealfun=function & annealing probability function \\
anniter \(=n 1<n 2<n 3 \gg\) & first annealing iteration \\
balance \(=n\) & maximum allowed level-frequency range \\
big \(=n<\) choose \(>\) & size of big full-factorial design \\
canditer \(=n 1<n 2>\) & iterations for OPTEX designs \\
detfuzz \(n\) & determinants change increment \\
examine \(=\mathrm{I} \mid \mathrm{V}\) & matrices that you want to examine \\
exchange \(n\) & number of factors to exchange \\
fixed \(=\) variable & indicates runs that are fixed \\
holdouts \(=n\) & adds holdout observations \\
imlopts \(=\) options & IML PROC statement options \\
init \(=\) SAS-data-set & initial (input) experimental design \\
interact \(=\) interaction-list & interactions that must be estimable \\
iter \(=n 1<n 2<n 3 \gg\) & maximum number of iterations \\
list & list of the numbers of factor levels \\
maxdesigns \(=n\) & maximum number of designs to make \\
maxiter \(=n 1<n 2<n 3 \gg\) & maximum number of iterations \\
maxstages \(=n\) & maximum number of algorithm stages \\
maxtime \(=n 1<n 2<n 3 \gg\) & approximate maximum run time \\
mutate \(=n 1<n 2<n 3 \gg\) & mutation probability \\
mutiter \(=n 1<n 2<n 3 \gg\) & first iteration to consider mutating \\
n=n & number of runs in the design \\
options \(=\) options-list & binary options \\
optiter \(=n 1<n 2>\) & OPTEX iterations \\
order \(=\) value & coordinate exchange column order \\
out \(=\) SAS-data-set & output experimental design \\
outall \(=\) SAS-data-set & output data set with all designs found \\
outr \(=\) SAS -data-set & randomized output experimental design \\
partial \(=n\) & partial profile design \\
restrictions \(=m a c r o-n a m e ~\) & restrictions macro \\
ridge \(=n\) & ridging factor \\
seed \(=n\) & random number seed \\
stopearly \(=n\) & that the macro may stop early \\
tabiter \(=n 1<n 2>\) & tabled design iterations \\
tabsize \(=n\) & orthogonal array size \\
target \(=n\) & target efficiency criterion \\
unbalanced= \(1<n 2>\) & unbalanced factors iterations \\
& \\
\hline
\end{tabular}

\section*{Required Options}

These options are almost always required.

\section*{list}
specifies a list of the numbers of levels of all the factors. For example, for 3 two-level factors specify either 222 or 2 ** 3. Lists of numbers, like 223344 or a levels \({ }^{* *}\) number of factors syntax like: \(2 * * 23 * * 24 * * 2\) can be used, or both can be combined: \(223 * * 456\). The specification \(3 * * 4\) means 4 three-level factors. Note that the factor list is a positional parameter. This means that if it is specified, it must come first, and unlike all other parameters, it is not specified after a name and an equal sign. Usually, you have to specify a list. However, in some cases, you can just specify \(n=\) and omit the list and a default list is implied. For example, \(\mathrm{n}=18\) implies a list of \(23 * * 7\). When the list is omitted, and if there are no interactions, restrictions, or duplicate exclusions, then by default there are no OPTEX iterations (optiter=0).

\section*{\(\mathbf{n}=n\)}
specifies the number of runs in the design. You must specify \(n=\). Here is an example of using the \(\% M k t R u n s\) macro to get suggestions for values of \(n=\) :
```

%mktruns(4 2 ** 5 3 ** 5)

```

In this case, this macro suggests several sizes including orthogonal designs with \(n=72\) and \(n=144\) runs and some smaller nonorthogonal designs including \(n=36,24,48,60\).

\section*{Basic Options}

This next group of options contains some of the more commonly used options.

\section*{balance \(=n\)}
specifies the maximum allowed level-frequency range. The balance= option allows you to tell the macro that it should make an extra effort to ensure that the design is nearly balanced. By default, the macro does not try to ensure balance beyond the fact that lack of balance decreases \(D\)-efficiency. Specify a positive integer, usually 1 or 2 , that specifies the degree of imbalance that is acceptable. You may need to also specify options=accept with balance=. The macro usually does a good job of producing nearly balanced design, but if balance is critically important, and your designs are not balanced enough, you can sometimes achieve better balance by specifying balance=, but usually at the price of worse efficiency, sometimes much worse. The balance= option specifies additional restrictions (see restrictions=) that help achieve better balance. By default, no additional restrictions are added. The balance \(=n\) option specifies that for each factor, the difference between the frequencies, for the most and least frequently occurring levels, should be no larger than \(n\). You may specify balance \(=0\), however this is usually not a good idea. The macro needs the flexibility to have imbalance as it refines the design. Another option is to instead use the \(\% \mathrm{MktBal}\) macro, which produces perfectly balanced main effects plans. It is likely that the algorithms used by both the balance= option and the \%MktBal macro will be changed in the future to use some now unknown algorithms that are both faster and better.

\section*{examine \(=\mathrm{I} \mid \mathrm{V}\)}
specifies the matrices that you want to examine. The option examine \(=I\) prints the information matrix, \(\mathbf{X}^{\prime} \mathbf{X}\); examine \(=\mathrm{V}\) prints the variance matrix, \(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\); and examine \(=\mathrm{I} \mathrm{V}\) prints both. By default, these matrices are not printed.

\section*{interact \(=\) interaction-list}
specifies interactions that must be estimable. By default, no interactions are guaranteed to be estimable. Examples:
```

interact=x1*x2

```
interact=x1*x2 x3*x4*x5
interact \(=x 1|x 2| x 3|x 4| x 5 @ 2\)

The interaction syntax is like PROC GLM's and many of the other modeling procedures. It uses "*" for simple interactions ( \(x 1 * x 2\) is the interaction between x 1 and x 2 ), " " for main effects and interactions ( \(\mathrm{x} 1|\mathrm{x} 2| \mathrm{x} 3\) is the same as \(\mathrm{x} 1 \mathrm{x} 2 \mathrm{x} 1 * \mathrm{x} 2 \mathrm{x} 3 \mathrm{x} 1 * \mathrm{x} 3 \mathrm{x} 2 * \mathrm{x} 3 \mathrm{x} 1 * \mathrm{x} 2 * \mathrm{x} 3\) ) and "@" to eliminate higher-order interactions ( \(\mathrm{x} 1|\mathrm{x} 2| \mathrm{x} 3 @ 2\) eliminates \(\mathrm{x} 1 * \mathrm{x} 2 * \mathrm{x} 3\) and is the same as \(\mathrm{x} 1 \mathrm{x} 2 \mathrm{x} 1 * \mathrm{x} 2 \mathrm{x} 3 \mathrm{x} 1 * \mathrm{x} 3\) \(x 2 * x 3\) ). The specification "@2" allows only main effects and two-way interactions. Only "@" values of 2 or 3 are allowed. For the factor names, you must specify either the actual variable names (for example, \(\mathrm{x} 1 \mathrm{x} 2 \ldots\) ) or you can just specify the number without the " x " (for example, \(\mathrm{x} 1 * \mathrm{x} 2\) is equivalent to \(1 * 2\) ). You can also specify interact=@2 for all main effects and two-way interactions. For example, these two specifications are equivalent:
```

%mktex(2 ** 5, interact=@2, n=32)
%mktex(2 ** 5, interact=1|2|3|4|5@2, n=32)

```

\section*{options \(=\) options-list}
specifies binary options. By default, none of these options are specified. Specify one or more of the following values after options=.
accept
allows the macro to output designs that violate restrictions imposed by restrictions=, balance=, or partial=, or have duplicates with options=nodups. Normally the macro will not output such designs. With options=accept, a design becomes eligible for output when the macro can no longer improve on the restrictions or eliminate duplicates. Without options=accept, a design is only eligible when all restrictions are met and all duplicates are eliminated.

\section*{check}
checks the efficiency of a given design, specified in init=, and disables the out=, outr=, and outall= options. If init= is not specified, options=check is ignored.
justinit
specifies that the macro should stop processing as soon as it is done making the initial design, even if that design would not normally be the final design. Sometimes, this design will be an orthogonal array, but there are no guarantees. The specification options=justinit implies optiter=0 and outr=. Specifying options=justinit nofinal both stops processing and prevents the final design from being evaluated. Particularly when you specify options=nofinal, you must ensure that this design has a suitable efficiency.

\section*{largedesign}
allows the macro to stop after maxtime= minutes have elapsed in the coordinate exchange algorithm. Typically you would use this with maxstages=1 and other options that make the algorithm run faster. By default, the macro checks time after it finishes with a design. With this option, the macro checks the time at the end of each row, after it has completed the first full pass through the design, and after any restrictions have been met, so the macro may stop before \(D\)-efficiency has converged. For really large problems and problems with restrictions, this option may make the macro run much faster but at a price of lower \(D\) efficiency. For example, for large problems with restrictions, you might just want to try one run through the coordinate exchange algorithm with no candidate set search, orthogonal arrays, or mutations.
nodups
eliminates duplicate runs.
nofinal
skips calling PROC OPTEX to print the efficiency of the final experimental design.
nohistory
does not print the iteration history.

\section*{resrep}
reports on the progress of the restrictions. You may want to specify this option with large problems with lots of restrictions or if you try to create a design and find that \%MktEx is unable to make a design that conforms to the restrictions. By default, the iteration history is not printed for the stage where \(\% \mathrm{MktEx}\) is trying to make the design conform to the restrictions. Specify options=resrep when you want to see the progress in making the design conform.

\section*{nosort}
does not sort the design. One use of this option is with Hadamard matrices. Hadamard matrices are generated with a banded structure that is lost when the design is sorted. If you want to see the original Hadamard matrix, and not just a design constructed from the Hadamard matrix, specify options=nosort.

\section*{partial \(=n\)}
specifies a partial profile design (Chrzan and Elrod, 1995). The default is an ordinary linear design. Specify for example partial=4 if you only want 4 attributes to vary in each row of the design (except the first run, in which none vary). This option works by adding restrictions to the design (see restrictions=) and specifying order=random and exchange=2. Because of the default exchange=2 with partial profile designs, the construction is slow, so you may want to specify maxdesigns=1 or other options to make \%MktEx run faster. For large problems, you may get faster but less good results by specifying order=seqran. Specifying options=accept or balance= with partial= is not a good idea. Here is the first part of a partial profile design with twelve factors, each of which has three levels that vary and one level that means the attribute is not shown.
```

%mktex(4 ** 12, n=48, partial=4, seed=205, maxdesigns=1)
%mktlab(values=. 1 2 3, nfill=99)
options missing=' ';
proc print data=final(obs=10); run;
options missing='.';

```
\begin{tabular}{rccccccccccc} 
\\
Obs & x 1 & x 2 & x 3 & x 4 & x 5 & x 6 & x 7 & x 8 & x 9 & x 10 & x 11
\end{tabular} x 12

\section*{restrictions \(=\) macro-name}
specifies the name of a macro that places restrictions on the design. By default, there are no restrictions. If you have restrictions on the design, what combinations can appear with what other combinations, then you must create a macro that creates a variable called bad that contains a numerical summary of how bad the row of the design is. When everything is fine, set bad to zero. Otherwise set bad to a larger value that is a function of the number of restriction violations. The bad variable must not be binary ( \(0-\mathrm{ok}, 1-\mathrm{bad}\) ) unless there is only one simple restriction. You must set bad so that the macro knows if changes to factor levels are moving in the right direction. More complicated cases may have more complicated badness functions (see page 566). The macro must consist of PROC IML statements and possibly some macro statements.

Be sure to check the log when you specify restrictions=. The macro cannot always ensure that your statements are syntax-error free and stop if they are not.

Your macro can look at several things in quantifying badness, and must store its results in bad.
i - is a scalar that contains the number of the row currently being changed. If you are writing restrictions that use the variable \(i\), you almost certainly should specify options=nosort.
x - is a row vector of factor levels, always containing integer values beginning with 1 and continuing on to the number of levels for each factor.
x 1 is the same as \(\mathrm{x}[1], \mathrm{x} 2\) is the same as \(\mathrm{x}[2]\), and so on.
j1 - is a scalar that contains the number of the column currently being changed.
\(j 2\) - is a scalar that contains the number of the other column currently being changed (along with j 1 ) with exchange \(=2\) and larger exchange= values.
\(j 3\) - is a scalar that contains the number of the third column currently being changed (along with \(j 1\) and \(j 2\) ) with exchange=3 and larger exchange= values.
xmat - is the entire x matrix. Note that the \(i\) th row of xmat may not be x since x will contain information on the exchanges being considered.
bad - results: 0 - fine, or the number of violations of restrictions.
Do not use these names (other than bad) for intermediate values!
Other than that, you can create intermediate variables without worrying about conflicts with the names in the macro. The levels of the factors for one row of the experimental design are stored in a vector x , and the first level is always 1 , the second always 2 , and so on. All restrictions must be defined in terms of \(\mathrm{x}[\mathrm{j}]\) (or alternatively, \(\mathrm{x} 1, \mathrm{x} 2, \ldots\), and perhaps the other matrices). For example, if there are 5 three-level factors and if it is bad if the level of a factor equals the level for the following factor, create a macro restrict as follows and specify restrictions=restrict.
```

%macro restrict;
bad = (x1 = x2) +
(x2 = x3) +
(x3 = x4) +
(x4 = x5);

```
    \%mend;

Note that you specify just the macro name and no percents on the restrictions= option. Also note that IML does not have the full set of Boolean operators that the DATA step and other parts of SAS have. For example, these are not available: OR AND NOT GT LT GE LE EQ NE. Here are the operators you can use along with their meaning.
\begin{tabular}{lll}
\(=\) & equals & not: EQ \\
\(\wedge=\) or \(\neg=\) & not equals & not: NE \\
\(<\) & less than & not: LT \\
\(<=\) & less than or equal to & not: LE \\
\(>\) & greater than & not: GT \\
\(>=\) & greater than or equal to & not: GE \\
\(\&\) & and & not: AND \\
\(\mid\) & or & not: OR \\
\(\wedge\) or \(\neg\) & not & not: NOT
\end{tabular}

Restrictions seriously slow down the algorithm.
With restrictions, the Current D-Efficiency column of the iteration history table may contain values larger than the Best D-Efficiency column. This is because the design corresponding to the current \(D\)-efficiency may have restriction violations. Values are only reported in the best \(D\)-efficiency column after all of the restriction violations have been removed. You can specify options=accept with restrictions= when it is okay if the restrictions are not met.

See page 566 for more information on restrictions. See pages 231 and 337 for examples of restrictions.

\section*{seed \(=n\)}
specifies the random number seed. By default, seed=0, and clock time is used to make the random number seed. By specifying a random number seed, results should be reproducible within a SAS release for a particular operating system. However, due to machine differences, some results may not be exactly reproducible on other machines. For most orthogonal and balanced designs, the results should be reproducible. When computerized searches are done, it is likely that you will not get the
same design across different computers, operating systems and different SAS releases, although you would expect the efficiency differences to be slight.

\section*{Data Set Options}

These next options specify the names of the input and output data sets.

\section*{init \(=S A S\)-data-set}
specifies the initial (input) experimental design. By default, there is no initial design. Use init= when you want to evaluate the efficiency of a design (along with options=check) or when you want to try to improve a design.

\section*{out \(=S A S\)-data-set}
specifies the output experimental design. The default is out=Design. By default, this design is sorted unless you specify options=nosort. This is the output data set to look at in evaluating the design. See the outr= option for a randomized version of the same design, which is generally more suitable for actual use. Specify a null value for out= if you do not want this data set created. Often, you will want to specify a two-level name to create a permanent SAS data set so the design will be available later for analysis.

\section*{outall \(=\) SAS-data-set}
specifies the output data set containing all designs found. By default, this data set is not created.

\section*{outr \(=\) SAS-data-set}
specifies the randomized output experimental design. The default is outr=Randomized. Levels are randomly reassigned within factors, and the runs are sorted into a random order. Neither of these operations affects efficiency. When restrictions= or partial= is specified, only the random sort is performed. Specify a null value for outr= if you do not want a randomized design created. Often, you will want to specify a two-level name to create a permanent SAS data set so the design will be available later for analysis.

\section*{Iteration Options}

These next options control some of the details of the iterations. Some of these options can take three arguments, one for each set of iterations. The macro can perform three sets of iterations. The Algorithm Search set of iterations looks for efficient designs using three different approaches. It then determines which approach appears to be working best and uses that approach exclusively in the second set of Design Search iterations. The third set or Design Refinement iterations tries to refine the best design found so far by using level exchanges combined with random mutations and simulated annealing.
The first set of iterations can have up to three parts. The first part uses either PROC PLAN or PROC FACTEX followed by PROC OPTEX, called through the \%MktDes macro, to create and search a candidate set for an optimal initial design. The second part may use an orthogonal array or fractionalfactorial design as an initial design. The next part consists of level exchanges starting with random initial designs.

In the first part, if the full-factorial design is manageable (arbitrarily defined as \(<5185\) runs), it is used as a candidate set, otherwise a fractional-factorial candidate set is used. The macro tries optiter= iterations to make an optimal design using the \%MktDes macro and PROC OPTEX.

In the second part, the macro will try to generate and improve a standard orthogonal array or fractionalfactorial design. Sometimes, this can lead immediately to an optimal design, for example with \(2^{11} 3^{12}\) and \(n=36\). In other cases, when only part of the desired design matches some standard design, only part of the design is initialized with the standard design and multiple iterations are run using the standard design as a partial initialization with the rest of the design randomly initialized.

In the third part, the macro uses the coordinate-exchange algorithm with random initial designs.

\section*{anneal \(=n 1<n 2<n 3 \gg\)}
specifies the starting probability for simulated annealing in the coordinate-exchange algorithm. The default is anneal \(=.05\). 05 . 01 . Specify a zero or null value for no annealing. You can specify more than one value if you would like to use a different value for the algorithm search, design search, and design refinement iterations. Specifying a value (greater than zero and less than one, for example 0.1) allows the design to get worse with decreasing probability as the number of iterations increases. This often helps the algorithm overcome local efficiency maxima. Allowing efficiency to decrease can help get past the bumps on the efficiency function.

Examples: anneal \(=\) or anneal \(=0\) specifies no annealing, anneal \(=0.1\) specifies an annealing probability of 0.1 during all three sets of iterations, mutate \(=0 \quad 0.1 \quad 0.05\) specifies no annealing during the initial iterations, an annealing probability of 0.1 during the search iterations, and an annealing probability of 0.05 during the refinement iterations.

\section*{anniter \(=n 1<n 2<n 3 \gg\)}
specifies the first iteration to consider using annealing on the design. The default is anniter=. . ., which means that the macro chooses values to use. The default is the first iteration that uses a fully random initial design in each of the three sets of iterations. Hence by default, there is no random annealing in any part of the initial design when part of the initial design comes from an orthogonal design.

\section*{canditer \(=n 1<n 2>\)}
specifies the number of coordinate-exchange iterations that will be used to try to improve a candidateset based, OPTEX-generated initial design. The default is canditer=1 1 . Note that optiter= controls the number of OPTEX iterations. Unless you are using annealing or mutation in the canditer= iterations (by default you are not) or unless you are using options=nodups, do not change theses values. The default value of canditer \(=11\), along with the default mutiter= and anniter= values of missing, mean that the results of the OPTEX iterations are presented once in the algorithm iteration history, and if appropriate, once in the design search iteration history. Furthermore, by default, OPTEX generated designs are not improved with level exchanges except in the design refinement phase.

\section*{maxdesigns \(=n\)}
specifies that the macro should stop after maxdesigns= designs have been created. This option may be useful for big, slow problems with restrictions. You could specify for example maxdesigns=3 and maxtime \(=0\) and the macro would perform one candidate-set-based iteration, one orthogonal design initialization iteration, and one random initialization iteration and then stop. By default, this option
is ignored and stopping is based on the other iteration options. For large designs with restrictions, a typical specification is optiter=0, tabiter=0, maxdesigns=1, options=largedesign.
maxiter \(=n 1<n 2<n 3 \gg\)
iter \(=n 1<n 2<n 3 \gg\)
specifies the maximum number of iterations or designs to generate. The default is maxiter=21 25 10. With larger values, the macro tends to find better designs at a cost of slower run times. You can specify more than one value if you would like to use a different value for the algorithm search, design search, and design refinement iterations. The second value is only used if the second set of iterations consists of coordinate-exchange iterations. Otherwise, the number of iterations for the second set is specified with the tabiter=, or canditer= and optiter= options. If you want more iterations, be sure to set the maxtime = option as well, because iteration stops when the maximum number of iterations is reached or the maximum amount of time, whichever comes first. Examples: maxiter=10 specifies 10 iterations for the initial, search, and refinement iterations, and maxiter=10 105 specifies 10 initial iterations, followed by 10 search iterations, followed by 5 refinement iterations.

\section*{maxstages \(=n\)}
specifies that the macro should stop after maxstages= algorithm stages have been completed. This option may be useful for big, slow problems with restrictions. You could specify maxstages=1 and the macro will stop after the algorithm search stage, or maxstages=2 and the macro will stop after the design search stage. The default is maxstages=3, which means the macro will stop after the design refinement stage.
maxtime \(=n 1<n 2<n 3 \gg\)
specifies the approximate maximum amount of time in minutes to run each phase. The default is maxtime=10 205 . When an iteration completes (a design is completed), if more than the specified amount of time has elapsed, the macro quits iterating in that phase. Usually, run time will be no more than \(10 \%\) or \(20 \%\) larger than the specified values. However, for large problems, with restrictions, and with exchange \(=\) values other than 1 , run time may be quite a bit larger than the specified value, since the macro only checks time after a design finishes. You can specify more than one value if you would like to use a different value for the algorithm search, design search, and design refinement iterations. By default, the macro spends up to 10 minutes on the algorithm search iterations, 20 minutes on the design search iterations, and 5 minutes in the refinement stage. Most problems run in much less time than this. Note that the second value is ignored for OPTEX iterations since OPTEX does not have any timing options. This option also affects, in the algorithm search iterations, when the macro switches between using an orthogonal initial design to using a random initial design. If the macro is not done using orthogonal initializations, and one half of the first time value has passed, it switches. Examples: maxtime \(=60\) specifies up to one hour for each phase. maxtime \(=203010\) specifies 20 minutes for the first phase and 30 minutes for the second, and 10 for the third. The option maxtime=0 provides a way to get a quick run, with no more than one iteration in each phase. However, even with maxtime=0, run time can be several minutes or more for large problems. See the maxdesigns= and maxstages= options for other ways to drastically cut run time for large problems.

If you specify really large time values (anything more than hours), you probably need to also specify optiter \(=\) since the default values depend on maxtime \(=\).

\section*{mutate \(=n 1<n 2<n 3 \gg\)}
specifies the probability at which each value in an initial design may mutate or be assigned a different random value before the coordinate-exchange iterations begin. The default is mutate=. 05.05 . 01 . Specify a zero or null value for no mutation. You can specify more than one value if you would like to use a different value for the algorithm search, design search, and design refinement iterations. Examples: mutate \(=\) or mutate \(=0\) specifies no random mutations. The mutate \(=0.1\) option specifies a mutation probability of 0.1 during all three sets of iterations. The mutate \(=0 \quad 0.10 .05\) option specifies no mutations during the first iterations, a mutation probability of 0.1 during the search iterations, and a mutation probability of 0.05 during the refinement iterations.

\section*{mutiter \(=n 1<n 2<n 3 \gg\)}
specifies the first iteration to consider mutating the design. The default is mutiter=. . ., which means that the macro chooses values to use. The default is the first iteration that uses a fully random initial design in each of the three sets of iterations. Hence by default, there are no random mutations of any part of the initial design when part of the initial design comes from an orthogonal design.

\section*{optiter \(=n 1<n 2>\)}
specifies the number of iterations to use in the OPTEX candidate-set based searches in the algorithm and design search iterations. The default is optiter=. ., which means that the macro chooses values to use. When the first value is "." (missing), the macro will choose a value usually no smaller than 20 for larger problems and usually no larger than 200 for smaller problems. However, maxtime= values other than the defaults can make the macro choose values outside this range. When the second value is missing, the macro will choose a value based on how long the first OPTEX run took and the value of maxtime=, but no larger than 5000 . When a missing value is specified for the first optiter= value, the default, the macro may choose to not perform any OPTEX iterations to save time if it thinks it can find a perfect design without them.

\section*{tabiter \(=n 1<n 2>\)}
specifies the number of times to try to improve an orthogonal or fractional-factorial initial design. The default is tabiter=10 200, which means 10 iterations in the algorithm search and 200 iterations in the design search.

\section*{unbalanced \(=n 1<n 2>\)}
specifies the proportion of the tabiter= iterations to consider using unbalanced factors in the initial design. The default is unbalanced=.2 .1. One way that unbalanced factors occur is through coding down. Coding down for example creates a three-level factor from a four-level factor: (1 234 ) \(\Rightarrow\) (1233) or a two-level factor from a three-level factor: (123) \(\Rightarrow\) (12 2). For any particular problem, this strategy is probably either going to work really well or not well at all, without much variability in the results, so it is not tried very often by default. This option will try to create two-level through five-level factors from three-level through six-level factors. It will not attempt for example to code down a twenty-level factor into a nineteen-level factor (although the macro is often capable of in effect doing just that through level exchanges).

\section*{Miscellaneous Options}

This section contains some miscellaneous options that some users may occasionally find useful.
big \(=n<\) choose \(>\)
specifies the full-factorial-design size that is considered to be big. The default is big=5185 choose. The default value was chosen because 5185 is approximately 5000 and greater than \(2^{6} 3^{4}=5184,2^{12}=4096\), and \(2 \times 3^{7}=4374\). When the full-factorial design is smaller than the \(\mathrm{big}=\) value, the \(\% \mathrm{MktEx}\) macro searches a full-factorial candidate set. Otherwise, it searches a fractional-factorial candidate set. When choose is specified as well (the default), the macro is allowed to choose to use a fractional-factorial even if the full-factorial design is not too big if it appears that the final design can be created from the fractional-factorial design. This may be useful for example when you are requesting a fractionalfactorial design with interactions. Using FACTEX to create the fractional-factorial design may be a better strategy than searching a full-factorial design with PROC OPTEX.

\section*{exchange \(=n\)}
specifies the number of factors to consider at a time when exchanging levels. You can specify exchange=2 to do pair-wise exchanges. Pair-wise exchanges are much slower, but may produce better designs. For this reason, you may want to specify maxtime \(=0\) or maxdesigns \(=1\) or other iteration options to make fewer designs and make the macro run faster. The exchange= option interacts with the order= option. The order=seqran option is faster with exchange \(=2\) than order=sequential or order=random. The default is exchange \(=2\) when partial \(=\) is specified, otherwise, the default is exchange \(=1\).
With partial-profile designs and certain other highly restricted designs, it is important to do pair-wise exchanges. Consider for example, the following design row with partial=4

112311121113

The \%MktEx macro cannot consider changing a 1 to a 2 or 3 unless it can also consider changing one of the current 2 's or 3 's to 1 to maintain the partial-profile restriction of exactly four values not equal to 1. Specifying the exchange \(=2\) option gives \(\%\) MktEx that flexibility.

\section*{fixed = variable}
specifies an init= data set variable that indicates which runs are fixed (cannot be changed) and which ones may be changed. By default, no runs are fixed.

1 - (or any nonmissing) means this run may never change.
0 - means this run is used in the initial design, but it may be swapped out.
. - means this run should be randomly initialized, and it may be swapped out.
This option can be used to add holdout runs to a conjoint design, but see holdouts= for an easier way.

\section*{holdouts \(=n\)}
adds holdout observations to the init= data set. This option augments an initial design. Specifying holdouts \(=n\) optimally adds \(n\) runs to the init= design. The option holdouts= \(n\) works by adding a fixed= variable and extra runs to the init= data set. Do not specify both fixed= and holdouts=. The number of rows in the init= design, plus the value specified in holdouts= must equal the \(\mathrm{n}=\)
value.
order \(=\operatorname{col}=n \mid\) random \(\mid\) ranseq \(\mid\) sequential
specifies the order in which the columns are worked on in the coordinate exchange algorithm. Valid values include:
col \(=n\) - process \(n\) random columns in each row
random - random order
ranseq - sequential from a random first column
seqran - alias for ranseq sequential - \(1,2,3, \ldots\)
null, the default - random when there are partial-profile restrictions, ranseq when there are other restrictions, and sequential otherwise.

For order \(=\operatorname{col}=n\), specify an integer for \(n\), for example order \(=c o l=2\). This option should only be used for huge problems where you do not care if you hit every column. Typically, this option will be used in conjunction with options=largedesign, maxdesigns \(=1\), optiter=0, tabiter=0. You would use it when you have a large problem and you do not have enough time for one complete pass through the design. You just want to iterate for approximately the maxtime= amount of time then stop. You should not use order=col= with restrictions.

The order= option interacts with the exchange= option. With a random order and exchange \(=2\), the variable \(j 1\) loops over the columns of the design in a random order and for each \(j 1, j 2\) loops over the columns greater than j 1 in a random order. With a sequential order and exchange \(=2\), the variable j 1 loops over the columns in \(1,2,3\) order and for each \(j 1, j 2\) loops over the columns greater than \(j 1\) in a \(j 1+1, j 1+2, j 1+3\) order. The order=ranseq option is a bit different. With exchange=2, the variable \(j 1\) loops over the columns in an order \(r, r+1, r+2, \ldots, m, 1,2, \ldots, r-1\) (for random \(r\) ), and for each \(j 1\) there is a single random \(j 2\). Hence, order=ranseq is the fastest option since it does not consider all pairs, just one pair. The order=ranseq option provides the only situation where you might try exchange \(=3\) or larger values.

\section*{stopearly \(=n\)}
specifies that the macro may stop early when it keeps finding the same maximum \(D\)-efficiency over and over again in different designs. The default is stopearly \(=5\). By default, during the design search iterations and refinement iterations, the macro will stop early if 5 times, the macro finds a \(D\)-efficiency essentially equal to the maximum but not greater than the maximum. This may mean that the macro has found the optimal design, or it may mean that the macro keeps finding a very attractive local optimum. Either way, it is unlikely it will do any better. When the macro stops for this reason, the macro will print
```

NOTE: Stopping since it appears that no improvement is possible.

```

Specify either 0 or a very large value to turn off the stop-early checking.

\section*{tabsize \(=n\)}
specifies which orthogonal array (or FACTEX or Hadamard) design is used for the partial initialization when an exact match to an orthogonal design is not found. Specify the number of runs in the orthogonal design. By default, the macro chooses an orthogonal design that bests matches the specified design.

\section*{target \(=n\)}
specifies the target efficiency criterion. The default is target \(=100\). The macro stops when it finds an efficiency value greater than or equal to this number. If you know what the maximum efficiency criterion is, or you know how big is big enough, you can sometimes make the macro run faster by allowing it to stop when it reaches the specified efficiency. You can also use this option if you just want to see the initial design that \(\% \mathrm{MktEx}\) is using: target \(=1\), optiter=0. By specifying target=1, the macro will stop after the initialization as long as the initial efficiency is \(\geq 1\).

\section*{Esoteric Options}

This last set of options contains all of the other miscellaneous options. Most of the time, most users should not specify options from this list.

\section*{annealfun \(=\) function}
specifies the function that controls how the simulated annealing probability changes with each pass through the design. The default is annealfun=anneal \# 0.85. Note that the IML operator \# performs ordinary (scalar) multiplication. Most users will never need this option.

\section*{detfuzz \(=n\)}
specifies the value used to determine if determinants are changing. The default is detfuzz=1e-8. If newdeter > olddeter * ( \(1+\) detfuzz) then the new determinant is larger. Otherwise if newdeter > olddeter * ( \(1-\) detfuzz) then the new determinant is the same. Otherwise the new determinant is smaller. Most users will never need this option.

\section*{imlopts \(=\) options}
specifies IML PROC statement options. For example, for very large problems, you can use this option to specify the IML symsize= or worksize= options: imlopts=symsize= \(n\) worksize= \(m\), substituting numeric values for \(n\) and \(m\). The defaults for these options are host dependent. Most users will never need this option.

\section*{ridge \(=n\)}
specifies the value to add to the diagonal of \(\mathbf{X}^{\prime} \mathbf{X}\) to make it nonsingular. The default is ridge \(=1 \mathrm{e}-7\). Usually, for normal problems, you will not need to change this value. If you want the macro to create designs with more parameters than runs, you must specify some other value, usually something like 0.01. By default, the macro will quit when there are more parameters than runs. Specifying a ridge= value other than the default (even if you just change the 'e' in \(1 \mathrm{e}-7\) to ' E ') allows the macro to create a design with more parameters than runs. Most users will never need this option.

\section*{Advanced Restrictions}

It is extremely important with restrictions to appropriately quantify the badness of the run. The macro has to know when it considers an exchange if it is considering
- eliminating restriction violations making the design better,
- causing more restriction violations making the design worse,
- a change that neither increases nor decreases the number of violations.

The macro must tell \%MktEx when it is making progress in the right direction. If it does not, \%MktEx will probably not find an acceptable design.

\section*{Complicated Restrictions}

Consider designing a choice experiment with two alternatives each composed of 25 attributes, the first 22 of which will have restrictions on them. Attribute one in the choice design will be made from x 1 and \(x 23\), attribute two in the choice design will be made from \(x 2\) and \(x 24, \ldots\), and attribute 22 in the choice design will be made from x 22 and x 44 . The remaining attributes will be made from \(\mathrm{x} 45-\mathrm{x} 50\). The restrictions are as follows: each choice attribute must contain two 1's between 5 and 9 times, each choice attribute must contain exactly one 1 between 5 and 9 times, and each choice attribute must contain two 2's between 5 and 9 times. Here is an example of how NOT to accomplish this.
```

%macro sumres;
allone = 0; oneone = 0; alltwo = 0;
do k = 1 to 22;
if (x[k] = 1 \& x[k+22] = 1) then allone = allone + 1;
else if (x[k] = 1 | x[k+22] = 1) then oneone = oneone + 1;
else if (x[k] = 2 \& x[k+22] = 2) then alltwo = alltwo + 1;
end;
* Bad example. Need to quantify badness.;
bad = (~ ((5 <= allone \& allone <= 9) \&
(5 <= oneone \& oneone <= 9) \&
(5 <= alltwo \& alltwo <= 9)));
%mend;
%mktex(3 ** 50, n=135, optiter=0, tabiter=0, maxdesigns=1,
restrictions=sumres, seed=289, options=resrep);

```

The problem with the preceding code is there are complicated restrictions but badness is binary. If all the counts are in the right range, badness is 0 , otherwise it is 1 . You need to let the macro know when it is going in the right direction or it will probably never find a suitable design. One thing that is correct about the preceding code is the compound Boolean range expressions like ( 5 <= allone \& allone <= 9). Abbreviated expressions like ( 5 <= allone <= 9) that work correctly in the DATA step work incorrectly and without warning in IML. Here is a slightly better but still bad example of the macro.
```

\%macro sumres;
allone $=0$; oneone $=0 ;$ alltwo $=0$;
do $k=1$ to 22 ;
if $\quad(x[k]=1 \& x[k+22]=1)$ then allone $=$ allone +1 ;
else if $(x[k]=1 \mid x[k+22]=1)$ then oneone $=$ oneone +1 ;
else if $(x[k]=2 \& x[k+22]=2$) then alltwo $=$ alltwo +1 ;
end;

* Better, badness is quantified, and almost correctly too!;
bad $=$ (((5 <= allone \& allone <= 9) \&
(5 <= oneone \& oneone <= 9) \&
(5 <= alltwo \& alltwo <= 9))) \#
(abs(allone - 7) + abs(oneone - 7) + abs(alltwo - 7)) ;
\%mend;
\%mktex (3 ** 50, n=135, optiter=0, tabiter=0, maxdesigns=1,
restrictions=sumres, seed=289, options=resrep);

```

This restrictions macro seems at first glance to do everything right - it quantifies badness. We need to examine this macro more closely. It counts in allone, oneone, and alltwo the number of times choice attributes are all one, have exactly one 1, or are all two. Everything is fine when the all one count is in the range 5 to 9 ( \(5<=\) allone \& allone <= 9) , and the exactly one 1 count is in the range 5 to 9 ( 5 \(<=\) oneone \& oneone <= 9), and the all two count is in the range 5 to 9 ( \(5<=\) alltwo \& alltwo <= 9). It is bad when this is not true ( \(\wedge(5<=\) allone \& allone <= 9) \& (5 <= oneone \& oneone <= 9) \& (5 <= alltwo \& alltwo <= 9))), the Boolean not operator \({ }^{\prime} \wedge\) ' performs the logical negation. This Boolean expression is 1 for bad and 0 for OK. It is multiplied times a quantitative sum of how far these counts are outside the right range (abs (allone -7) + abs (oneone -7) + abs (alltwo 7)). When the run meets all restrictions, this sum of absolute differences will be multiplied by zero. Otherwise badness gets larger as the counts get farther away from the middle of the 5 to 9 interval.

In the \%MktEx macro, we specified options=resrep which produces a report in the iteration history on the process of meeting the restrictions. When you run \(\% \mathrm{MktEx}\) and it is having trouble making a design that conforms to restrictions, this report can be extremely helpful. Next, we will examine some of the output from running the preceding macros.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Design} & \multicolumn{3}{|r|}{Algorithm Search History} & \\
\hline & & Current & Best & \\
\hline & Row, Col & D-Efficiency & D-Efficiency & Notes \\
\hline 1 & Start & 59.7632 & & Ran, Mut, Ann \\
\hline 1 & 1 & 60.0363 & & 0 Violations \\
\hline 1 & 2 & 60.3715 & & 0 Violations \\
\hline 1 & 3 & 60.9507 & & 0 Violations \\
\hline 1 & 4 & 61.2319 & & 5 Violations \\
\hline 1 & 5 & 61.6829 & & 0 Violations \\
\hline 1 & 6 & 62.1529 & & 0 Violations \\
\hline 1 & 7 & 62.4004 & & 0 Violations \\
\hline 1 & 8 & 62.9747 & & 3 Violations \\
\hline
\end{tabular}
\begin{tabular}{llll}
1 & 132 & 70.4482 & 6 Violations \\
1 & 133 & 70.3394 & 4 Violations \\
1 & 134 & 70.4054 & 0 Violations \\
1 & 135 & 70.4598 & 0 Violations
\end{tabular}

So far we have seen the results from the first pass through the design. With options=resrep the macro prints one line per row with the number of violations when it is done with the row. Notice that the macro is succeeding in eliminating violations in some but not all rows. This is the first thing you should look for. If it is not succeeding in any rows, you may have written a set of restrictions that is impossible to satisfy. Let's look next at some of the output from the second pass through the design.
\begin{tabular}{|c|c|c|c|}
\hline 1 & 1 & 70.5586 & 0 Violations \\
\hline 1 & 2 & 70.7439 & 0 Violations \\
\hline 1 & 3 & 70.7383 & 0 Violations \\
\hline 1 & 4 & 70.7429 & 5 Violations \\
\hline 1 & 4 & 70.6392 & 4 Violations \\
\hline 1 & 4 & 70.7081 & 4 Violations \\
\hline 1 & 4 & 70.7717 & 4 Violations \\
\hline 1 & 4 & 70.7717 & 4 Violations \\
\hline 1 & 4 & 70.7717 & 4 Violations \\
\hline 1 & 4 & 70.7717 & 4 Violations \\
\hline 1 & 4 & 70.7717 & 4 Violations \\
\hline 1 & 4 & 70.7202 & 4 Violations \\
\hline 1 & 4 & 70.7717 & 4 Violations \\
\hline 1 & 4 & 70.7717 & 4 Violations \\
\hline 1 & 4 & 70.7717 & 4 Violations \\
\hline 1 & 4 & 70.7264 & 4 Violations \\
\hline 1 & 4 & 70.7717 & 4 Violations \\
\hline 1 & 4 & 70.7717 & 4 Violations \\
\hline 1 & 4 & 70.7717 & 4 Violations \\
\hline 1 & 4 & 70.7717 & 4 Violations \\
\hline 1 & 4 & 70.7717 & 4 Violations \\
\hline 1 & 4 & 70.7274 & 4 Violations \\
\hline 1 & 4 & 70.7717 & 4 Violations \\
\hline 1 & 4 & 70.7515 & 4 Violations \\
\hline 1 & 4 & 70.7636 & 4 Violations \\
\hline 1 & 4 & 70.7717 & 4 Violations \\
\hline 1 & 4 & 70.7591 & 4 Violations \\
\hline 1 & 4 & 70.7717 & 4 Violations \\
\hline 1 & 5 & 70.7913 & 0 Violations \\
\hline 1 & 6 & 70.9467 & 0 Violations \\
\hline 1 & 7 & 71.0102 & 0 Violations \\
\hline 1 & 8 & 71.0660 & O Violations \\
\hline
\end{tabular}

In the second pass, in situations where the macro had some reasonable success in the first pass, \%MktEx tries extra hard to impose restrictions. We see it trying over and over again without success to impose the restrictions in the fourth row. All it manages to do is lower the number of violations from 5 to 4. We also see it has no trouble removing all violations in the eighth row that were still there after the first pass. The macro produces volumes of output like this. For several iterations it will devote extra attention to rows with some violations but in this case without complete success. When you see this pattern, some success but also some stubborn rows that the macro cannot fix, there may be something wrong with your restrictions macro. Are you really telling \%MktEx when it is doing a better job? These preceding steps illustrate some of the things that can go wrong with restrictions macros. It is important to carefully evaluate the results - look at the design, look at the iteration history, specify options=resrep, and so on to ensure your restrictions are doing what you want. The problem in this case is in the quantification of badness, which is shown again next.
```

bad = (~ ((5 <= allone \& allone <= 9) \&
(5 <= oneone \& oneone <= 9) \&
(5 <= alltwo \& alltwo <= 9))) \#
(abs(allone - 7) + abs(oneone - 7) + abs(alltwo - 7));

```

For one thing, notice that we have three nonindependent contributors to the badness function, the three counts. As a level gets changed, it could increase one count and decrease another. There is a larger problem too. Say that allone and oneone are in the right range but alltwo is not. Then the function fragments abs (allone -7 ) and abs (oneone -7) incorrectly contribute to the badness function. The fix is to clearly differentiate the three sources of badness and weight the pieces so that one part never trades off against the other. Here is an example.
```

%macro sumres;
allone = 0; oneone = 0; alltwo = 0;
do k = 1 to 22;
if (x[k] = 1 \& x[k+22] = 1) then allone = allone + 1;
else if (x[k] = 1 | x[k+22] = 1) then oneone = oneone + 1;
else if (x[k] = 2 \& x[k+22] = 2) then alltwo = alltwo + 1;
end;
bad = 100 \# (~ (5 <= allone \& allone <= 9)) \# abs(allone - 7) +
10 \# (~ (5 <= oneone \& oneone <= 9)) \# abs(oneone - 7) +
(~(5 <= alltwo \& alltwo <= 9)) \# abs(alltwo - 7);
%mend;

```
\%mktex(3 ** 50, \(\mathrm{n}=135\), optiter=0, tabiter=0, maxdesigns=1,
    restrictions=sumres, seed=289, options=resrep);

Now a component of the badness only contributes to the function when it is really part of the problem. We gave the first part weight 100 and the second part weight 10 . Now the macro will never change oneone or alltwo if that causes a problem for allone, and it will never change alltwo if that causes a problem for oneone. Previously the macro was getting stuck in some rows because it could never figure out how to fix one component of badness without making another component worse. Here is some of the output from the first pass through the design.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{3}{*}{Design} & \multicolumn{4}{|c|}{\multirow[t]{2}{*}{The SAS System orithm Search History}} \\
\hline & & & & \\
\hline & Row, Col & Current & \begin{tabular}{l}
Best \\
D-Efficiency
\end{tabular} & Notes \\
\hline 1 & Start & 59.7632 & & Ran, Mut, Ann \\
\hline 1 & 1 & 60.1415 & & O Violations \\
\hline 1 & 2 & 60.5303 & & 0 Violations \\
\hline 1 & 3 & 61.0148 & & 0 Violations \\
\hline 1 & 4 & 61.4507 & & 0 Violations \\
\hline 1 & 5 & 61.7717 & & 0 Violations \\
\hline 1 & 6 & 62.2353 & & 0 Violations \\
\hline 1 & 7 & 62.5967 & & 0 Violations \\
\hline 1 & 8 & 63.1628 & & 3 Violations \\
\hline - & & & & \\
\hline - & & & & \\
\hline . & & & & \\
\hline 1 & 126 & 72.3566 & & 4 Violations \\
\hline 1 & 127 & 72.2597 & & 0 Violations \\
\hline 1 & 128 & 72.3067 & & 0 Violations \\
\hline 1 & 129 & 72.3092 & & 0 Violations \\
\hline 1 & 130 & 72.0980 & & 0 Violations \\
\hline 1 & 131 & 71.8163 & & 0 Violations \\
\hline 1 & 132 & 71.3795 & & 0 Violations \\
\hline 1 & 133 & 71.4446 & & 0 Violations \\
\hline 1 & 134 & 71.2805 & & 0 Violations \\
\hline 1 & 135 & 71.3253 & & 0 Violations \\
\hline
\end{tabular}

We can see that in the first pass, the macro is imposing all restrictions for most but not all of the rows. Here is some of the output from the second pass.
\begin{tabular}{llll}
\hline & & & \\
1 & 1 & 71.3968 & 0 Violations \\
1 & 2 & 71.5017 & 0 Violations \\
1 & 3 & 71.7295 & 0 Violations \\
1 & 4 & 71.7839 & 0 Violations \\
1 & 5 & 71.8671 & 0 Violations \\
1 & 6 & 71.9544 & 0 Violations \\
1 & 7 & 72.0444 & 0 Violations \\
1 & 8 & 72.0472 & \\
. & & Violations \\
\(\cdot\) & & &
\end{tabular}
\begin{tabular}{llll}
1 & 126 & 77.1597 & O Violations \\
1 & 127 & 77.1604 & O Violations \\
1 & 128 & 77.1323 & O Violations \\
1 & 129 & 77.1584 & O Violations \\
1 & 130 & 77.0708 & O Violations \\
1 & 131 & 77.1013 & 0 Violations \\
1 & 132 & 77.1721 & O Violations \\
1 & 133 & 77.1651 & O Violations \\
1 & 134 & 77.1651 & O Violations \\
1 & 135 & 77.2061 & 0 Violations
\end{tabular}

In the second pass, \(\%\) MktEx has imposed all the restrictions in rows 8 and 126 , the rows that still had violations after the first pass (and all of the other not shown rows too). The third pass ends like this.
\begin{tabular}{lrrrll}
\hline & 126 & & 78.7813 & & O Violations \\
1 & 127 & 1 & 78.7813 & 78.7813 & Conforms \\
1 & 127 & 18 & 78.7899 & 78.7899 & \\
1 & 127 & 19 & 78.7923 & 78.7923 & 78.7933 \\
1 & 127 & 32 & 78.7933 & 78.7971 \\
1 & 127 & 40 & 78.7971 & 78.8042 \\
1 & 127 & 44 & 78.8042 & 78.8250 \\
1 & 127 & 47 & 78.8250 & 78.8259 \\
1 & 127 & 50 & 78.8259 & 78.8296 \\
1 & 127 & 1 & 78.8296 & 78.8296 \\
1 & 127 & 5 & 78.8296 & 78.8449 \\
1 & 127 & 8 & 78.8449 & 78.8456 \\
1 & 127 & 10 & 78.8456 & 78.8585 & 78.8591 \\
1 & 128 & 48 & 78.8585 & 78.8591 & \\
\hline 1 & 128 & 49 & 78.8591 & 78.8591 & \\
\hline & 128 & 7 & & & \\
\hline
\end{tabular}

The \%MktEx macro completes a full pass through row 126 , the place of the last violation, without finding any new violations so the macro states in row 127 that the design conforms to the restrictions and the iteration history proceeds in the normal fashion from then on (not shown). Here is the final efficiency.

The OPTEX Procedure
\begin{tabular}{cccc} 
& & Average \\
Design & & & \\
Prediction \\
Number & D-Efficiency & A-Efficiency & G-Efficiency
\end{tabular}

This next code creates the choice design. Notice the slightly unusual arrangement of the KEY data set
due to the fact that the first 22 attributes get made from the first 44 factors of the linear design.
```

%mktkey(x1-x50)
data key;
input (x1-x25) (\$);
datalines;
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13
x14 x15 x16 x17 x18 x19 x20 x21 x22 x45 x46 x47
x23 x24 x25 x26 x27 x28 x29 x30 x31 x32 x33 x34
x35 x36 x37 x38 x39 x40 x41 x42 x43 x44 x48 x49 x50
;
%mktroll(design=design, key=key, out=chdes);
proc print; by set; id set; where set le 2 or set ge 134; run;

```

Here are a few of the choice sets.
\[
\begin{aligned}
& \text { A }
\end{aligned}
\]
\[
\begin{aligned}
& \mathrm{t} \text { _ } 1234567890123456789012345 \\
& \begin{array}{lllllllllllllllllllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 1 & 3 & 1 & 1 & 2 & 3 & 2 & 3 & 2 & 3 & 2 & 2 & 2 & 1 & 2 & 2 & 1 & 1 & 1
\end{array}
\end{aligned}
\]
\[
\begin{aligned}
& \begin{array}{lllllllllllllllllllllllllll}
2 & 1 & 1 & 1 & 1 & 1 & 1 & 3 & 1 & 1 & 2 & 2 & 3 & 2 & 2 & 2 & 1 & 2 & 3 & 1 & 1 & 3 & 1 & 2 & 1 & 1 & 2
\end{array} \\
& 2331111133222122231133121122
\end{aligned}
\]

\section*{Where the Restrictions Macro Gets Called}

There is one more aspect to restrictions that must be understood for the most sophisticated usages of restrictions. The macro that imposes the restrictions is defined and called in four distinct places in the \(\% \mathrm{MktEx}\) macro. First, the restrictions macro is called in a separate, preliminary IML step, just to catch some syntax errors you might have made. Next, it is called in between calling PROC PLAN or PROC FACTEX and calling PROC OPTEX. Here, the restrictions macro is used to impose restrictions on the candidate set. Next, it is used in the obvious way during design creation and the coordinateexchange algorithm. Finally, when options=accept is specified, which means that restriction violations are acceptable, the macro is called after all of the iterations have completed to report on restriction violations in the final design. For some advanced restrictions, we may not want exactly the same code running in all four places. When the restrictions are purely written in terms of restrictions on x , which
is the \(i\) th row of the design matrix, there is no problem. The same macro will work fine for all uses. However, when xmat (the full \(x\) matrix) or i or \(j 1\) (the row or column number) are used, the same code typically cannot be used for all applications, although sometimes it does not matter. Next are some notes on each of the four phases.

Syntax Check. In this phase, the macro is defined and called just to check for syntax errors. This step allows the macro to end more gracefully than it would otherwise if there are errors. Your restrictions macro can recognize when it is in this phase because the macro variable \&main is set to 0 and the macro variable \&pass is set to null. The pass variable is null before the iterations begin, 1 for the algorithm search phase, 2 for the design search phase, 3 for the design refinement stage, and 4 after the iterations end. You can conditionally execute code in this step or not using the following macro statements.
```

%if \&main eq 0 and \&pass eq %then %do; /* execute in syntax check */
%if not (\&main eq 0 and \&pass eq) %then %do; /* not execute in syntax check */

```

You will usually not need to worry about this step. It just calls the macro once and ignores the results to check for syntax errors. For this step, xmat (and hence x ) is a vector of ones (since the design does not exist yet) and \(j 1=j 2=j 3=i=1\). If you have complicated restrictions involving the row or column exchange indices ( \(\mathrm{i}, \mathrm{j} 1, \mathrm{j} 2, \mathrm{j} 3\) ) you may need to worry about this step. You may need to either not execute your restrictions in this step or conditionally execute some assignment statements (just for this step) that set up \(j 1, j 2\), and \(j 3\) more appropriately. If you have syntax errors in your restrictions macro and you cannot figure out what they are, sometimes the best thing to do is directly submit the statements in your restrictions macro to IML so you can see the normal IML syntax errors. First submit the following statements.
```

%let n = 27; /* substitute number of runs */
%let m = 10; /* substitute number of factors */
proc iml;
xmat = j(\&n, \&m, 1);
i=1; j1 = 1; j2 = 1; j3 = 1; bad = 0; x = xmat[i,];

```

Candidate Check. In this phase, the macro is used to impose restrictions on the candidate set created by PROC PLAN or PROC FACTEX before it is searched by PROC OPTEX. For some problems, such as most partial profile problems, the restrictions are so severe that virtually none of the candidates will conform. Also, restrictions that are based on row number and column number do not make sense in the context of a candidate design. Your restrictions macro can recognize when it is in this phase because the macro variable \&main is set to 0 and the macro variable \&pass is set to 1 or 2 . You can conditionally execute code in this step or not using the following macro statements.
```

%if \&main eq 0 and \&pass ge 1 and \&pass le 2
%then %do; /* execute on candidates */
%if not (\&main eq 0 and \&pass ge 1 and \&pass le 2)
%then %do; /* not execute on candidates */

```

For simple restrictions, not involving the column exchange indices ( \(j 1, j 2, j 3\) ), you probably do not need to worry about this step. If you use \(j 1, j 2\), or \(j 3\), you will need to either not execute your restrictions in this step or conditionally execute some assignment statements that set up j1, \(j 2\), and j3 appropriately. Ordinarily for this step, xmat contains the candidate design, x contains the \(i\) th row, \(j 1=0 ; j 2=0 ; j 3=0\); and \(i\) is set to the candidate row number.

Main Coordinate-Exchange Algorithm. In this phase, the macro is used to impose restrictions on the design as it is being built in the coordinate-exchange algorithm. Your restrictions macro can recognize when it is in this phase because the macro variable \&main is set to 1 and the macro variable \&pass is set to 1,2 , or 3 . You can conditionally execute code in this step or not using the following macro statements.
```

%if \&main eq 1 and \&pass ge 1 and \&pass le 3
%then %do; /* execute on coordinate exchange */
%if not (\&main eq 1 and \&pass ge 1 and \&pass le 3)
%then %do; /* not execute on coordinate exchange */

```

For this step, xmat contains the candidate design, x contains the \(i\) th row, j 1 contains the column index, \(j 2\) and \(j 3\) are zero (unless you are using exchange=, in which case \(j 1\) and \(j 2\) are indexes of other columns being exchanged), and \(i\) is the row number.

Restrictions Violations Check. In this phase, the macro is used to check the design when there are restrictions and options=accept. Your restrictions macro can recognize when it is in this phase because the macro variable \&main is set to 1 and the macro variable \&pass is greater than 3 . You can conditionally execute code in this step or not using the following macro statements.
```

%if \&main eq 1 and \&pass gt 3 %then %do; /* execute on final check */
%if not (\&main eq 1 and \&pass gt 3) %then %do; /* not execute on final check */

```

For this step, xmat contains the candidate design, x contains the th row, \(\mathrm{j} 1=0 ; \mathrm{j} 2=0 ; \mathrm{j} 3=0\); and \(i\) is the row number.

Here is an example of a partial profile macro that does what the partial=4 option does.
```

%macro partprof;
nvary = sum(x ^= 1);
%if \&main %then %do;
if i = 1 then bad = nvary;
else bad = abs(nvary - 4);
%end;
%else %do;
bad = ^ (nvary = 0 | nvary = 4);
%end;
%mend;

```

In the main algorithm, when imposing restrictions on the design, we restrict the first run to be constant and all other runs to have four attributes varying. For the candidate-set restrictions, when MAIN is zero, any observation with zero or four varying factors is acceptable. For the candidate-set restrictions, there is no reason to count the number of violations. A candidate run is either acceptable or not. We do not worry about the syntax error or final check steps; both versions will work fine in either.

\section*{\%MktKey Macro}

The \%MktKey macro creates expanded lists of variable names.
```

%mktkey(x1-x15)

```

The \%MktKey macro produced the following line.
```

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

```

You can cut and paste this list to make it easier to construct the key= data set for the \%MktRoll macro.
```

data key;
input (x1-x5) (\$);
datalines;
x1 x2 x3 x4 x5
x6 x7 x8 x9 x10
x11 x12 x13 x14 x15
;

```

\section*{\%MktKey Macro Options}

The only argument to the \%MktKey macro is a variable list.

\section*{list}
specifies a variable list. Note that the variable list is a positional parameter and it is not specified after a name and an equal sign.

\section*{\%MktLab Macro}

The macro \%MktLab is used to process an experimental design, usually created by the \(\% \mathrm{MktEx}\) macro, and assign the final variable names and levels. There are numerous examples of its usage from pages 128 through 335 . For example, say you used the \%MktEx macro to create a design with 11 two-level factors (with default levels of 1 and 2).
\%mktex (n=12, options=nosort)
proc print noobs; run;
\begin{tabular}{cccccccccccc}
\hline x 1 & x 2 & x 3 & x 4 & x 5 & x 6 & x 7 & x 8 & x 9 & x 10 & x 11 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 2 & 2 & 2 & 1 & 1 & 2 & 1 & 1 & 2 & 2 \\
2 & 2 & 1 & 1 & 2 & 1 & 2 & 2 & 1 & 2 & 1 \\
1 & 1 & 1 & 2 & 1 & 2 & 2 & 2 & 2 & 2 & 1 \\
1 & 2 & 2 & 2 & 2 & 1 & 1 & 2 & 2 & 1 & 1 \\
1 & 2 & 1 & 1 & 2 & 2 & 2 & 1 & 2 & 1 & 2 \\
2 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 1 & 2 \\
2 & 1 & 1 & 2 & 2 & 1 & 1 & 1 & 2 & 2 & 2 \\
2 & 1 & 2 & 2 & 2 & 2 & 2 & 1 & 1 & 1 & 1 \\
1 & 1 & 2 & 1 & 2 & 2 & 1 & 2 & 1 & 2 & 2 \\
2 & 2 & 2 & 1 & 1 & 2 & 1 & 1 & 2 & 2 & 1 \\
2 & 1 & 2 & 1 & 1 & 1 & 2 & 2 & 2 & 1 & 2 \\
\hline
\end{tabular}

The \%MktLab macro can be used to assign levels of -1 and 1 , add an intercept, and change the variable name prefixes from x to Had. This creates a Hadamard matrix (although, of course, the Hadamard matrix can have any set of variable names).
```

%mktlab(data=design, values=1 -1, int=Had0, prefix=Had);
proc print noobs; run;

```

Here is the resulting Hadamard matrix:
\begin{tabular}{crrrrrrrrrrr}
\hline & & & & & & & & & & & \\
Had0 & Had1 & Had2 & Had3 & Had4 & Had5 & Had6 & Had7 & Had8 & Had9 & Had10 & Had11 \\
& & & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 & -1 & 1 & 1 & -1 & 1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 & 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 \\
1 & 1 & 1 & 1 & -1 & 1 & -1 & -1 & -1 & -1 & -1 & 1 \\
1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 \\
1 & 1 & -1 & 1 & 1 & -1 & -1 & -1 & 1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1 \\
1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & 1 & -1 & -1 & -1 \\
1 & -1 & 1 & -1 & -1 & -1 & -1 & -1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & -1 \\
1 & -1 & -1 & -1 & 1 & 1 & -1 & 1 & 1 & -1 & -1 & 1 \\
1 & -1 & 1 & -1 & 1 & 1 & 1 & -1 & -1 & -1 & 1 & -1 \\
\hline
\end{tabular}

Here is an alternative way of doing the same thing using a key= data set.
```

data key;
array Had[11];
input Had1 @@;
do i = 2 to 11; Had[i] = Had1; end;
drop i;
datalines;
1 -1
;
proc print data=key; run;

```

Here is the key= data set.
\begin{tabular}{rrrrrrrrrrrrr}
\hline Obs & Had1 & Had2 & Had3 & Had4 & Had5 & Had6 & Had7 & Had8 & Had9 & Had10 & Had11 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
2 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1
\end{tabular}
\%mktlab(data=design, key=key, int=Had0);
The Hadamard matrix from this step (not shown) is exactly the same as above.
The key= data set contains all of the variables that you want in the design and all of their levels. This information will be applied to the design, by default the one stored in a data set called RANDOMIZED, which is the default outr= data set name from the \%MktEx macro. The results are stored in a new data set, FINAL, with the desired factor names and levels.

Consider the consumer food product example from Kuhfeld, Tobias, and Garratt (1994). Here is one possible design.
```

data randomized;
input x1-x8 @@;
datalines;
4 2 1 1 1 1 2 2 2 2 1 1 2 1 3 1 3 3 4 2 2 1 3 2 3 4 4 3 2 1 3 2 2 2 3 4 1 2 1
1 1 1 1 1 2 4 1 2 2 1 2 1 1 1 1 2 1 2 2 3 3 2 1 1 2 2 2 2 2 2 2 2 % 3 1 4 2 1 1 1 2 2 2
3 2 2 1 1 3 1 2 1 1 4 4 1 2 2 3 1 2 1 1 3 2 2 2 1 3 1 1 1 3 2 1 1 2 2 1 2 2 3 3 4 1 1
3 1 1 3 4 1 2 2 2 2 1 2 1 2 3 2 1 1 2 3 2 2 2 2 1 2 1 1 3 3 1 3 4 4 2 2 2 1 3 1 2
2 4 2 2 3 3 1 1 2 2 3 1 2 2 3 3 2 1 2 2 3 3 1 1 1 2 3 1 1 1 4 4 2 2 1 2 2 1 1 3 1 1 1 1 1
3 2 1 2 4 3 1 2 3 3 2 2 1 2 2 1 1 2 1 1 3 1 1 3 1 1 1 1 1 2 3

```

Designs created by the \(\% \mathrm{MktEx}\) macro always have factor names \(\mathrm{x} 1, \mathrm{x} 2, \ldots\), and so on, and the levels are consecutive integers beginning with 1 ( 1,2 for two-level factors; \(1,2,3\) for three-level factors; and so on). The \(\% \mathrm{MktLab}\) macro provides you with a convenient way to change the names and levels to more meaningful values. The data set KEY contains the variable names and levels that you ultimately want.
```

data key;
missing N;
input Client ClientLineExtension ClientMicro \$ ShelfTalker \$
Regional Private PrivateMicro \$ NationalLabel;
format _numeric_ dollar5.2;
datalines;
1.29 1.39 micro Yes 1.99 1.49 micro 1.99
1.69 1.89 stove No 2.49 2.29 stove 2.39
2.09 2.39 . . N N . N
N N
;
%mktlab(key=key);
proc sort; by shelftalker; run;
proc print; by shelftalker; run;

```

The variable Client with 4 levels will be made from x1, ClientLineExtension with 4 levels will be made from x2, ClientMicro with 2 levels will be made from \(x 3\). The \(N\) (for not available) is treated as a special missing value. The KEY data set has four rows because the maximum number of levels is four. Factors with fewer than four levels are filled in with ordinary missing values. The \%MktLab macro takes the default data=randomized data set from \%MktEx and uses the rules in the key=key data set, to create the information in the out=final data set, which is shown next, sorted by the shelf talker variable.

Here is some of the design:


This macro creates the out= data set by repeatedly reading and rereading the key= data set, one datum at a time, using the information in the data= data set to determine which levels to read from the key= data set. In this example, for the first observation, \(\mathrm{x} 1=4\) so the fourth value of the first key= variable is read, then \(\mathrm{x} 2=2\) so the second value of the second key= variable is read, then \(\mathrm{x} 3=1\) so the first value of the third key= variable is read, \(\ldots\), then \(\mathrm{x} 8=2\) so the second value of the eighth key= variable is read, then the first observation is output. This continues for all observations. This is why the data= data set must have integer values beginning with 1 .

This example creates the \(L_{36}\), renames the two-level factors two1-two11 and assigns them values -1 , 1 , and renames the three-level factors thr1-thr12 and assigns them values \(-1,0,1\).
```

%mktex(n=36, seed=420)
data key;
array x[23] two1-two11 thr1-thr12;
input two1 thr1;
do i = 2 to 11; x[i] = two1; end;
do i = 13 to 23; x[i] = thr1; end;
drop i;
datalines;
-1 -1
1 0
. 1
;
%mktlab(key=key);

```
proc print data=key noobs; var two:; run;
proc print data=key noobs; var thr:; run;
proc print data=final(obs=5) noobs; var two:; run;
proc print data=final(obs=5) noobs; var thr:; run;

Here is the KEY data set.


Here are the first five rows of the design.
\begin{tabular}{rrrrrrrrrrr}
\hline & & & & & & & & & & \\
two1 & two2 & two3 & two4 & two5 & two6 & two7 & two8 & two9 & two10 & two11 \\
-1 & -1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & -1 \\
1 & 1 & 1 & 1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 \\
-1 & -1 & -1 & 1 & -1 & -1 & -1 & -1 & -1 & 1 & -1 \\
-1 & -1 & -1 & -1 & 1 & 1 & 1 & -1 & -1 & -1 & 1 \\
-1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 & 1 & 1 & 1
\end{tabular}
\begin{tabular}{ccrrrrrrrrrrr} 
thr1 & thr2 & thr3 & thr4 & thr5 & thr6 & thr7 & thr8 & thr9 & thr10 & thr11 & thr12 \\
& & & & & & & & & & & & \\
0 & 0 & 0 & 1 & 1 & 1 & -1 & 1 & 1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 & 0 & 0 & -1 & 1 & 1 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 & -1 & -1 & -1 & 0 & -1 & 0 & -1 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & -1 & -1 & -1 & 1 & 0 \\
1 & -1 & 1 & 1 & 1 & 1 & 0 & -1 & -1 & 0 & -1 & 1
\end{tabular}

This next step creates a design and blocks it. This example shows that it is okay if not all of the variables in the input design are used. The variables Block, Run, and \(x 4\) are just copied from the input to the output.
```

%mktex(n=18, seed=396)
%mktblock(nblocks=2, factors=x1-x4, seed=292)
data key;
input Brand \$ Price Size;
format price dollar5.2;
datalines;
Acme 1.49 6
Apex 1.79 8
. 1.99 12
;
%mktlab(data=blocked, key=key)
proc print; id block run; by block; run;

```

Here are the results:
\begin{tabular}{ccccccc}
\hline Block & Run & Brand & Price & Size & x4 \\
& 1 & 1 & Acme & \(\$ 1.49\) & 12 & 2 \\
& & 2 & Acme & \(\$ 1.79\) & 6 & 3 \\
& 3 & Acme & \(\$ 1.79\) & 8 & 2 \\
& 4 & Acme & \(\$ 1.99\) & 8 & 1 \\
& 5 & Acme & \(\$ 1.99\) & 12 & 1 \\
& 6 & Apex & \(\$ 1.49\) & 8 & 3 \\
& 7 & Apex & \(\$ 1.49\) & 12 & 3 \\
& 8 & Apex & \(\$ 1.79\) & 6 & 1
\end{tabular}
2 \begin{tabular}{rlrrr}
1 & Acme & \(\$ 1.49\) & 6 & 1 \\
2 & Acme & \(\$ 1.49\) & 6 & 2 \\
3 & Acme & \(\$ 1.79\) & 8 & 3 \\
4 & Acme & \(\$ 1.99\) & 12 & 3 \\
5 & Apex & \(\$ 1.49\) & 8 & 1 \\
6 & Apex & \(\$ 1.79\) & 12 & 1 \\
7 & Apex & \(\$ 1.79\) & 12 & 2 \\
8 & Apex & \(\$ 1.99\) & 6 & 3 \\
9 & Apex & \(\$ 1.99\) & 8 & 2
\end{tabular}

This next example illustrates using the labels= option. This option is more typically used with values= input, rather than when you construct the key= data set yourself, but it can be used either way. This example is from a vacation choice example.
```

%mktex(3 ** 15, n=36, seed=17, maxtime=0)
%mktblock(data=randomized, nblocks=2, factors=x1-x15, seed=448)
%macro lab;
label X1 = 'Hawaii, Accommodations'
X2 = 'Alaska, Accommodations'
X3 = 'Mexico, Accommodations'
X4 = 'California, Accommodations'
X5 = 'Maine, Accommodations'
X6 = 'Hawaii, Scenery'
X7 = 'Alaska, Scenery'
X8 = 'Mexico, Scenery'
X9 = 'California, Scenery'
X10 = 'Maine, Scenery'
X11 = 'Hawaii, Price'
X12 = 'Alaska, Price'
X13 = 'Mexico, Price'
X14 = 'California, Price'
X15 = 'Maine, Price';
format x11-x15 dollar5.;
%mend;

```
```

data key;
length x1-x5 \$ 16 x6-x10 \$ 8 x11-x15 8;
input x1 \& \$ x6 \$ x11;
x2 = x1; x3 = x1; m4 = x1; m5 = x1;
x7 = x6; x8 = x6; x9 = x6; x10 = x6;
x12 = x11; x13 = x11; x14 = x11; x15 = x11;
datalines;
Cabin Mountains 999
Bed \& Breakfast Lake 1249
Hotel Beach 1499
;
%mktlab(data=blocked, key=key, labels=lab)
proc contents p; ods select position; run;

```

Here is the variable name, label, and format information.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{\#} & \multirow[b]{3}{*}{Variable} & \multicolumn{4}{|c|}{The CONTENTS Procedure} \\
\hline & & \multicolumn{4}{|c|}{Variables in Creation Order} \\
\hline & & Type & Len & Format & Label \\
\hline 1 & x 1 & Char & 16 & & Hawaii, Accommodations \\
\hline 2 & x2 & Char & 16 & & Alaska, Accommodations \\
\hline 3 & x3 & Char & 16 & & Mexico, Accommodations \\
\hline 4 & x 4 & Char & 16 & & California, Accommodations \\
\hline 5 & x5 & Char & 16 & & Maine, Accommodations \\
\hline 6 & x6 & Char & 8 & & Hawaii, Scenery \\
\hline 7 & x7 & Char & 8 & & Alaska, Scenery \\
\hline 8 & x8 & Char & 8 & & Mexico, Scenery \\
\hline 9 & x9 & Char & 8 & & California, Scenery \\
\hline 10 & x 10 & Char & 8 & & Maine, Scenery \\
\hline 11 & x 11 & Num & 8 & DOLLAR5. & Hawaii, Price \\
\hline 12 & x 12 & Num & 8 & DOLLAR5. & Alaska, Price \\
\hline 13 & x 13 & Num & 8 & DOLLAR5. & Mexico, Price \\
\hline 14 & x 14 & Num & 8 & DOLLAR5. & California, Price \\
\hline 15 & x15 & Num & 8 & DOLLAR5. & Maine, Price \\
\hline 16 & Block & Num & 8 & & \\
\hline 17 & Run & Num & 8 & & \\
\hline
\end{tabular}

\section*{\%MktLab Macro Options}

The following options can be used with the \%MktLab macro.
\begin{tabular}{|l|l|}
\hline Option & Description \\
\hline cfill=character-string & character fill value \\
data=SAS-data-set & input design data set \\
dolist=do-list & new values using a do-list syntax \\
int=variable-list & name of an intercept variable \\
key=SAS-data-set & key data set \\
labels=macro-name & macro that provides labels and formats \\
nfill=number & numeric fill value \\
out=SAS-data-set & output data set with recoded design \\
prefix=variable-prefix & prefix for naming variables \\
statements=SAS-code & add extra statements \\
values=value-list & the new values for all of the variables \\
vars=variable-list & list of variable names \\
\hline
\end{tabular}
\(\mathbf{c f i l l}=\) character-string
specifies the fill value in the key= data set for character variables. See the nfill= option for more information on fill values. The default is cfill=' '.

\section*{data \(=S A S\)-data-set}
specifies the input data set with the experimental design, usually created by the \(\% \mathrm{MktEx}\) macro. The default is data=Randomized. The factor levels in the data= data set must be consecutive integers beginning with 1 .

\section*{dolist \(=\) do-list}
specifies the new values, using a do-list syntax ( n TO m <BY p>), for example: dolist=1 to 10 or dolist=0 to 9 . With asymmetric designs (not all factors have the same levels), specify the levels for the largest number of levels. For example, with two-level and three-level factors and dolist= 0 to 2 , the two-level factors will be assigned levels 0 and 1 , and the three-level factors will be assigned levels 0 , 1 , and 2 . Do not specify both values= and dolist=. By default, when \(k e y=\), values \(=\), and dolist= are all not specified, the default value list comes from dolist=1 to 100 .
int \(=\) variable-list
specifies the name of an intercept variable (column of ones), if you want an intercept added to the out= data set. You can also specify a variable list instead of a variable name if you would like to make a list of variables with values all one. This can be useful, for example, for creating flag variables for generic choice models when the design is going to be used as a candidate set for the \%ChoicEff macro.

\section*{\(\mathbf{k e y}=S A S\)-data-set}
specifies the input data set with the key to recoding the design. When values= or dolist= is specified, this data set is made for you. By default, when \(k e y=\), values=, and dolist= are all not specified, the default value list comes from dolist=1 to 100 .

\section*{labels \(=\) macro-name}
specifies the name of a macro that provides labels, formats, or other additional information to the key= data set. For a simple format specification, it is easier to use statements=. For more involved specifications, use labels=. Note that you specify just the macro name, no percents on the labels= option. Example:
```

%mktex(3 ** 4, n=18, seed=205)
%macro labs;
label x1 = 'Sploosh' x2 = 'Plumbob'
x3 = 'Platter' x4 = 'Moosey';
format x1-x4 dollar5.2;
%mend;
%mktlab(values=1.49 1.99 2.49, labels=labs)
proc print label; run;

```
\begin{tabular}{cccccc}
\hline Obs & Sploosh & Plumbob & Platter & Moosey \\
& & & & \\
1 & \(\$ 2.49\) & \(\$ 2.49\) & \(\$ 2.49\) & \(\$ 1.49\) \\
2 & \(\$ 2.49\) & \(\$ 2.49\) & \(\$ 1.99\) & \(\$ 1.99\) \\
3 & \(\$ 1.49\) & \(\$ 1.49\) & \(\$ 1.49\) & \(\$ 1.49\) \\
4 & \(\$ 1.99\) & \(\$ 1.99\) & \(\$ 2.49\) & \(\$ 2.49\) \\
\(\cdot\) & & & & \\
\hline & & & & \\
\hline
\end{tabular}

\section*{nfill \(=\) number}
specifies the fill value in the key= data set for numeric variables. For example when the maximum number of levels is three, the last value in the key= data set for numeric two-level factors should have a value of nfill=, which by default is ordinary missing. If the macro tries to access one of these values, it prints a warning. If you would like ordinary missing (.) to be a legitimate level, specify a different nfill= value and use it for the extra places in the key= data set.

\section*{out \(=S A S\)-data-set}
specifies the output data set with the final, recoded design. The default is out=final. Often, you will want to specify a two-level name to create a permanent SAS data set so the design will be available later for analysis.

\section*{prefix \(=\) variable-prefix}
specifies a prefix for naming variables when values= is specified. For example prefix=Var creates variables Var1, Var2, and so on. By default, the variables are \(\mathrm{x} 1, \mathrm{x} 2, \ldots\). This option is ignored when vars= is specified.
statements \(=S A S\)-code
is an alternative to labels= that you can use to add extra statements to the key= data set. For a simple format specification, it is easier to use statements=. For more involved specifications, use labels=. Example:
```

%mktex(3 ** 4, n=18, seed=205)
%mktlab(values=1.49 1.99 2.49,
vars=Sploosh Plumbob Platter Moosey,
statements=format Sploosh Plumbob Platter Moosey dollar5.2)
proc print; run;

```
\begin{tabular}{cccccc}
\hline Obs & Sploosh & Plumbob & Platter & Moosey \\
& & & & & \\
\hline 2 & \(\$ 2.49\) & \(\$ 2.49\) & \(\$ 2.49\) & \(\$ 1.49\) \\
3 & \(\$ 1.49\) & \(\$ 2.49\) & \(\$ 1.99\) & \(\$ 1.99\) \\
4 & \(\$ 1.99\) & \(\$ 1.99\) & \(\$ 2.49\) & \(\$ 2.49\) \\
\(\cdot\) & & & & \\
\hline\(\cdot\) & & & & \\
\hline
\end{tabular}

\section*{values \(=\) value-list}
specifies the new values for all of the variables. If all variables will have the same value, it is easier to specify values= or dolist= than key=. When you specify values=, the key= data set is created for you. Specify a list of levels separated by blanks. If your levels contain blanks, separate them with two blanks. With asymmetric designs (not all factors have the same levels) specify the levels for the largest number of levels. For example, with two-level and three-level factors and values=a b c, the two-level factors will be assigned levels ' \(a\) ' and ' \(b\) ', and the three-level factors will be assigned levels ' \(a\) ', ' \(b\) ', and 'c'. Do not specify both values= and dolist=. By default, when key=, values=, and dolist= are all not specified, the default value list comes from dolist=1 to 100 .

\section*{vars \(=\) variable-list}
specifies a list of variable names when values= or dolist= is specified. If vars= is not specified with values=, then prefix= is used.

\section*{\%MktLab Macro Notes}

This macro specifies options nonotes throughout most of its execution. If you want to see all of the notes, submit the statement \%let mktopts = notes; before running the macro.

\section*{\%MktMerge Macro}

The \%MktMerge autocall macro merges a data set containing an experimental design for a choice model with the data for the choice model. There are numerous examples of its usage from pages 121 through 275. Here is a typical usage of the macro.
```

%mktmerge(design=rolled, data=results, out=res2,
nsets=18, nalts=5, setvars=choose1-choose18)

```

The design= data set comes from the \%MktRoll macro. The data= data set contains the data, and the setvars= variables in the data= data set contain the numbers of the chosen alternatives for each of the 18 choice sets. The nsets= option specifies the number of choice sets, and the nalts= option specifies the number of alternatives. The out= option names the output SAS data set that contains the experimental design and a variable c that contains 1 for the chosen alternatives (first choice) and 2 for unchosen alternatives (second or subsequent choice).

When the data= data set contains a blocking variable, name it on the blocks= option. When there is blocking, it is assumed that the design \(=\) data set contains blocks of nalts \(\times\) nsets observations. The blocks= variable must contain values \(1,2, \ldots, n\) for \(n\) blocks. Here is an example of using the \%MktMerge macro with blocking.
```

%mktmerge(design=rolled, data=results, out=res2, blocks=form,
nsets=18, nalts=5, setvars=choose1-choose18)

```

\section*{\%MktMerge Macro Options}

The following options can be used with the \%MktMerge macro.
\begin{tabular}{|l|l|}
\hline Option & Description \\
\hline blocks=1 | variable & blocking variable \\
data=SAS-data-set & input SAS data set \\
design=SAS-data-set & input SAS choice design data set \\
nalts=n & number of alternatives \\
nsets=n & number of choice sets \\
out=SAS-data-set & output SAS data set \\
setvars=variable-list & variables with the data \\
statements=SAS-statements & additional statements \\
\hline
\end{tabular}

You must specify the design=, nalts=, nsets=, and setvars= options.

\section*{blocks \(=1 \mid\) variable}
specifies either a 1 (the default) if there is no blocking or the name of a variable in the data= data set that contains the block number. When there is blocking, it is assumed that the design= data set contains blocks of nalts \(\times\) nsets observations, one set per block. The blocks= variable must contain values \(1,2, \ldots, n\) for \(n\) blocks.
data \(=\) SAS-data-set
specifies an input SAS data set with data for the choice model. By default, the data= data set is the last data set created.
design \(=S A S\)-data-set
specifies an input SAS data set with the choice design. This data set could have been created for example with the \%MktRoll macro. This option must be specified.
nalts \(=n\)
specifies the number of alternatives. This option must be specified.

\section*{nsets \(=n\)}
specifies the number of choice sets. This option must be specified.

\section*{out \(=\) SAS-data-set}
specifies the output SAS data set. If out= is not specified, the DATAn convention is used. This data set contains the experimental design and a variable c that contains 1 for the chosen alternatives (first choice) and 2 for unchosen alternatives (second or subsequent choice).

\section*{setvars \(=\) variable-list}
specifies a list of variables, one per choice set, in the data= data set that contains the numbers of the chosen alternatives. It is assumed that the values of these variables range from 1 to nalts. This option must be specified.
statements \(=\) SAS-statements
specifies additional statements like format and label statements. Example:
```

%mktmerge(design=rolled, data=results, out=res2, blocks=form,
nsets=\&n, nalts=\&m, setvars=choose1-choose\&n,
statements=%str(price = input(put(price, price.), 5.);
format scene scene. lodge lodge.;))

```

\section*{\%MktMerge Macro Notes}

This macro specifies options nonotes throughout most of its execution. If you want to see all of the notes, submit the statement \%let mktopts = notes; before running the macro.

\section*{\%MktOrth Macro}

The \%MktOrth macro lists some of the \(100 \%\) orthogonal main-effects plans that the \%MktEx macro can generate. See page 137 for an example. The \%MktOrth macro can help you see what orthogonal designs are available and decide which ones to use. Here is a typical usage.

\section*{\%mktorth;}

The macro creates data sets and no printed output except log notes.
NOTE: The data set WORK.MKTDESLEV has 12356 observations and 54 variables.
NOTE: The data set WORK.MKTDESCAT has 12356 observations and 3 variables.
This next step would print the entire catalog. The results of this step are not shown.
```

proc print data=mktdescat;
id n; by n;
run;

```

Here are the first few and last few designs in the catalog.
```

proc print data=mktdeslev(where=(n le 12 or n eq 512 and x2 le 4));
var design reference;
id n; by n;
run;

```


Here are the first few designs and variables in the MKTDESLEV data set.
```

proc print data=mktdeslev(where=(n le 12));
var design reference x1-x6;
id n; by n;
run;

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline n & & & & \multicolumn{3}{|l|}{Design} & & & & Reference & x1 & x 2 & x3 & x 4 & x5 & x6 \\
\hline 4 & 2 & ** & 3 & & & & & & & Hadamard & 0 & 3 & 0 & 0 & 0 & 0 \\
\hline 6 & 2 & ** & 1 & 3 & ** & 1 & & & & Full-Factorial & 0 & 1 & 1 & 0 & 0 & 0 \\
\hline 8 & 2 & ** & 7 & & & & & & & Hadamard & 0 & 7 & 0 & 0 & 0 & 0 \\
\hline & 2 & ** & 4 & & & & 4 & ** & 1 & Hadamard & 0 & 4 & 0 & 1 & 0 & 0 \\
\hline 9 & & & & & ** & 4 & & & & Fractional-Factorial & 0 & 0 & 4 & 0 & 0 & 0 \\
\hline 10 & 2 & ** & 1 & & & & 5 & ** & 1 & Full-Factorial & 0 & 1 & 0 & 0 & 1 & 0 \\
\hline 12 & 2 & ** & 11 & & & & & & & Hadamard & 0 & 11 & 0 & 0 & 0 & 0 \\
\hline & 2 & ** & 4 & 3 & ** & 1 & & & & Orthogonal Array & 0 & 4 & 1 & 0 & 0 & 0 \\
\hline & 2 & ** & 2 & & & & 6 & ** & 1 & Orthogonal Array & 0 & 2 & 0 & 0 & 0 & 1 \\
\hline & & & & & ** & 1 & 4 & ** & 1 & Full-Factorial & 0 & 0 & 1 & 1 & 0 & 0 \\
\hline
\end{tabular}

If you just want to display a list of designs, possibly selecting on \(n\), the number of runs, you can use the MKTDESCAT data set. However, if you would like to do more advanced processing, based on the numbers of levels of some of the factors, you can use the outlev=mktdeslev data set to select potential designs. You can look at the level information in MKTDESLEV and see the number of two-level factors in \(x 2\), the number of three-level factors in \(x 3, \ldots\), and the number of fifty-level factors is in \(x 50\). The number of one level factors, x 1 , is always zero, but x 1 is available so you can make arrays (for example, array \(\mathrm{x}[50\) ]) and have \(\mathrm{x}[2]\) refer to x 2 , the number of two-level factors.

Say you are interested in the design \(2^{5} 3^{5} 4^{1}\). Here are some of the ways in which it is available.
proc print data=mktdeslev;
where \(x 2\) ge 5 and \(x 3\) ge 5 and \(x 4\) ge 1 and \(n\) le 100;
var n design reference;
run;


Here is one way you can see all the designs in a certain range of sizes.
proc print; where 12 le \(n\) le 20 ; run;
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Obs & n & & & & \multicolumn{5}{|c|}{Design} & & & & & Reference \\
\hline 7 & 12 & 2 & ** & & & & & & & & & & & Hadamard \\
\hline 8 & 12 & 2 & ** & 4 & 3 & ** & 1 & & & & & & & Orthogonal Array \\
\hline 9 & 12 & 2 & ** & 2 & & & & 6 & ** & 1 & & & & Orthogonal Array \\
\hline 10 & 12 & & & & 3 & ** & 1 & 4 & & 1 & & & & Full-Factorial \\
\hline 11 & 14 & 2 & ** & 1 & & & & 7 & ** & 1 & & & & Full-Factorial \\
\hline 12 & 15 & & & & 3 & ** & 1 & 5 & & 1 & & & & Full-Factorial \\
\hline 13 & 16 & 2 & ** & 15 & & & & & & & & & & Hadamard \\
\hline 14 & 16 & 2 & ** & 12 & & & & 4 & ** & 1 & & & & Hadamard \\
\hline 15 & 16 & 2 & ** & 9 & & & & 4 & ** & 2 & & & & Hadamard \\
\hline 16 & 16 & 2 & ** & 8 & & & & 8 & ** & 1 & & & & Fractional-Factorial \\
\hline 17 & 16 & 2 & ** & 6 & & & & 4 & ** & 3 & & & & Hadamard \\
\hline 18 & 16 & 2 & ** & 3 & & & & 4 & ** & 4 & & & & Fractional-Factorial \\
\hline 19 & 16 & & & & & & & 4 & & 5 & & & & Fractional-Factorial \\
\hline 20 & 18 & 2 & ** & 1 & 3 & ** & 7 & & & & & & & Orthogonal Array \\
\hline 21 & 18 & 2 & ** & 1 & & & & 9 & ** & 1 & & & & Full-Factorial \\
\hline 22 & 18 & & & & 3 & ** & 6 & 6 & & 1 & & & & Orthogonal Array \\
\hline 23 & 20 & 2 & ** & 19 & & & & & & & & & & Hadamard \\
\hline 24 & 20 & 2 & ** & 8 & & & & 5 & ** & 1 & & & & Orthogonal Array \\
\hline 25 & 20 & 2 & ** & 2 & & & & 10 & & 1 & & & & Orthogonal Array \\
\hline 26 & 20 & & & & & & & 4 & ** & 1 & 5 & ** & 1 & Full-Factorial \\
\hline
\end{tabular}

The \%MktOrth macro can output the lineage of each design, which is the set of steps that the \%MktEx macro uses to create it. Here is an example.
```

%mktorth(range=n=36, options=lineage)
proc print; where index(design, '2 ** 11') and index(design, '3 ** 12'); run;

```


The design \(2^{11} 3^{12}\) in 36 runs starts out as a single 36 -level factor, \(36^{1}\). Then \(36^{1}\) is replaced by \(3^{12} 12^{1}\). Finally, \(12^{1}\) is replaced by \(2^{11}\) resulting in \(2^{11} 3^{12}\).

\section*{\%MktOrth Macro Options}

The following options can be used with the \%MktOrth macro.
\begin{tabular}{|l|l|}
\hline Option & Description \\
\hline maxn=n & maximum number of runs of interest \\
options=options-list & binary options \\
outall=SAS-data-set & output data set with all designs \\
outcat=SAS-data-set & design catalog data set \\
outlev=SAS-data-set & output data set with the list of \\
range=range-specification & number of runs of interest \\
\hline
\end{tabular}

\section*{options \(=\) options-list}
specifies binary options. By default, none of these options are specified. Specify one or more of the following values after options=.

\begin{abstract}
mktex
specifies that the macro is being called from the \%MktEx macro and just the outlev= data set is needed. The macro takes short cuts to make it run faster doing only what the \%MktEx macro needs.

\section*{mktruns}
specifies that the macro is being called from the \%MktRuns macro and just the outlev= data set is needed. The macro takes short cuts to make it run faster doing only what \%MktRuns needs.

\section*{lineage}
outputs the design lineage. The \%MktEx macro uses this information to construct the design.
\end{abstract}

\section*{outall \(=S A S\)-data-set}
specifies the output data set with all designs. This data set is not created by default. This is like the outlev= data set, except larger. The outall= data set includes all of the \%MktEx design catalog, including all of the smaller designs that can be trivially made from larger designs by dropping factors. For example, when the outlev= data set has \(\times 2=2 \times 3=2\), then the outall= data set has that design and also \(\mathrm{x} 1=2 \mathrm{x} 3=1, \mathrm{x} 1=1 \mathrm{x} 3=2\), and \(\mathrm{x} 1=1 \times 2=1\). When you specify outall= you must also specify a reasonably small range \(=\) or maxn= value. Otherwise, the outall= specification will take a long time and create a huge data set, which will very likely be too large to store on your computer.

\section*{outcat \(=S A S\)-data-set}
specifies the output data set with the catalog of designs that the \%MktEx macro can create. The default is outcat=MktDesCat.

\section*{outlev \(=\) SAS-data-set}
specifies the output data set with the list of designs and 50 more variables, \(\mathrm{x} 1-\mathrm{x} 50\), which includes: x 2 - the number of two-level factors, x 3 - the number of three-level factors and so on. The default is outlev=MktDesLev.

\section*{\(\operatorname{maxn}=n\)}
specifies the maximum number of runs of interest. For small numbers (e.g. \(n \leq 36\) ) this can make the macro run faster.

\section*{range \(=\) range-specification}
specifies the number of runs of interest. Specify a range involving \(n\), where \(n\) is the number of runs. Your range specification must be a logical expression involving n. Examples:
range \(=n=36\)
range=18 le \(n\) le 36
range \(=n\) eq 18 or \(n\) eq 36

\section*{\%MktOrth Macro Notes}

This macro specifies options nonotes throughout most of its execution. If you want to see all of the notes, submit the statement \%let mktopts = notes; before running the macro.

\section*{\%MktRoll Macro}

The \%MktRoll autocall macro is used for manipulating the experimental design for choice experiments. There are numerous examples of its usage from pages 119 through 341. The \%MktRoll macro takes as input a SAS data set containing an experimental design with one row per choice set, the linear design, for example a design created by the \%MktEx macro. This data set is specified in the design= option. This data set has one variable for each attribute of each alternative in the choice experiment. The output from this macro is an out= SAS data set is the choice design containing the experimental design with one row per alternative per choice set. There is one column for each different attribute. For example, in a simple branded study, design= could contain the variables \(\mathrm{x} 1-\mathrm{x} 5\) which contain the prices of each of five alternative brands. The output data set would have one factor, Price, that contains the price of each of the five alternatives. In addition, it would have the number (or optionally the name) of each alternative. \({ }^{\text {『 }}\)

The rules for determining the mapping between factors in the design= data set and the out= data set are contained in the key= data set. For example, assume that the design= data set contains the variables \(\mathrm{x} 1-\mathrm{x} 5\) which contain the prices of each of five alternative brands: Brand \(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\), and E . Here is how you would create the key= data set. The choice design has two factors, Brand and Price. Brand A price is made from x1, Brand B price is made from \(x 2, \ldots\), and Brand E price is made from \(x 5\).

A convenient way to get all the names in a variable list like \(\mathrm{x} 1-\mathrm{x} 5\) is with the \%MktKey macro.
```

%mktkey(x1-x5)

```

The \%MktKey macro produced the following line.
```

x1 x2 x3 x4 x5

```

Here is the KEY data set.
```

data key;
input (Brand Price) (\$);
datalines;
A x1
B x2
C x3
D x4
E x5
;

```

This data set has two variables. Brand contains the brand names, and Price contains the names of the factors that are used to make the price effects for each of the alternatives. The out= data set will contain the variables with the same names as the variables in the key= data set.

Here is how you can create the linear design with one row per choice set:
```

%mktex(3 ** 5, n=12)

```

Here is how you can create the choice design with one row per alternative per choice set:
\%mktroll(design=randomized, key=key, out=sasuser.design, alt=brand)
For example, if the data set RANDOMIZED contains the row:

\footnotetext{
\({ }^{\top}\) See page 87 for an illustration of linear versus choice designs.
}
\begin{tabular}{ccccccc}
\hline Obs & x 1 & x 2 & x 3 & x 4 & x 5 \\
0 & 3 & 1 & 1 & 2 & 1 \\
\hline
\end{tabular}
then the data set SASUSER.DESIGN contains the rows:
\begin{tabular}{ccccc}
\hline Obs & Set & Brand & Price \\
& & & \\
41 & 9 & A & 3 \\
42 & 9 & B & 1 \\
43 & 9 & C & 1 \\
44 & 9 & D & 2 \\
45 & 9 & E & 1 \\
\hline
\end{tabular}

The price for Brand A is made from \(\mathrm{x} 1=3, \ldots\), and the price for Brand E is made from \(\mathrm{x} 5=1\).
Now assume that there are three alternatives, each a different brand, and each composed of four factors: Price, Size, Color, and Shape. In addition, there is a constant alternative. First, the \%MktEx macro is used to create a design with 12 factors, one for each attribute of each alternative.
```

%mktex(2 ** 12, n=16, seed=109)

```

Next, the key= data set is created. It shows that there are three brands, A, B, and C, and also None.
```

data key;
input (Brand Price Size Color Shape) (\$); datalines;
$\mathrm{A} \quad \mathrm{x} 1 \quad \mathrm{x} 2 \mathrm{x} 3 \quad \mathrm{x} 4$
B x5 x6 x7 x8
C x9 x10 x11 x12
None
;

```

Brand A is created from Brand \(=\) 'A', Price = x1, Size = x2, Color \(=x 3\), Shape \(=x 4\).
Brand B is created from Brand \(=\) 'B', Price \(=x 5\), Size \(=x 6\), Color \(=x 7\), Shape \(=x 8\).
Brand C is created from Brand \(={ }^{\prime} C^{\prime}\), Price \(=x 9\), Size \(=x 10\), Color \(=x 11\), Shape \(=x 12\).
The constant alternative is created from Brand \(=\) 'None' and none of the attributes. The "." notation is used to indicate missing values in input data sets. The actual values in the KEY data set will be blank (character missing).

Here is how you create the design with one row per alternative per choice set:
\%mktroll(key=key, design=randomized, out=sasuser.design, alt=brand)
For example, if the data set RANDOMIZED contains the row:
\begin{tabular}{rrrrrrrrrrrrr}
\hline Obs & x 1 & x 2 & x 3 & x 4 & x 5 & x 6 & x 7 & x 8 & x 9 & x 10 & x 11 & x 12 \\
8 & 2 & 2 & 2 & 2 & 2 & 1 & 1 & 2 & 2 & 2 & 1 & 2 \\
\hline
\end{tabular}
then the data set SASUSER.DESIGN contains the rows:
\begin{tabular}{lllllll}
29 & 8 & A & 2 & 2 & 2 & 2 \\
30 & 8 & B & 2 & 1 & 1 & 2 \\
31 & 8 & C & 2 & 2 & 1 & 2 \\
32 & 8 & None &. &. &. & .
\end{tabular}

Now assume like before that there are three branded alternatives, each composed of four factors: Price, Size, Color, and Shape. In addition, there is a constant alternative. Also, there is an alternativespecific factor, Pattern, that only applies to Brand A and Brand C. First, the \%MktEx macro is used to create a design with 14 factors, one for each attribute of each alternative.
```

%mktex(2 ** 14, n=16, seed=114)

```

Next, the key= data set is created. It shows that there are three brands, \(\mathrm{A}, \mathrm{B}\), and C , plus None.
```

data key;
input (Brand Price Size Color Shape Pattern) (\$);
datalines;
$A \quad x 1 \quad x 2 \quad x 3 \quad x 4 \quad x 13$
B $x 5$ x6 $x 7$ x8 .
C x9 x10 x11 x12 x14
None
;

```

Brand A is created from Brand \(=\) 'A', Price \(=x 1\), Size \(=x 2\), Color \(=x 3\), Shape \(=x 4\), Pattern \(=\) x 13 .

Brand \(B\) is created from Brand \(=\) 'B', Price \(=x 5\), Size \(=x 6\), Color \(=x 7\), Shape \(=x 8\).
Brand C is created from Brand \(=\) 'C', Price \(=x 9\), Size \(=x 10\), Color \(=x 11\), Shape \(=x 12\), Pattern \(=\mathrm{x} 14\).

The constant alternative is Brand \(=\) 'None' and none of the attributes.
Here is how you can create the design with one row per alternative per choice set:
\%mktroll(key=key, design=randomized, out=sasuser.design, alt=brand)
For example, if the data set RANDOMIZED contains the row:
\begin{tabular}{ccccccccccccccccc}
\hline Obs & x 1 & x 2 & x 3 & x 4 & x 5 & x 6 & x 7 & x 8 & x 9 & x 10 & x 11 & x 12 & x 13 & x 14 \\
8 & 2 & 1 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 1 & 1 & 2 & 1 & 2 \\
\hline
\end{tabular}
then the data set SASUSER.DESIGN contains the rows:
\begin{tabular}{ccccccccc}
\hline Obs & Set & Brand & Price & Size & Color & Shape & Pattern \\
29 & 8 & A & 2 & 1 & 1 & 2 & 1 \\
30 & 8 & B & 1 & 2 & 1 & 2 & \(\cdot\) \\
31 & 8 & C & 1 & 1 & 1 & 2 & 2 \\
32 & 8 & None & \(\cdot\) & \(\cdot\) & \(\cdot\) & \(\cdot\) & \(\cdot\) \\
\hline
\end{tabular}

Now assume we are going to fit a model with price cross effects so we need x 1 , x 5 , and x 9 (the three price effects) available in the out= data set. See pages 205 and 228 for other examples of cross effects.
```

%mktroll(key=key, design=randomized, out=sasuser.design, alt=brand,
keep=x1 x5 x9)

```

Now the data set also contains the three original price variables.
\begin{tabular}{ccllllllllll}
\hline Obs & Set & Brand & Price & Size & Color & Shape & Pattern & x1 & x5 & x9 \\
& & & & & & & & & & \\
29 & 8 & A & 2 & 1 & 1 & 2 & 1 & 2 & 1 & 1 \\
30 & 8 & B & 1 & 2 & 1 & 2 &. & 2 & 1 & 1 \\
31 & 8 & C & 1 & 1 & 1 & 2 & 2 & 2 & 1 & 1 \\
32 & 8 & None &. &. &. &. &. & 2 & 1 & 1 \\
\hline
\end{tabular}

Every value in the key= data set must appear as a variable in the design= data set. The macro prints a warning if it encounters a variable name in the design= data set that does not appear as a value in the key= data set.

\section*{\%MktRoll Macro Options}

The following options can be used with the \%MktRoll macro.
\begin{tabular}{|l|l|}
\hline Option & Description \\
\hline alt=variable & variable with name of each alternative \\
design=SAS-data-set & input SAS data set \\
keep=variable-list & factors to keep \\
key=SAS-data-set & key data set \\
options=options-list & binary options \\
out=SAS-data-set & output SAS data set \\
set=variable & choice set number variable \\
\hline
\end{tabular}

You must specify the design= and key=options.
alt \(=\) variable
specifies the variable in the key= data set that contains the name of each alternative. Often this will be something like alt=Brand. When alt= is not specified, the macro creates a variable _Alt_ that contains the alternative number.
design \(=\) SAS-data-set
specifies an input SAS data set with one row per choice set. The design= option must be specified.

\section*{keep \(=\) variable-list}
specifies factors from the design= data set that should also be kept in the out= data set. This option is useful to keep terms that will be used to create cross effects.

\section*{\(\mathbf{k e y}=S A S\)-data-set}
specifies an input SAS data set containing the rules for mapping the design= data set to the out= data set. The key= option must be specified.
options \(=\) options-list
specifies binary options. By default, none of these options are specified. Specify one or more of the following values after options=.

\section*{nowarn}
do not print a warning when the design= data set contains variables not mentioned in the key= data set. Sometimes this is perfectly fine.
out \(=\) SAS-data-set
specifies the output SAS data set. If out= is not specified, the DATAn convention is used.
set \(=\) variable
specifies the variable in the out= data set that will contain the choice set number. By default, this variable is named Set.

\section*{\%MktRoll Macro Notes}

This macro specifies options nonotes throughout most of its execution. If you want to see all of the notes, submit the statement \%let mktopts = notes; before running the macro.

\section*{\%MktRuns Macro}

The \%MktRuns autocall macro suggests reasonable sizes for main-effects experimental designs. There are numerous examples of its usage from pages 108 through 304. The \%MktRuns macro tries to find sizes in which perfect balance and orthogonality can occur, or at least sizes in which violations of orthogonality and balance are minimized. Typically, the macro takes one argument, a list of the number of levels of each factor.

For example, with 3 two-level and 4 three-level factors, specify either of the following.
```

%mktruns(2 2 2 3 3 3 3)
%mktruns(2 ** 3 3 ** 4)

```

The output from the macro in this example is:

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline n & Design & & & & & Reference \\
\hline 36 & 2 ** 13 & 3 & ** 4 & & & Orthogonal Array \\
\hline 36 & 2 ** 11 & 3 & ** 12 & & & Orthogonal Array \\
\hline 36 & 2 ** 10 & 3 & ** 8 & 6 ** & 1 & Orthogonal Array \\
\hline 36 & 2 ** 9 & 3 & ** 4 & 6 ** & 2 & Orthogonal Array \\
\hline 36 & 2 ** 4 & 3 & ** 13 & & & Orthogonal Array \\
\hline 36 & 2 ** 3 & 3 & ** 9 & 6 ** & 1 & Orthogonal Array \\
\hline 72 & 2 ** 49 & 3 & ** 4 & & & Orthogonal Array \\
\hline 72 & 2 ** 47 & 3 & ** 12 & & & Orthogonal Array \\
\hline 72 & 2 ** 46 & 3 & ** 8 & 6 ** & 1 & Orthogonal Array \\
\hline 72 & 2 ** 45 & 3 & ** 4 & 6 ** & 2 & Orthogonal Array \\
\hline 72 & 2 ** 44 & 3 & ** 12 & 4 ** & 1 & Orthogonal Array \\
\hline
\end{tabular}

The macro reports that the saturated design has 12 runs and that 36 and 72 are optimal design sizes. The macro picks 36 , because it is the smallest integer \(>=12\) that can be divided by \(2,3,2 \times 2,2 \times 3\), and \(3 \times 3\). The macro also reports 18 as a reasonable size. There are three violations with 18 , because 18 cannot be divided by each of the three pairs of \(2 \times 2\), so perfect orthogonality in the two-level factors will not be possible with 18 runs. Larger sizes are reported as well. The macro prints orthogonal designs that are available from the \(\% \mathrm{MktEx}\) macro that match your specification.

To see every size the macro considered, simply run PROC PRINT after the macro finishes. The output from this step is not shown.
```

proc print label data=nums split='_';
id n;
run;

```

For 2 two-level factors, 2 three-level factors, 2 four-level factors, and 2 five-level factors specify:
\%mktruns ( 223334455 )
Here are the results:
\begin{tabular}{llc} 
& Design Summary \\
Number of \\
Levels
\end{tabular}\(\quad\) Frequency
\begin{tabular}{|c|c|c|}
\hline Some Reasonable & & Cannot Be \\
\hline Design Sizes & Violations & Divided By \\
\hline 120 & 3 & 91625 \\
\hline 180 & 6 & 81625 \\
\hline 60 & 7 & \(8 \quad 91625\) \\
\hline 144 & 15 & \(51015 \quad 2025\) \\
\hline 48 & 16 &  \\
\hline 72 & 16 &  \\
\hline 80 & 16 & \(\begin{array}{lllllll}3 & 6 & 9 & 12 & 15 & 25\end{array}\) \\
\hline 96 & 16 &  \\
\hline 160 & 16 &  \\
\hline 192 & 16 &  \\
\hline
\end{tabular}

Among the smaller design sizes, 60 or 48 look like good possibilities.
The macro has an optional keyword parameter: max=. It specifies the maximum number of sizes to try. Usually you will not need to specify the max= option. The smallest design that is considered is the saturated design. This next specification tries 5000 sizes ( 21 to 5020 ) and reports that a perfect design can be found with 3600 runs The \%MktEx macro does not explicitly know how to make this design, however, it can usually find it or come extremely close with the coordinate exchange algorithm.
\%mktruns(2 233445 5, max=5000)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Design Summary} \\
\hline \multicolumn{4}{|c|}{Number of} \\
\hline \multicolumn{4}{|c|}{2 2} \\
\hline \multicolumn{4}{|c|}{32} \\
\hline \multicolumn{4}{|c|}{42} \\
\hline \multicolumn{4}{|c|}{\(5 \quad 2\)} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\[
\text { Saturated } \quad=21
\]}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{Some Reasonable Cannot Be} \\
\hline \multicolumn{2}{|l|}{Design Sizes} & Violations & Divided By \\
\hline & 3600 & 0 & \\
\hline & 720 & 1 & 25 \\
\hline & 1200 & 1 & 9 \\
\hline & 1440 & 1 & 25 \\
\hline & 1800 & 1 & 16 \\
\hline
\end{tabular}
\begin{tabular}{llr}
2160 & 1 & 25 \\
2400 & 1 & 9 \\
2880 & 1 & 25 \\
4320 & 1 & 25 \\
4800 & 1 & 9
\end{tabular}

Now consider again the problem with 3 two-level and 4 three-level factors, but this time we want to be estimable the interaction of two of the two-level factors. Now, instead of specifying \%mktruns ( 222 3333 ), we replace two of the 2 's with a 4 .
\%mktruns ( 243333 )

\begin{tabular}{llllllllll}
n & Design & & Reference \\
72 & 2 & \(* *\) & & & \\
74 & 3 & \(* *\) & 12 & 4 & \(* *\) & 1 & & & \\
72 & 2 & \(* *\) & 37 & 3 & \(* *\) & 13 & 4 & \(* *\) & 1 \\
& 2 & & & Orthogonal Array \\
72 & 2 & \(* *\) & 35 & 3 & \(* *\) & 12 & 4 & \(* *\) & 1 \\
\hline
\end{tabular}

Now we need 72 runs for perfect balance and orthogonality and there are six violations in 18 runs (4, \(4 \times 2,4 \times 3,4 \times 3,4 \times 3\), and \(4 \times 3\) ).

\section*{\%MktRuns Macro Options}

The following options can be used with the \%MktRuns macro.
\begin{tabular}{|l|l|}
\hline Option & Description \\
\hline list & numbers of levels of all the factors \\
\(\max =n<m>\) & \begin{tabular}{l} 
maximum number of design sizes to try \\
\(\mathrm{n}=n\) \\
design size to evaluate \\
options=options-list
\end{tabular} \\
out=SASAS-data-set & \begin{tabular}{l} 
bata set with the suggested sizes \\
dations
\end{tabular} \\
\hline
\end{tabular}

The \%MktRuns macro has one positional parameter, list, and several keyword parameters.

\section*{list}
specifies a list of the numbers of levels of all the factors. For example, for 3 two-level factors specify either 222 or \(2 * * 3\). Lists of numbers, like 223344 or a levels \({ }^{* *}\) number of factors syntax like: \(2 * * 23 * * 24 * * 2\) can be used, or both can be combined: \(223 * * 456\). The specification \(3 * * 4\) means 4 three-level factors. You must specify a list. Note that the factor list is a positional parameter. This means it must come first, and unlike all other parameters, it is not specified after a name and an equal sign.
```

max= n <m>

```
specifies the maximum number of design sizes to try. By default, max=200 2. The macro tries up to \(n\) sizes starting with the saturated design. The macro stops trying larger sizes when it finds a design size with zero violations that is \(m\) times as big as a previously found size with zero violations. The macro reports the best 10 sizes. For example, if the saturated design has 10 runs, and there are zero violations in 16 runs, then by default, the largest size that the macro will consider is \(32=2 \times 16\) runs.

\section*{\(\mathbf{n}=n\)}
specifies the design size to evaluate. By default, this option is not specified, and the max= option specification provides a range of design sizes to evaluate.

\section*{options \(=\) options-list}
specifies binary options. By default, none of these options are specified. Specify one the following values after options=.
justparse
is used by other Mkt macros to have this macro just parse the list argument and return it as a simple list of integers.
out \(=\) SAS-data-set
specifies the name of a SAS data set with the suggested sizes. The default is out=nums.

\section*{\%MktRuns Macro Notes}

This macro specifies options nonotes throughout most of its execution. If you want to see all of the notes, submit the statement \%let mktopts = notes; before running the macro.

\section*{\%PhChoice Macro}

The \%PhChoice autocall macro is used to customize the discrete choice output from PROC PHREG. Typically, you run the following macro once to customize the PROC PHREG output.
```

%phchoice(on)

```

The macro uses PROC TEMPLATE and ODS (Output Delivery System) to customize the output from PROC PHREG. Running this code edits the templates and stores copies in SASUSER. These changes will remain in effect until you delete them. Note that these changes assume that each effect in the choice model has a variable label associated with it so there is no need to print variable names. If you are coding with PROC TRANSREG, this will usually be the case. To return to the default output from PROC PHREG, run the following macro.
```

%phchoice(off)

```

If you ever have errors running this macro, like invalid page errors, see "Macro Errors" on page 641. The rest of this section discusses the details of what the \%PhChoice macro does and why. Unless you are interested in further customization of the output, you should skip to "\%PhChoice Macro Options" on page 609 .

We are most interested in the Analysis of Maximum Likelihood Estimates table, which contains the parameter estimates. We can first use PROC TEMPLATE to identify the template for the parameter estimates table and then edit the template. First, let's have PROC TEMPLATE display the templates for PROC PHREG. The source stat.phreg statement specifies that we want to see PROC TEMPLATE source code for the STAT product and the PHREG procedure.
```

proc template;
source stat.phreg;
run;

```

If we search the results for the Analysis of Maximum Likelihood Estimates table we find the following code, which defines the Stat.Phreg.ParameterEstimates table.
```

define table Stat.Phreg.ParameterEstimates;
notes "Parameter Estimates Table";
dynamic Confidence NRows;
column Variable DF Estimate StdErr StdErrRatio ChiSq ProbChiSq HazardRatio
HRLowerCL HRUpperCL Label;
header h1 h2;
define h1;
text "Analysis of Maximum Likelihood Estimates";
space = 1;
spill_margin;
end;
define h2;
text Confidence BEST8. %nrstr("%% Hazard Ratio Confidence Limits");
space = 0;
end = HRUpperCL;
start = HRLowerCL;
spill_margin = OFF;
end;

```
```

define Variable;
header = "Variable";
style = RowHeader;
id;
end;
define DF;
parent = Common.ParameterEstimates.DF;
end;
define Estimate;
header = ";Parameter;Estimate;";
format = D10.;
parent = Common.ParameterEstimates.Estimate;
end;
define StdErr;
header = ";Standard;Error;";
format = D10.;
parent = Common.ParameterEstimates.StdErr;
end;
define StdErrRatio;
header = ";StdErr;Ratio;";
format = 6.3;
end;
define ChiSq;
parent = Stat.Phreg.ChiSq;
end;
define ProbChiSq;
parent = Stat.Phreg.ProbChiSq;
end;
define HazardRatio;
header = ";Hazard;Ratio;";
glue = 2;
format = 8.3;
end;
define HRLowerCL;
glue = 2;
format = 8.3;
print_headers = OFF;
end;
define HRUpperCL;
format = 8.3;
print_headers = OFF;
end;
define Label;
header = "Variable Label";
end;

```
```

 col_space_max = 4;
 col_space_min = 1;
 required_space = NRows;
 end;

```

It contains header, format, spacing and other information for each column in the table. Most of this need not concern us now. The template contains this column statement, which lists the columns of the table.
```

column Variable DF Estimate StdErr StdErrRatio ChiSq ProbChiSq HazardRatio
HRLowerCL HRUpperCL Label;

```

Since we will usually have a label that adequately names each parameter, we do not need the variable column. We also do not need the hazard information. If we move the label to the front of the list and drop the variable column and the hazard columns, we get this.
```

column Label DF Estimate StdErr ChiSq ProbChiSq;

```

We use the edit statement to edit the template. We can also modify some headers. We specify the new column statement and the new headers. We can also modify the Summary table, which is Stat. Phreg. CensoredSummary, to use the vocabulary of choice models instead of survival analysis models. The code is grabbed from the PROC TEMPLATE step with the source statement. The overall header 'Summary of the Number of Event and Censored Values' is changed to 'Summary of Subjects, Sets, and Chosen and Unchosen Alternatives', 'Total' is changed to 'Number of Alternatives', 'Event' is changed to 'Chosen Alternatives', 'Censored' is changed to 'Not Chosen', and 'Percent Censored' is dropped. Finally Style=RowHeader was specified on the label column. This sets the color, font, and general style for HTML output. The RowHeader style is typically used on first columns that provide names or labels for the rows. Here is the code that the \%phchoice (on) macro runs.
```

proc template;
edit stat.phreg.ParameterEstimates;
column Label DF Estimate StdErr ChiSq ProbChiSq;
header h1;
define h1;
text "Multinomial Logit Parameter Estimates";
space = 1;
spill_margin;
end;
define Label;
header = " " style = RowHeader;
end;
end;
edit Stat.Phreg.CensoredSummary;
column Stratum Pattern Freq GenericStrVar Total
Event Censored;
header h1;
define h1;
text "Summary of Subjects, Sets, "
"and Chosen and Unchosen Alternatives";
space = 1;
spill_margin;
first_panel;
end;

```
```

 define Freq;
 header=";Number of;Choices" format=6.0;
 end;
 define Total;
header = ";Number of;Alternatives";
format_ndec = ndec;
format_width = 8;
end;
define Event;
header = ";Chosen;Alternatives";
format_ndec = ndec;
format_width = 8;
end;
define Censored;
header = "Not Chosen";
format_ndec = ndec;
format_width = 8;
end;
end;

```
run;

Here is the code that \%phchoice(off) runs.
```

* Delete edited templates, restore original templates;
proc template;
delete Stat.Phreg.ParameterEstimates;
delete Stat.Phreg.CensoredSummary;
run;

```

Our editing of the multinomial logit parameter estimates table assumes that each independent variable has a label. If you are coding with PROC TRANSREG, this will be true of all variables created by class expansions. You may have to provide labels for identity and other variables. Alternatively, if you want variable names to appear in the table, you can do that as follows. This may be useful when you are not coding with PROC TRANSREG.
```

%phchoice(on, Variable DF Estimate StdErr ChiSq ProbChiSq Label)

```

The optional second argument provides a list of the column names to print. The available columns are: Variable DF Estimate StdErr StdErrRatio ChiSq ProbChiSq HazardRatio HRLowerCL HRUpperCL Label. (HRLowerCL and HRUpperCL are confidence limits on the hazard ratio.) For very detailed customizations, you may have to run PROC TEMPLATE directly.

\section*{\%PhChoice Macro Options}

The \%PhChoice macro has two positional parameters, onoff and column. Positional parameters must come first, and unlike all other parameters, are not specified after a name and an equal sign.

\section*{onoff}

ON specifies choice model customization.
OFF turns off the choice model customization and returns to the default PROC PHREG templates.
EXPB turns on choice model customization and adds the hazard ratio to the output.
Upper/lower case does not matter.

\section*{column}
specifies an optional column list for more extensive customizations.

\section*{\%PlotIt Macro}

The \%PlotIt macro is used to make graphical scatter plots of labeled points. It is particularly designed to display raw data and results from analyses such as regression, correspondence analysis, MDPREF, PREFMAP, and MDS. However, it can make many other types of graphical displays as well. It can plot points, labeled points, vectors, circles and density. See pages 15-26 and 661-687 for example plots and more on these methods.

By default, the \%PlotIt macro creates a graphical scatter plot on your screen. The macro will by default use the last data set created, so you must specify data= if you run \%PlotIt a second time. The macro creates an output Annotate data set that cannot be used as input to the macro. If no graphics device has been previously specified (either directly or indirectly), you will be prompted for a device as follows:
```

No device name has been given--please enter device name:

```

Enter your graphics device. This name will be remembered for the duration of your SAS session or until you change the device. You can modify the gopprint= and gopplot= options to set default devices so that you will not be prompted. Note that all graphics options specified on a goptions statement (except device=) are ignored by default. Use the macro options gopprint=, gopplot=, gopts2=, and gopts= to set goptions.

To display a plot on your screen using the default goptions, specify:
```

%plotit(data=coor, datatype=corresp)

```

To create a color postscript file named myplot.ps, suitable for printing on a cljps device, specify:
\%plotit(data=coor, datatype=corresp, method=print, post=myplot.ps, gopts=device=cljps)
Alternatively, change the default for gopprint= below to name your typical device, for example from
gopprint=gsfmode=replace gaccess=gsasfile,
to
gopprint=gsfmode=replace gaccess=gsasfile device=cljps,
Then to create a postscript file, specify:
```

%plotit(data=coor, datatype=corresp, method=print, post=myplot.ps)

```

Then the file may be previewed and printed. Another alternative is to send the plot directly to the printer. In this example, chpljr51 is a printer that prints on ordinary \(8.5 \times 11\) paper.
```

%plotit(data=coor, datatype=corresp, gopts=device=chpljr51 cback=white)

```

To just see the printer plot, specify method=plot. Use gout= to write the plot to a catalogue.
If you do not like the default background color, specify gopplot=cback=some-color (substituting your favorite color for some-color) or gopplot= to use the default background. Similarly, you can change the color defaults color=cyan, and colors=blue red green cyan magenta orange gold lilac olive purple brown gray rose violet salmon yellow, as you see fit. The default color, color=cyan, was chosen because it would show up on both a dark background and a white background, not because it is ever the color of choice. You may want to change the default color to black for printed plots and white otherwise or to some other more-suitable colors. You can permanently change the defaults by
modifying a local copy of the macro.

\section*{Sample Usage}

This example performs a simple correspondence analysis. For many plots, you only the need to specify the data= and datatype options.
```

*------Simple Correspondence Analysis-------;
proc corresp all data=cars outc=coor;
tables marital, origin;
title 'Simple Correspondence Analysis';
run;
%plotit(data=coor, datatype=corresp)

```

This next example performs multiple correspondence analysis.
```

*------Multiple Correspondence Analysis------;
proc corresp mca observed data=cars outc=coor;
tables origin size type income home marital sex;
title 'Multiple Correspondence Analysis';
run;
%plotit(data=coor, datatype=mca)

```

This next example performs multidimensional preference analysis. The vector lengths are increased by a factor of 2.5 to make a better graphical display.
```

*------MDPREF-------
proc prinqual data=carpref out=results n=2
replace standard scores correlations;
id model mpg reliable ride;
transform ide(judge1-judge25);
title 'Multidimensional Preference (MDPREF) Analysis';
run;
%plotit(data=results, datatype=mdpref 2.5)

```

This next example performs a preference mapping, vector model. Again, the vector lengths are increased by a factor of 2.5 to make a better graphical display.
```

*------PREFMAP, Vector Model-------;
proc transreg data=results(where=(_type_ = 'SCORE'));
model ide(mpg reliable ride)=identity(prin1 prin2);
output tstandard=center coefficients replace out=tresult1;
id model;
title 'Preference Mapping (PREFMAP) Analysis - Vector';
run;
%plotit(data=tresult1,datatype=vector 2.5)

```

This next example performs a preference mapping, ideal point model. The antiidea=1 option is specified to handle anti-ideal points when large data values are positive or ideal.
```

*------PREFMAP, Ideal Point------;
proc transreg data=results(where=(_type_ = 'SCORE'));
model identity(mpg reliable ride)=point(prin1 prin2);
output tstandard=center coordinates replace out=tresult1;
id model;
title 'Preference Mapping (PREFMAP) Analysis - Ideal';
run;
%plotit(data=tresult1,datatype=ideal,antiidea=1)

```

This next example performs multidimensional preference analysis. The mdpref2 specification means MDPREF and label the vectors too. The vector lengths are increased by a factor of 3 to make a better graphical display. The symlen=2 option specifies two-character symbols. The specification vechead=, (a null value) means no vector heads since there are labels. The adjust1= option is used to add full SAS DATA step statements to the preprocessed data set. This example processes _type_ = 'CORR' observations (those that contain vector the coordinates) the original variable names (sub1, sub2, sub3, \(\ldots\), from the activity variable) and creates symbol values \((1,2,3, \ldots)\) of size 0.7 . The result is a plot with each vector labeled with a subject number.
```

*------MDPREF, labeled vector end points-------;
proc prinqual cor data=recreate out=rec score std rep;
transform identity(sub:);
id activity active relaxing spectato;
title 'MDPREF of Recreational Activities';
run;
%plotit(data=rec,datatype=mdpref2 3,
symlen=2, vechead=, adjust1=%str(
if _type_ = 'CORR' then do;
__symbol = substr(activity,4);
__ssize = 0.7;
activity = , ';
end;))

```

This next example creates a contour plot, displaying density with color. The paint=z black blue magenta red option specifies that color interpolation is based on the variable \(\mathbf{z}\), going from black (zero density) through blue, magenta, and to red (maximum density). Observations with a computed color of black (CX000000) are excluded for efficiency so PROC GANNO has fewer observations to process. This color list is designed for cback=black.
```

*------Bivariate Normal Density Function------
proc iml;
title 'Bivariate Normal Density Function';
s = inv({1 0.25 , 0.25 1});
m = -2.5; n = 2.5; inc = 0.05; k = 0;
x = j((1 + (n - m) / inc) ** 2, 3, 0);
c = sqrt(det(s)) / (2 * 3.1415);
do i = m to n by inc;
do j = m to n by inc;
v = i || j; z = c * exp(-0.5 * v * s * v`);
k = k + 1; x[k,] = v || z;
end;
end;
create x from x[colname={'x' 'y' 'z'}]; append from x;
quit;
%plotit(datatype=contour, data=x, excolors=CX000000,
paint=z black blue magenta red, gopts=cback=black)

```

The goal of this next example is to create a plot of the IRIS data set with each observation identified by its species. Species name is centered at each point's location, and each species name is plotted in a different color. This scatter plot is overlaid on the densities used by PROC DISCRIM to classify the observations. There are three densities, one for each species. Density is portrayed by a color contour plot with black (the assumed background color) indicating a density of essentially zero. Yellow, orange, and red indicate successively increasing density.

The data= option names the input SAS data set. The plotvars= option names the \(y\)-axis and \(x\)-axis variables. The labelvar=_blank_ option specifies that all labels are blank. This example does not use any of PROC PLOT's label collision avoidance code. It simply uses PROC PLOT to figure out how big to make the plot, and then the macro puts everything inside the plot independently of PROC PLOT, so the printer plot is blank. The symlen=10 option specifies that the maximum length of a symbol value is 10 characters. This is because the full species names are used as symbols. The exttypes=symbol contour option explicitly specifies that PROC PLOT will know nothing about the symbols or the contours. They are external types that will be added to the graphical plot by the macro after PROC PLOT has finished. The \(1 s=100\) option specifies a constant line size. Since no label avoidance is done, there can be no collisions, and the macro will not iteratively determine the plot size. The default line size of 65 is too small for this example, whereas \(1 \mathrm{~s}=100\) makes a better display. The paint= option specifies that based on values the variable density, colors should be interpolated ranging from black (minimum density) to yellow to orange to red (maximum density). The rgbtypes=contour option specifies that the paint= option should apply to contour type observations.

The grid (created with the loops: do sepallen \(=30\) to 90 by 0.6 ; and do petallen \(=0\) to 80 by 0.6 ; ) is not square, so for optimal results the macro must be told the number of horizontal and vertical positions. The PLOTDATA DATA step creates these values and stores them in macro variables \&hnobs and \&vnobs, so the specification hnobs=\&hnobs, vnobs=\&vnobs, specifies the grid size. Of course these values could have been specified directly instead of through symbolic variables. The excolors=CX000000 option is included for efficiency. The input data consist of a large grid for the contour plot. Most of the densities are essentially zero, so many of the colors will be CX000000, which is black, computed by paint=, which is the same color as the background. Excluding them from processing makes the macro run faster and creates smaller datasets.

This example shows how to manually do the kinds of things that the datatype= option does for you with standard types of data sets. The macro expects the data set to contain observations of one or more types. Each type is designated by a different value in a variable, usually named _type_. In this example, there are four types of observations, designated by the _type_ variable's four values, 1, 2, 3 , 4, which are specified in the types= option. The symtype \(=\) option specifies the symbol types for these four observation types. The first three types of observations are symbol and the last type, _type_ \(=4\), designates the contour observations. The first three symbols are the species names (symbols= values) printed in symfont=swiss font. The last symbol is null because contours do not use symbols. The first three symbols, since they are words as opposed to a single character, are given a small size (symsize=0.7). A value of 1 is specified for the symbol size for contour type observations. The macro determines the optimal size for each color rectangle of the contour plot. Constant colors are only specified for the noncontour observations since a variable color is computed for contour observations.
```

*------Discriminant Analysis------;
data plotdata; * Create a grid over which DISCRIM outputs densities.;
do sepallen = 30 to 90 by 0.6;
h + 1; * Number of horizontal cells;
do petallen = 0 to 80 by 0.6;
n + 1; * Total number of cells;
output;
end;
end;
call symput('hnobs', compress(put(h , best12.))); * H grid size;
call symput('vnobs', compress(put(n / h, best12.))); * V grid size;
drop n h;
run;
proc discrim data=iris testdata=plotdata testoutd=plotd
method=normal pool=no short noclassify;
class species;
var petallen sepallen;
title 'Discriminant Analysis of Fisher (1936) Iris Data';
title2 'Using Normal Density Estimates with POOL=NO';
run;
data all;
* Set the density observations first so the scatter plot points
will be on top of the contour plot. Otherwise the contour plot
points will hide the scatter plot points.;
set plotd iris(in=iris);
if iris then do;
type = s; * unformatted species number 1, 2, 3;
output;
end;
else do;
type = 4; * density observations;
density = max(setosa,versicol,virginic);
output;
end;
run;

```
```

%plotit(data=all,plotvars=petallen sepallen,labelvar=_blank_,
symlen=10,exttypes=symbol contour,ls=100,
paint=density black yellow orange red,rgbtypes=contour,
hnobs=\&hnobs,vnobs=\&vnobs, excolors=CX000000,
types =1 2 3,
symtype=symbol symbol symbol contour,
symbols=Setosa Versicolor Virginica ',',
symsize=0.7 0.7 0.7 1,
symfont=swiss swiss swiss solid,
colors =blue magenta cyan
)

```

\section*{How \%PlotIt Works}

You create a data set either with a DATA step or with a procedure. Then you run the macro to create a graphical scatter plot. This macro is not a SAS/GRAPH procedure and does not behave like a typical SAS/GRAPH procedure. The \%PlotIt macro performs the following steps.
1. The \%PlotIt macro reads an input data set and preprocesses it. The preprocessed data set contains information such as the axis variables, the point-symbol and point-label variables, and symbol and label types, sizes, fonts, and colors. The nature of the preprocessing depends on the type of data analysis that generated the input data set. For example, if the option datatype=mdpref was specified with an input data set created by PROC PRINQUAL for a multidimensional preference analysis, then the \%PlotIt macro creates blue points for _type_ = 'SCORE' observations and red vectors for _type \(=\) 'CORR' observations.
2. A DATA step, using the DATA Step Graphics Interface, determines how big to make the graphical plot.
3. PROC PLOT determines where to position the point labels. By default, if some of the point label characters are hidden, the \%PlotIt macro recreates the printer plot with a larger line and page size, and hence creates more cells and more room for the labels. Note that when there are no point labels, the printer plot may be empty. All of the information that is in the graphical scatter plot may be stored in the extraobs= data set. All results from PROC PLOT are written to data sets with ODS. The macro will clear existing ods select and ods exclude statements.
4. The printer plot is read and information from it, the preprocessed data set, and the extra observations data set are combined to create an Annotate data set. The label position information is read from the PROC PLOT output, and all of the symbol, size, font, and color information is extracted from the preprocessed (or extra observations) data set. The Annotate data set contains all of the instructions for drawing the axes, ticks, tick marks, titles, point symbols, point labels, axis labels, and so on. Circles can be drawn around certain locations, and vectors can be drawn from the origin to other locations.
5. The Annotate data set is displayed with the GANNO procedure. The \%PlotIt macro does not use PROC GPLOT.

\section*{Debugging}

When you have problems, try debug=vars to see what the macro thinks you specified. It is also helpful to specify: debug=mprint notes. You can also print the final Annotate data set and the preprocessing data set:
```

options ls=180;
proc print data=anno uniform;
format text \$20. comment \$40.;
run;
proc print data=preproc uniform;
run;

```

\section*{Advanced Processing}

You can post-process the Annotate DATA step to change colors, fonts, undesirable placements, and so on. Sometimes, this can be done with the adjust4= option. Alternatively, when you specify method=none, you create an Annotate data set without displaying it. The data set name is by default WORK.ANNO. You can then manipulate it further with a DATA step or PROC FSEDIT to change colors, fonts, or sizes for some labels; move some labels; and so on. If the final result is a new data set called ANNO2, display it by running:
```

proc ganno annotate=anno2;
run;

```

\section*{Notes}

With method=print, the macro creates a file. See the filepref= and post= options and make sure that the file name does not conflict with existing names.

This macro creates variable names that begin with two underscores and assumes that these names will not conflict with any input data set variable names.

It is not feasible with a macro to provide the full range of error checking that is provided with a procedure. Extensive error checking is provided, but not all errors will be diagnosed.

Not all options will work with all other options. Some combinations of options may produce macro errors or Annotate errors.

This macro may not be fully portable. When you switch operating systems or graphics devices, some changes may be necessary to get the macro to run successfully again.

Graphics device differences may also be a problem. We do not know of any portability problems, but the macro has not been tested on all supported devices.

This macro tries to create a plot with equated axes, where a centimeter on one axis represents the same data range as a centimeter on the other axis. The only way to accomplish this is by explicitly and jointly controlling the hsize=, vsize=, hpos=, and vpos= goptions. By default, the macro tries to ensure that all of the values work for the specific device. See makefit=, xmax=, and ymax=. By default the macro uses GASK to determine xmax and ymax. If you change any of these options, your axes may not be equated. Axes are equated when vsize \(\times\) hpos \(/ \mathrm{hsize} \times \mathrm{hpos}=\mathrm{vtoh}\).

When you are plotting variables that have very different scales, you may need to specify appropriate tick increments for both axes to get a reasonable plot. Here is an example: plotopts=haxis=by 20 vaxis=by 5000. Alternatively, just specifying the smaller increment is often sufficient: plotopts=haxis=by 20. Alternatively, specify vtoh=, (null value) to get a plot like PROC GPLOT's, with the window filled.

By default, the macro iteratively creates and recreates the plot, increasing the line size and the flexibility in the placement= list until there are no penalties.

The SAS system option ovp (overprint) is not supported by this macro.

\section*{\%PlotIt Macro Options}

The following options can be used with the \%PlotIt macro.
\begin{tabular}{|l|l|}
\hline Option & Description \\
\hline adjust1=SAS-statements & adjust the preprocessing data set \\
adjust2=SAS-statements & includes statements with PROC PLOT \\
adjust3=SAS-statements & extra statements for the final DATA step \\
adjust4=SAS-statements & extra statements for the final DATA step \\
adjust5=SAS-statements & extra statements for the final DATA step \\
antiidea=n & eliminates PREFMAP anti-ideal points \\
blue=expression & blue part of RGB colors \\
bright=n & generates random label colors \\
britypes=type & types to which bright= applies \\
cframe=color & color of background within the frame \\
cirsegs=n & circle smoothness parameter \\
color=color & default color \\
colors=colors-list & default label and symbol color list \\
cursegs=n & number of segments in a curve \\
curvecol=color & color of curve \\
data=SAS-data-set & input data set \\
datatype=data-type & data analysis that generated data set \\
debug=values & debugging output \\
excolors=color-list & excludes from the Annotate data set \\
extend=axis-extensions & extend the \(x\) and \(y\) axes \\
extraobs=SAS-data-set & extra observations data set \\
exttypes=type & types for extraobs= data set \\
filepref=prefix & file name prefix \\
font=font & default font \\
framecol=color & color of frame \\
gdesc= \(=\) escription & catalog description \\
gname=name & catalog entry \\
gopplot=goptions & goptions for plotting to screen \\
gopprint=goptions & goptions for printing \\
gopts2=goptions & goptions that are always used \\
gopts=goptions & additional goptions \\
gout=catalog & proc anno gout= catalog \\
&
\end{tabular}
\begin{tabular}{|c|c|}
\hline green= expression & ors \\
\hline hminor= \(n\) | do-list & horizontal axis minor tick marks \\
\hline hnobs \(=n\) & horizontal observations for contour plots \\
\hline hpos=n & horizontal positions in graphics area \\
\hline href= \({ }_{\text {do-lis }}\) & horizontal reference lines \\
\hline size=n & horizontal graphics area size \\
\hline inc=n & haxis=by inc, vaxis=by inc \\
\hline interpol=method & axis interpolation method \\
\hline labcol=label-colors & colors for the point labels \\
\hline label=label-statement & label statement \\
\hline labelcol=color & color of variable labels \\
\hline labelvar=label-variable & point label variable \\
\hline labfont=label-fonts & fonts for the point labels \\
\hline labsize=label-sizes & sizes for the point labels \\
\hline \(1 \mathrm{~s}=n\) & how line sizes are generated \\
\hline 1 sinc \(=n\) & increment to line size \\
\hline lsizes=number-list & line sizes (thicknesses) \\
\hline makefit= & proportion of graphics window to use \\
\hline te & maximum number of iterati \\
\hline maxokpen= \(n\) & maximum acceptable penalty sum \\
\hline method=valu & where to send the plot \\
\hline monochro=color & overrides all other colors \\
\hline knots=n & number of knots option \\
\hline ffset=n & move symbols for coincident points \\
\hline options=options-list & binary options \\
\hline out=SAS-data-set & output Annotate data set \\
\hline utward=none | 'c' & PLOT statement outward= \\
\hline paint=interpolation & color interpolation \\
\hline place=placement & generates a placement= option \\
\hline plotopts=options & PLOT statement options \\
\hline plotvars=variable-list & \(y\)-axis and \(x\)-axis variables \\
\hline st=filename & graphics stream file name \\
\hline reproc=SAS-data-set & preprocessed data \(=\) data set \\
\hline rocopts=options & PROC PLOT statement options \\
\hline = \(n\) & page size \\
\hline adii=do-list & radii of circles \\
\hline d=expression & red part of RGB colors \\
\hline egdat \(=S A S\)-data-set & intermediate regression results data \\
\hline egopts=options & regression curve fitting options \\
\hline egprint=noprint & regression options \\
\hline rgbround= \(R G B\)-rounding & paint= rounding factors \\
\hline rgbtypes=type & types to which RGB options apply \\
\hline symbols=symbol-list & plotting symbols \\
\hline symcol=symbol-colors & colors of the symbols \\
\hline symfont=symbol fonts & symbol fonts \\
\hline symlen=n & length of the symbols \\
\hline symsize \(=\) symbol-sizes & sizes of symbols \\
\hline symtype=symbol-types & types of symbols \\
\hline symvar=symbol-variable & plotting symbol variable \\
\hline
\end{tabular}
\begin{tabular}{|l|l|} 
tempdat1=SAS-data-set & intermediate results data set \\
tempdat2=SAS-data-set & intermediate results data set \\
tempdat3=SAS-data-set & intermediate results data set \\
tempdat4=SAS-data-set & intermediate results data set \\
tempdat5=SAS-data-set & intermediate results data set \\
tempdat6=SAS-data-set & intermediate results data set \\
tickaxes=axis-string & axes to draw tick marks \\
tickcol=color & color of ticks \\
tickfor=format & tick format used by interpol=tick \\
ticklen=n & length of tick mark in horizontal cells \\
titlecol=color & color of title \\
tsize=n & default text size \\
types=observation-types & observations types \\
typevar=variable & observation types variable \\
unit=in \(\mid\) cm & hsize= and vsize= unit \\
vechead=vector-head-size & how to draw vector heads \\
vminor=n \(\mid\) do-list & vertical axis minor tick marks \\
vnobs=n & vertical observations for contour plots \\
vpos=n & vertical positions in graphics area \\
vref=do-list & vertical reference lines \\
vsize=n & vertical graphics area size \\
vtoh=n & PROC PLOT vtoh= option \\
xmax=n & maximum horizontal graphics area size \\
ymax=n & maximum vertical graphics area size \\
\hline
\end{tabular}

Note that for many analyses, the only options you need to specify are data=, datatype=, and sometimes method=. To specify variables to plot, specify plotvars=, labelvar=, and symvar=.

\section*{Overriding Options}

This macro looks for a special global macro variable named plotitop. If it exists, its values are used to override the macro options. Say you have a series of calls to the plotting macro and you want to route them all to a postscript file, you can specify this once:
```

%let plotitop = gopts=gsfmode=append gaccess=gsasfile device=qmscolor;

```
and then run the macro repeatedly without change. The value of the macro variable must begin with a name, followed by an equal sign, followed by a value. Optionally, it may continue with a comma, followed by a name=value, and so on. Option values must not contain commas. Here is another example:
```

%let plotitop = color=black, gopts=cback=cyan;

```

\section*{Destination and GOPTIONS}

The options in this section specify the plot destination and SAS goptions. Note that with the \%PlotIt macro, you do not specify a goptions statement. If you do, it will be overridden. All goptions (except device=) are specified with macro options. If you would prefer to specify your own goptions statement and have the macro use it, just specify or change the default for these four options to null: gopplot=, gopprint=, gopts2=, gopts=. If you use a locally installed copy of the macro, you can modify the gopprint= and gopplot= options defaults to include the devices that you typically use. Otherwise,
the macro checks the goptions to get a device.

\section*{gopplot \(=\) goptions}
specifies the goptions for directly plotting on the screen. There are no default goptions for gopplot=.

\section*{gopprint \(=\) goptions}
specifies the goptions for printing (creating a graphics stream file). The default is gopprint=gsfmode=replace gaccess=gsasfile.

Here is an example of how you might modify the defaults for gopprint= and gopplot= option defaults to set default devices.
```

gopprint=gsfmode=replace gaccess=gsasfile device=qmscolor,
gopplot=cback=black device=win,

```

\section*{gopts \(=\) goptions}
provides a way to specify additional goptions that are always used. There are no default goptions for gopts=. For example, to rotate to a landscape orientation with a black background color, specify gopts=rotate cback=black.

\section*{gopts2 \(=\) goptions}
specifies the goptions that are always used, no matter which method= is specified. The default is gopts2=reset=goptions erase.

\section*{method \(=\) gplot \(\mid\) plot \(\mid\) print \(\mid\) none}
specifies where to send the plot. The default is method=gplot.
gplot - displays a graphical scatter plot on your screen using the goptions from gopplot=. The gopplot= option should contain the goptions that only apply to plots displayed on the screen.
plot - creates a printer plot only.
print - routes the plot to a graphics stream file, such as a postscript file, using the goptions from gopprint=. The gopprint= option should contain the goptions that only apply to hard-copy plots. Specify the file name with post=.
none - just creates the Annotate data set and sets up goptions using gopplot=.

\section*{Data Set and Catalog Options}

These options specify the input SAS data set, output Annotate data set, and options for writing plots to files and catalogs.

\section*{data \(=S A S\)-data-set}
specifies the input data set. The default input data set is the last data set created. You should always specify the data= option since the macro creates data sets that are not suitable for use as input.
filepref= file-name-prefix
specifies the file name prefix. The default is filepref=sasplot.
gdesc \(=\) description
specifies the name of a catalog description. This option can optionally be used with proc anno gout= to provide the description=.

\section*{gname= name}
specifies the name of a catalog entry. This option can optionally be used with proc anno gout= to provide the name=.
gout \(=\) catalog
specifies the proc anno gout= catalog. With gout=gc.slides, first specify: libname gc '.'; Then to replay, run: proc greplay igout=gc.slides; run; Note that replayed plots will not in general have the correct aspect ratio.
out \(=S A S\)-data-set
specifies the output Annotate data set. This data set contains all of the instructions for drawing the graph. The default is out=anno.
post \(=\) filename
specifies the graphics stream file name. The default name is constructed from the filepref= value and 'ps' in a host-specific way.

\section*{Typical Options}

These are some of the most frequently used options.

\section*{datatype \(=\) data-type}
specifies the type of data analysis that generated the data set. This option is used to set defaults for other options and to do some preprocessing of the data.

When the data type is corresp, mds, mca, row, column, mdpref, mdpref2, vector, or ideal, the label=typical option is implied when label= is not otherwise specified. The default point label variable is the last character variable in the data set.

Some data types (mdpref, vector, ideal, corresp, row, mca, column, mds) expect certain observation types and set the types= list accordingly. For example, mdpref expects _type_ = 'SCORE' and _type_ \(=\) 'CORR' observations. The remaining data types do not expect any specific value of the typevar= variable. So if you do not get the right data types associated with the right observation types, specify types=, and specify the types= values in an order that corresponds to the order of the symbol types in the Types Legend table. Unlike symtype=, the order in which you specify datatype= values is irrelevant.

A null value (datatype=, the default) specifies no special processing, and the default plotting variables are the first two numeric variables in the data set. Specifying corresp, mds, mca, row, or column will set the default plotvars to dim2 and dim1. Otherwise, when a nonnull value is specified, the default
plotvars are prin2 and prin1.
Here are the various data types.
\[
\begin{aligned}
& \text { datatype=column } \\
& \text { specifies a proc corresp profile=column analysis. Row points are plotted as vectors. } \\
& \text { datatype=contour } \\
& \text { draws solid color contour plots. When the number of row points is not the same as the } \\
& \text { number of column points in the grid, use hnobs= and vnobs= to specify the number of } \\
& \text { points. This method creates an hnobs= by vnobs= grid of colored rectangles. Each of the } \\
& \text { rectangles should touch all adjacent rectangles. This method works well with a regular } \\
& \text { grid of points. The method=square option is a good alternative when the data do not fall } \\
& \text { in a regular grid. }
\end{aligned}
\]
```

datatype=corresp

```
specifies an ordinary correspondence analysis.
datatype=curve
fits a curve through the scatter plot.
```

datatype=curve2

```
fits a curve through the scatter plot and tries to make the labels avoid overprinting the curve.
datatype=function
draws functions. Typically, no labels or symbols are drawn. This option has a similar effect to the PROC GPLOT symbol statement options i=join v=none.
datatype=ideal
specifies a PREFMAP ideal point model. See the antiidea=, radii=, and cirsegs= options.
datatype=mca
specifies a multiple correspondence analysis.
```

datatype=mdpref

```
specifies multidimensional preference analysis with vectors with blank labels. Note that datatype=mdpref can also be used for ordinary principal component analysis.
datatype=mdpref2
specifies MDPREF with vector labels (MDPREF and labels too).
datatype=mds
specifies multidimensional scaling.
```

datatype=mds ideal

```
specifies PREFMAP ideal point after the MDS.
datatype=mds vector
specifies PREFMAP after MDS.

\section*{datatype=row}
specifies a proc corresp profile=row analysis. Column points are plotted as vectors.
datatype=square
plots each point as a solid square. The datatype=square option is useful as a form of contour plotting when the data do not form a regular grid. The datatype=square option, unlike datatype=contour, does not try to scale the size of the square so that each square will touch another square.
```

datatype=symbol
specifies an ordinary scatter plot.

```
```

datatype=vector

```
specifies a PREFMAP vector model.

\section*{datatype=vector ideal}
specifies both PREFMAP vectors and ideal points.
For some datatype= values, a number may be specified after the name. This is primarily useful for biplot data sets produced by PROC PRINQUAL and PREFMAP data sets produced by PROC TRANSREG. This number specifies that the lengths of vectors should be changed by this amount. The number must be specified last. Examples: datatype=mdpref 2, datatype=mds vector 1.5.

The primary purpose of the datatype= option is to provide an easy mechanism for specifying defaults for the options in the next section (typevar= through outward=).

\section*{labelvar \(=\) label-variable \(\mid\) _blank}
specifies the variable that contains the point labels. The default is the last character variable in the data set. If labelvar=_blank_ is specified, the macro will create a blank label variable.
options \(=\) options-list
specifies binary options. Specify zero, one, or more in any order. For example: options=nocenter nolegend.

\section*{border}
draws a border box around the outside of the graphics area, like the border goption.
close
if a border is being drawn, perform the same adjustments on the border that are performed on the axes. This option is most useful with contour plots.
diag
draws a diagonal reference line.

\section*{expand}
specifies Annotate data set post processing, typically for use with extend=close and contour plots. This option makes the plot bigger to fill up more of the window.

\section*{nocenter}
do not center. By default, when nocenter is not specified, vsize= and hsize= are set to their maximum values, and the vpos= and hpos= values are increased accordingly. The \(x\) and \(y\) coordinates are increased to position the plot in the center of the full graphics area.

\section*{noclip}
do not clip. By default, when noclip is not specified, labels that extend past the edges of the plot are clipped. This option will not absolutely prevent labels from extending beyond the plot, particularly when sizes are greater than 1.
nocode
suppresses the printing of the PROC PLOT and goptions statements.
```

nodelete
do not delete intermediate data sets.
nohistory
suppresses the printing of the iteration history table.
nolegend
suppresses the printing of the legends.
noprint
equivalent to nolegend, nocode, and nohistory.
square
uses the same ticks for both axes and tries to make the plot square by tinkering with the
extend= option. Otherwise, ticks may be different.
textline
put text in the data set, followed by lines, so lines overwrite text. Otherwise text overwrites
lines.

```

\section*{plotvars \(=\) two-variable-names}
specifies the \(y\)-axis variable then the \(x\)-axis variable. To plot dim2 and dim3, specify plotvars=dim2 dim3. The datatype \(=\) option controls the default variable list.

\section*{symlen \(=n\)}
specifies the length of the symbols. By default, symbols are single characters, but the macro can center longer strings at the symbol location.
symvar \(=\) symbol-variable \(\mid\) _symbol_
specifies the variable that contains the plotting symbol for input to PROC PLOT. When _symbol_ is specified, which is the default, the symbol variable is created, typically from the symbols= list, which may be constructed inside the macro. (Note that the variable __symbol is created to contain the symbol for the graphical scatter plot. The variables _symbol_ and __symbol may or may not contain the same values.) Variables can be specified, and the first symlen= characters are used for the symbol. When a null value (symvar=) or a constant value is specified, the symbol from the printer plot will be used (which is always length one, no matter what is specified for symlen=). To get PROC PLOT pointer symbols, specify symvar=' \(00^{\prime} \mathrm{x}\), (hex null constant). To center labels with no symbols, specify: symvar=, place=0.

\section*{Observation-Type List Options}

Data sets for plotting can have different types of observations that are plotted differently. These options allow you to specify the types of observations, the variable that contains the observation types, and the different ways the different types should be plotted. For many types of analyses, these can all be handled easily with the datatype= option, which sets analysis-specific defaults for the list options. When you can, you should use datatype= instead of the list options. If you do use the list options, specify a variable, in typevar=, whose values distinguish the observation types. Specify the list of valid types in types \(=\). Then specify colors, fonts, sizes, and so on for the various observation types. Alternatively, you can use these options with datatype=. Specify lists for just those label or symbol characteristics you want to change, for example colors, fonts or sizes.

The lists do not all have to have the same number of elements. The number of elements in types= determines how many of the other list elements are used. When an observation type does not match one of the type= values, the results are the same as if the first type were matched. If one of the other lists is shorter than the types \(=\) list, the shorter list is extended by adding copies of the last element to the end. Individual list values may be quoted, but quotes are not required. Embedded blanks are not permitted. If you embed blanks, you will not get the right results. Values of the typevar= variable are compressed before they are used, so for example, an _type_ value of ' M COEFFI' must be specified as 'MCOEFFI'.

\section*{britypes \(=\) type}
specifies the types to which bright= applies. The default is britypes=symbol.
colors \(=\) colors-list
specifies the default color list for the symcol= and labcol= options. The default is colors=blue red
green cyan magenta orange gold lilac olive purple brown gray rose violet salmon yellow.
exttypes \(=\) type
specifies the types to always put in the extraobs= data set when they have blank labels. The default is exttypes=vector.

\section*{labcol \(=\) label-colors}
specifies the colors for the point labels. The default list is constructed from the colors= option. Examples:
labcol='red'
labcol='red' 'white' 'blue'

\section*{labfont \(=\) label-fonts}
specifies the fonts for the point labels. Examples:
```

labfont='swiss'
labfont='swiss' 'swissi'

```

\section*{labsize \(=\) label-sizes}
specifies the sizes for the point labels. Examples:
labsize=1
labsize=1 1.5
labsize=1 0

\section*{rgbtypes \(=\) type}
specifies the types to which paint=, red=, green=, and blue= apply. The default is rgbtypes=symbol.

\section*{symbols \(=\) symbol-list}
specifies the plotting symbols. Symbols may be more than a single character. You must specify symlen=n for longer lengths. Blank symbols must be specified as '' with no embedded blanks. Examples:
```

symbols='*'
symbols='**'
symbols='*' '+' '*' ''
symbols='NC' 'OH' 'NJ' 'NY'

```

\section*{symcol= symbol-colors}
specifies the colors of the symbols. The default list is constructed from the colors= option. Examples:
```

symcol='red'
symcol='red' 'white' 'blue'

```

\section*{symtype \(=\) symbol-types}
specifies the types of symbols. Valid values are symbol, vector, circle, contour, and square. Examples:
```

symtype='symbol'
symtype='symbol' 'vector'
symtype='symbol' 'circle'

```

\section*{symfont \(=\) symbol fonts}
specifies the symbol fonts. The font is ignored for vectors with no symbols. Examples:
```

symfont='swiss'
symfont='swiss' 'swissi'

```
symsize \(=\) symbol-sizes
specifies the sizes of symbols. Examples:
```

symsize=1
symsize=1 1.5

```

\section*{types \(=\) observation-types}
specifies the observations types. Observation types are usually values of a variable like _type_. Embedded blanks are not permitted. Examples:
```

types='SCORE'
types='OBS' 'SUPOBS' 'VAR' 'SUPVAR'
types='SCORE'
types='SCORE' 'MCOEFFI'

```

The order in which values are specified for the other options depends on the order of the types. The default types for various datatype= values are given next:
```

corresp: 'VAR' 'OBS' 'SUPVAR' 'SUPOBS'
row: 'VAR' 'OBS' 'SUPVAR' 'SUPOBS'
mca: 'VAR' 'OBS' 'SUPVAR' 'SUPOBS'
column: 'VAR' 'OBS' 'SUPVAR' 'SUPOBS'
mdpref: 'SCORE' 'CORR'
vector: 'SCORE' 'MCOEFFI'
ideal: 'SCORE' 'MPOINT'
mds: 'SCORE' 'CONFIG'

```

For combinations of options, these lists are combined in order, but without repeating 'SCORE', for example with datatype=mdpref vector ideal, the default types= list is: 'SCORE' 'CORR' 'MCOEFFI' 'MPOINT'.

\section*{typevar \(=\) variable}
specifies a variable that is looked at for the observation types. By default, this will be _type_ if it is in the input data set.

\section*{Internal Data Set Options}

The macro creates one or more of these data sets internally to store intermediate results.

\section*{extraobs \(=S A S\)-data-set}
specifies a data set used to contain the extra observations that do not go through PROC PLOT. The default is extraobs=extraobs.
preproc \(=S A S\)-data-set
specifies a data set used to contain the preprocessed data= data set. The default is preproc=preproc.

\section*{regdat \(=S A S\)-data-set}
specifies a data set used to contain intermediate regression results for curve fitting. The default is regdat=regdat.

\section*{tempdat1 \(=\) SAS-data-set}
specifies a data set used to hold intermediate results. The default is tempdat1=tempdat1.

\section*{tempdat \(2=S A S\)-data-set}
specifies a data set used to hold intermediate results. The default is tempdat2=tempdat2.

\section*{tempdat \(3=\) SAS-data-set}
specifies a data set used to hold intermediate results. The default is tempdat3=tempdat3.

\section*{tempdat4 \(=\) SAS-data-set}
specifies a data set used to hold intermediate results. The default is tempdat4=tempdat4.

\section*{tempdat5 \(=\) SAS-data-set}
specifies a data set used to hold intermediate results. The default is tempdat5=tempdat5.

\section*{tempdat \(6=S A S\)-data-set}
specifies a data set used to hold intermediate results. The default is tempdat6=tempdat6.

\section*{Miscellaneous Options}

Here are some options that are sometimes needed for certain situations to control the details of the plots.

\section*{antiidea \(=n\)}
eliminates PREFMAP anti-ideal points. The TRANSREG ideal-point model assumes that small attribute ratings mean that the object is similar to the attribute and large ratings imply dissimilarity to the attribute. For example, if the objects are food and the attribute is "sweetness," then the analysis assumes that 1 means sweet and 9 is much less sweet. The resulting coordinates are usually ideal points, representing an ideal amount of the attribute, but sometimes they are anti-ideal points and need to be converted to ideal points. This option is used to specify the nature of the data (small ratings mean similar or dissimilar) and to request automatic conversion of anti-ideal points.
null value - (antiidea=, the default) - do nothing.
1 - reverses in observations whose _TYPE_ contains 'POINT' when _issq- \(>0\). Specify antiidea=1 with datatype=ideal for the unusual case when large data values are positive or ideal.
-1 - reverses in observations whose _type_ contains 'POINT' when _issq_ < 0. Specify antiidea=-1 with datatype=ideal for the typical case when small data values are positive or ideal.

\section*{extend \(=\) axis-extensions}
is used to extend the \(x\) and \(y\) axes beyond their default lengths. Specify four values, for the left, right, top, and bottom axes. If the word close is specified somewhere in the string, then macro moves the axes in close to the extreme data values, and the computed values are added to the specified values (if any). Sample specifications: extend=2 2 , or extend=3 \(3-0.50 .5\). Specifying a positive value \(n\)
extends the axis \(n\) positions in the indicated direction. Specifying a negative value shrinks the axis. The defaults are in the range -2 to 2 , and are chosen in an attempt to add a little extra horizontal space and make equal the extra space next to each of the four extreme ticks. When there is enough space, the horizontal axis is slightly extended by default to decrease the chance of a label slightly extending outside the plot. PROC PLOT usually puts one or two more lines on the top of the plot than in the bottom. The macro tries to eliminate this discrepancy. This option does not add any tick marks; it just extends or shrinks the ends of the axis lines. So typically, only small values should be specified. Be careful with this option and a positive makefit= value.
font \(=\) font
specifies the default font. The default is font=swiss.

\section*{hminor \(=n \mid\) do-list}
specifies the number of horizontal axis minor tick marks between major tick marks. A typical value is 9. The number cannot be specified when haxis= is specified with plotopts=. Alternatively, specify a DATA step do list. Note that with \(\log\) scaling, specify \(\log _{10}\) 's of the data values. For example, specify hminor \(=0.25\) to 5 by 0.25 , with data ranging up to \(10^{* *} 5\).

\section*{href \(=\) do-list}
specifies horizontal-axis reference lines (which are drawn vertically). Specify a DATA step do list. By default, there are no reference lines.

\section*{inc \(=n\)}
specifies haxis=by inc and vaxis=by inc values. The specified increments apply to both axes. To individually control the increments, you must specify the PLOT statement haxis= and vaxis= options on the plotopts= option. When you are plotting variables that have very different scales, you may need to independently specify appropriate tick increments for both axes to get a reasonable plot. Here is an example: plotopts=haxis=by 20 vaxis=by 5000 .
interpol \(=1\) s \(\mid\) tick \(\mid\) no \(\mid\) hlog \(\mid\) vlog \(\mid\) yes
specifies the axis interpolation method.
ls - uses the least-squares method only. This method computes the mapping between data and positions using ordinary least-squares linear regression. Usually, you should not specify interpol=1s because slight inaccuracies may result, producing aesthetically unappealing plots.
hlog - specifies that the \(x\)-axis is on a log scale.
no - does not interpolate.
tick - uses the tick mark method. This method computes the slope and intercept using tick marks and their values. Tick marks are read using the tickfor= format.
vlog - specifies that the \(y\)-axis is on a \(\log\) scale.
yes - the default, interpolates symbol locations, starting with least squares but replacing them with tick-based estimates when they are available.

This option makes the symbols, vectors, and circles map to the location they would in a true graphical scatter plot, not the cell locations from PROC PLOT. This option has no effect on labels, the frame, reference lines, titles, or ticks. With interpol=no, plots tend to look nicer whereas interpol=yes plots are slightly more accurate. Note that the strategy used to interpolate can be defeated in certain cases. If the horizontal axis tick values print vertically, specify interpol=1s. The hlog and vlog values are specified in addition to the method. For example, interpol=yes vlog hlog.

\section*{label \(=\) label-statement}
specifies a label statement. Note that specifying the keyword label to begin the statement is optional. You can specify label=typical to request a label statement constructed with 'Dimension' and the numeric suffix of the variable name, for example, label dim1 = 'Dimension 1' dim2 = 'Dimension 2'; when plotvars=dim2 dim1. The label=typical option can only be used with variable names that consist of a prefix and a numeric suffix.

\section*{\(\mathbf{l} \mathbf{s}=n \mid\) iterative-specification}
specifies how line sizes are generated. The default is ls=compute search. When the second word is search, the macro searches for an optimal line size. See the place= option for more information on searches. When the first word is compute, the line size is computed from the iteration number so that the line sizes are: 6580100125150175200 . Otherwise the first word is the first linesize and with each iteration the linesize is incremented by the 1 sinc= amount. Example: \(1 \mathrm{~s}=65\) search.

\section*{\(\operatorname{lsinc}=n\)}
specifies the increment to line size in iterations when line size is not computed. The default is \(1 \sin c=15\).

\section*{lsizes \(=\) number-list}
specifies the line sizes (thicknesses) for frame, ticks, vectors, circles, curves, respectively. The default is lsizes=1 1111 .

\section*{maxiter \(=n\)}
specifies the maximum number of iterations. The default is maxiter \(=15\).

\section*{maxokpen= \(n\)}
specifies the maximum acceptable penalty sum. The default is maxokpen=0. Penalties accrue when label characters collide, labels get moved too far from their symbols, or words get split.

\section*{offset \(=n\)}
move symbols for coincident points offset= spaces up/down and left/right. This helps to better display coincident symbols. Specify a null value ( \(\mathrm{offset}=\), ) to turn off offsetting. The default is offset=0.25.

\section*{place \(=\) placement-specification}
generates a placement \(=\) option for the plot request. The default is place=2 search. Specify a nonnegative integer. Values greater than 13 are set to 13 . As the value gets larger, the procedure is given more freedom to move the labels farther from the symbols. The generated placement list will be printed in the log. You can still specify placement= directly on the plotopts= option. This option just gives
you a shorthand notation. For example:
```

place=0 - placement=((s=center))
place=1 - placement=((h=2 -2 : s=right left)
(v=1 * h=0 -1 to -2 by alt))
place=2 - placement=((h=2 -2 : s=right left)
(v=1 -1 * h=0 -1 to -5 by alt))
place=3 - placement=((h=2 -2 : s=right left)
(v=1 to 2 by alt * h=0 -1 to -10 by alt))
place=4 - placement=((h=2 -2 : s=right left)
(v=1 to 2 by alt * h=0 -1 to -10 by alt)
(s=center right left * v=0 1 to 2 by alt *
h=0 -1 to -6 by alt * l= 1 to 2))

```
and so on.
The place \(=\) option, along with the \(1 \mathrm{~s}=\) option can be used to search for an optimal placement list and an optimal line size. By default, the macro will create and recreate the plot until it avoids all collisions. The search is turned off when a placement = option is detected in the plot request or plot options.

If search is not specified with place \(=\) or \(1 \mathbf{s}=\), the specified value is fixed. If search is specified with the other option, only that option's value is incremented in the search.

\section*{plotopts \(=\) options}
specifies PLOT statement options. The box option will be specified, even if you do not specify it. Reference lines should not be specified using the PROC PLOT href= and vref= options. Instead, they should be specified directly using the href= and vref= macro options. By default, no PLOT statement options are specified except box.

\section*{procopts \(=\) options}
specifies PROC PLOT statement options. The default is procopts=nolegend.

\section*{tickaxes \(=\) axis-string}
specifies the axes to draw tick marks. The default, tickaxes=LRTBFlb, means major ticks on left (L), right ( R ), top ( T ), and bottom (B), and the full frame (F) is to be drawn, and potentially minor tick marks on the left (l) and bottom (b). Minor ticks on the right (r) and top ( t ) can also be requested. To just have major tick marks on the left and bottom axes, and no full frame, specify tickaxes=LB. Order and spacing do not matter. hminor= and vminor= must also be specified to get minor ticks.

\section*{tickfor \(=\) format}
specifies the tick format used by interpol=tick. You should change this if the tick values in the PROC PLOT output cannot be read with the default tickfor=32. format. For example, specify tickfor=date7. with dates.

\section*{ticklen \(=n\)}
specifies the length of tick marks in horizontal cells. A negative value can be specified to indicate that only half ticks should be used, which means the ticks run to but not across the axes. The default is ticklen=1.5.

\section*{tsize \(=n\)}
specifies the default text size. The default is tsize=1.

\section*{vminor \(=n \mid\) do-list}
specifies the number of vertical axis minor tick marks between major tick marks. A typical value is 9. The number cannot be specified when vaxis= is specified with plotopts=. Alternatively, specify a DATA step do list. Note that with log scaling, specify \(\log _{10}\) 's of the data values. For example, specify vminor \(=0.25\) to 5 by 0.25 , with data ranging up to \(10^{* *} 5\).
vref \(=\) do-list
specifies vertical reference lines (which are drawn horizontally). Specify a DATA step do list. By default, there are no reference lines.

\section*{Color Options}

The symbol and point label colors are set by the labcol= and symcol= options. Here are the other color options.

\section*{bright \(=n\)}
generates random label colors for britypes= values. In congested plots, it may be easier to see which labels and symbols go together if each label/symbol pair has a different random color. Colors are computed so that the mean RGB (red, green, blue) components equal the specified bright= value. The valid range is \(5 \leq\) bright \(\leq 250\). 128 is a good value. Small values will produce essentially black labels and large values will produce essentially white labels, and so should be avoided. The default is a null value, bright=, and there are no random label colors. If you get a color table full error message, you need to specify larger values for the rgbround= option.

\section*{cframe \(=\) color}
specifies the color of the background within the frame. This is analogous to the cframe= SAS/GRAPH option. By default, when cframe= is null, this option has no effect.

\section*{color \(=\) color}
specifies the default color that is used when no other color is set. The default color, color=cyan, was chosen because it will show up on both a dark background and a white background, not because it is ever the color of choice. You may want to change the default color to black for printed plots and white otherwise or to some other more-suitable colors.

\section*{curvecol= color}
specifies the color of curves in a regression plot. The default comes from color=.

\section*{excolors \(=\) color-list}
excludes observations from the Annotate data set with colors in this list. For example, with a black background, to exclude all observations that have a color set to black as well as those with a computed black color, for example from bright= or paint=, specify excolors=black CX000000. This is done for efficiency, to make the Annotate data set smaller.
framecol \(=\) color
specifies the color of the frame. The default comes from color=.

\section*{labelcol= color}
specifies the color of the variable labels. The default comes from color=.

\section*{monochro \(=\) color}
overrides all other specified colors. This option is useful when you have specified colors and you want to temporarily override them to send the plot to a monochrome device. By default, when monochro= is null, this option has no effect. Typical usage: monochro=black.

\section*{tickcol \(=\) color}
specifies the color of ticks. The default comes from color=.

\section*{titlecol= color}
specifies the color of the title. The default comes from color=.

\section*{Color Interpolation and Painting}

These next options are used to create label and symbol colors using some function of the input data set variables. For example, you can plot the first two principal components on the \(x\) and \(y\) axes and show the third principal component in the same plot by using it to control the label colors. The paint= option gives you a simple and fairly general way to interpolate colors. The red=, green=, and blue= options are used together for many other types of interpolations, but these options are much harder to use. These options apply to rgbtypes= observations. If red=, green=, and blue= are not flexible enough, for example if you need full statements, specify red=128 (so later code will know you are computing colors) then insert the full statements you need to generate the colors using adjust1=.

\section*{paint \(=\) color-interpolation-specification}
is used to interpolate between colors based on the values of a variable. The simplest specification is paint=variable. More generally, specify:
```

paint=variable optional-color-list optional-data-value-list

```

The following color names are recognized: red, green, blue, yellow, magenta, cyan, black, white, orange, brown, gray, olive, pink, purple, violet. For other colors, specify the RGB color name. Colors can be
represented as CX \(r r g g b b\) where \(r r\) is the red value, \(g g\) is the green, and \(b b\) is blue, all three specified in hex. The base ten numbers 0 to 255 map to 00 to FF hex. For example, white is CXFFFFFF, black is CX000000, red is CXFF0000, blue is CX0000FF and magenta is CXFF00FF. When a variable named \(z\) is specified with no other arguments, the default is paint=z blue magenta red. The option paint=z red green 110 interpolates between red and green, based on the values of the variable z, where values of 1 or less map to red, values of 10 or more map to green, and values in between map to colors in between. The specification paint=z red yellow green 1510 , interpolates between red at \(z=1\), yellow at \(\mathrm{Z}=5\), and green at \(\mathrm{Z}=10\). If the data value list is omitted, it is computed from the data.
red \(=\) expression
green \(=\) expression
blue \(=\) expression
specify for arithmetic expressions that produce integers in the range 0 to 255 . Colors will be created as follows:
```

__color = 'CX' ||
put(%if \&red ne %then round(\&red, __roured); %else 128; ,hex2.) ||
put(%if \&green ne %then round(\&green,__rougre); %else 128;, hex2.) ||
put(%if \&blue ne %then round(\&blue, __roublu); %else 128; ,hex2.);}

```

The _rou variables are extracted from the second through fourth values of the rgbround= option. Example: red \(=\min (100+(z-10) * 3,255)\), blue \(=50\), green \(=50\). Then all labels are various shades of red, depending on the value of \(z\). Be aware that light colors (small red-green-blue values) do not show up well on white backgrounds and dark colors do not show up well on dark backgrounds. Typically, you will not want to use the full range of possible red-green-blue values. Computed values greater than 255 will be set to 255 .

\section*{rgbround \(=R G B\)-rounding-specification}
specifies rounding factors used for the paint= variable and RGB values. The default is rgbround=-240 111 . The first value is used to round the paint= variable. Specify a positive value to have the variable rounded to multiples of that value. Specify a negative value \(-n\) to have a maximum of \(n\) colors. For the other three values, specify positive values. The last three are rounding factors used to round the values for the red, green, and blue component of the color (see red=). If more than 256 colors are generated, you will get the error that a color was not added because the color table is full. By default, when a value is missing, there is no rounding. Rounding the paint= variable is useful with contour plots.

\section*{Contour Options}

Use these options with contour plots. For example if the grid for a contour plot was generated as follows.
```

do }x=-4 to 4 by 0.1
do y = -2 to 2 by 0.1;
... statements ...
end;
end;

```
then specify hnobs=81, vnobs=41. By default, the square root of the number of contour type observations is used for both hnobs= and vnobs= (which assumes a square grid).

\section*{hnobs \(=n\)}
specifies the number of horizontal observations in the grid for contour plots.

\section*{vnobs \(=n\)}
specifies the number of vertical observations in the grid for contour plots.

\section*{Advanced Plot Control Options}

You can use the these next options to add full SAS DATA step statements to strategic places in the macro, such as the PROC PLOT step, the end of the preprocessing, and last full data steps. These options do minor adjustments before the final plot is produced. These options allow very powerful customization of your results to an extent not typically found in procedures. However, they may require a fair amount of work and some trial and error to understand and get right.

\section*{adjust1 \(=\) SAS-statements}

The following variables are created in the preprocessing data set:
```

__lsize - label size
__lfont - label font
__lcolor - label color
__ssize - symbol size
__sfont - symbol font
__scolor - symbol color
__stype - symbol type
__symbol - symbol value
__otype - observation type

```

Use adjust1= to adjust these variables in the preprocessing data set. You must specify complete statements with semicolons. Examples:
```

adjust1=%str(__lsize = 1.2; __lcolor = green;)}
adjust1=%str(if z > 20 then do;
__scolor = 'green'; __lcolor = 'green'; end;)}

```
adjust2 \(=\) SAS-statements
includes statements with PROC PLOT such as format statements. Just specify the full statement.

\section*{adjust3 \(=S A S\)-statements}
adjust4 \(=\) SAS-statements
specify options to adjust the final Annotate data set. For example, in Swiss fonts, asterisks are not vertically centered when printed, so adjust3= converts to use the SYMBOL function, so by default, adjust3=\%str (if text \(=\) '*' and function = 'LABEL' then do; style = ' '; text = 'star'; function = 'SYMBOL'; end;). The default for adjust4= is null, so you can use it to add new statements. If you add new variables to the data set, you must also include a keep statement. Here is an example of using adjust4= to vertically print the \(y\)-axis label, like it would be in PROC PLOT.
```

adjust4=%str(if angle = 90 then do; angle = 270; rotate = 90; keep rotate; end;)

```

This example changes the size of title lines.
```

adjust4=%str(if index(comment, 'title') then size = 2;)

```

\section*{adjust5 \(=S A S\)-statements}
adds extra statements to the final DATA step that is used only for datatype=function. For example, to periodically mark the function with pluses, specify:
```

adjust5=%str(if mod(_n_,30) = 0 then do;
size=0.25; function = 'LABEL'; text = '+'; output; end;)

```

\section*{Other Options}

Here are the remaining options for the \%PlotIt macro.

\section*{cirsegs \(=n\)}
specifies a circle smoothness parameter used in determining the number of line segments in each circle. Smaller values create smoother circles. The cirsegs= value is approximately related to the length of the line segments that compose the circle. The default is cirsegs=.1.

\section*{cursegs \(=n\)}
specifies the number of segments in a regression function curve. The default is cursegs=200.
debug \(=\) vars \(\mid\) dprint \(\mid\) notes \(\mid\) time \(\mid\) mprint
specifies values that control debugging output.
dprint - print intermediate data sets.
mprint - run with options mprint.
notes - do not specify options nonotes during most of the macro.
time - prints total macro run time, ignored with options nostimer;
vars - print macro options and macro variables for debugging.

You should provide a list of names for more than one type of debugging. Example: debug=vars dprint notes time mprint. The default is debug=time.
\(\operatorname{hpos}=n\)
specifies the number of horizontal positions in the graphics area.

\section*{hsize \(=n\)}
specifies the horizontal graphics area size in unit= units. The default is the maximum size for the device. By default, when options=nocenter is not specified, hsize= affects the size of the plot but not the hsize= goption. When options=nocenter is specified, hsize= affects both the plot size and the hsize= goption. If you specify just the hsize= but not vsize=, the vertical size will be scaled accordingly.

\section*{makefit \(=n\)}
specifies the proportion of the graphics window to use. When the makefit= value is negative, the absolute value will be used, and the final value may be changed if the macro thinks that part of the plot may extend over the edge. When a positive value is specified, it will not be changed by the macro. When nonnull, the macro uses GASK to determine the minimum and maximum graphics window sizes and makes sure the plot can fit in them. The macro uses gopprint= or gopplot= to determine the device. The default is makefit=-0.95.

\section*{nknots \(=n\)}
specifies the PROC TRANSREG number of knots option for regression functions.

\section*{outward \(=\) none \(\mid\) ' \(c\) '}
specifies a string for the PLOT statement outward= option. Normally, this option's value is constructed from the symbol that holds the place for vectors. Specify outward=none if you want to not have outward= specified for vectors. The outward= option is used to greatly increase the likelihood that labels from vectors will be printed outward - away from the origin.
\(\mathrm{ps}=n\)
specifies the page size.

\section*{radii \(=d o-l i s t\)}
specifies the radii of circles (in a DATA step do list). The unit corresponds to the horizontal axis variable. The radii= option can also specify a variable in the input data set when radii vary for each point. By default, no circles are drawn.

\section*{regopts \(=\) options}
specifies the PROC TRANSREG options for curve fitting. Example: regopts=nknots=10 evenly.

\section*{regfun \(=\) regression-function}
specifies the function for curve fitting. Possible values include:
```

linear - line
spline - nonlinear spline function, perhaps with knots
mspline - nonlinear but monotone spline function, perhaps with knots
monotone - nonlinear, monotone step function

```

See PROC TRANSREG documentation for more information
regprint \(=\) noprint
specifies the PROC TRANSREG PROC statement options, typically printing options such as:
noprint - no regression printed output
short - suppress iteration histories
ss2-regression results
To see the regression table, specify: regprint=ss2 short. The default is regprint=noprint.
unit \(=\) in \(\mid \mathrm{cm}\)
specifies the hsize= and vsize= unit (in or cm ). The default is unit=in.
vechead \(=\) vector-head-size specifies how to draw vector heads. For example, the default specification vechead \(=0.20 .05\), specifies a head consisting of two hypotenuses from triangles with sides 0.2 units long along the vector and 0.05 units on the side perpendicular to the vector.

\section*{\(\operatorname{vpos}=n\)}
specifies the number of vertical positions in the graphics area.

\section*{vsize \(=n\)}
specifies the vertical graphics area size in unit= units. The default is the maximum size for the device. By default when options=nocenter is not specified, vsize= affects the size of the plot but not the vsize= goption. When options=nocenter is specified, vsize= affects both the plot size and the vsize= goption. If you specify just the vsize= but not hsize=, the horizontal size will be scaled accordingly.

\section*{vtoh= \(n\)}
specifies the PROC PLOT vtoh= option. The vtoh= option specifies the ratio of the vertical height of a typical character to the horizontal width. The default is vtoh=2. Do not specify values much different than 2 , especially by default when you are using proportional fonts. There is no one-to-one correspondence between characters and cells and character widths vary, but characters tend to be approximately twice as high as they are wide. When you specify vtoh= values larger than 2 , near-by labels may overlap, even when they do not collide in the printer plot. The macro uses this option to equate the axes so that a centimeter on one axis represents the same data range as a centimeter on the
other axis. A null value can be specified, vtoh=, when you want the macro to just fill the window, like a typical GPLOT.

Smaller values give you more lines and smaller labels. The specification vtoh=1.75 is a good alternative to vtoh=2 when you need more lines to avoid collisions. The specification vtoh=1.75 means 7 columns for each 4 rows between ticks \((7 / 4=1.75)\). The vtoh=2 specification means the plot will have 8 columns for each 4 rows between ticks. Note that PROC PLOT sometimes takes this value as a hint, not as a rigid specification so the actual value may be slightly different, particularly when a value other than 2.0 is specified. This is generally not a problem; the macro adjusts accordingly.

\section*{\(\operatorname{xmax}=n\)}
specifies the maximum horizontal size of the graphics area.
\(\operatorname{ymax}=n\)
specifies the maximum vertical size of the graphics area.

\section*{Macro Errors}

Usually, if you make a mistake in specifying macro options, the macro will print an informative message and quit. These macros go to great lengths to check their input and issue informative errors. However, complete error checking like we have with procedures is impossible in macros, and sometimes you will get a cascade of less than helpful error messages.* In that case, you will have to check the input and hunt for errors. One of the more common errors is a missing comma between options. Sometimes for harder errors, specifying options mprint; will help you locate the problem. You may get a listing with a lot of code, almost all of which you can ignore. Search for the error and look at the code that comes before the error for ideas about what went wrong. Once you think you know which option is involved, be sure to also check the option before and after in your macro invocation, because that might be where the problem really is.

The \%PhChoice macro use PROC TEMPLATE and ODS to create customized output tables. Typically, the instructions for this customization, created by PROC TEMPLATE, are stored in a file under the sasuser directory with a host dependent name. On some hosts, this name is templat.sas7bitm. On other hosts, the name is some variation of the name templat. Sometimes this file can be corrupted. When this happens, these macros will not run correctly, and you will see error messages including errors about invalid pages. The solution is to find the corrupt file under sasuser and delete it (using your ordinary operating system file deletion method). After that, this macros should run fine again. If you have run any other PROC TEMPLATE customizations, you will need to rerun them after deleting the file. For more information, see "Template Store" or "Item Store" in the SAS ODS documentation.

Sometimes, you will run the \%MktEx macro, and everything will seem to run fine in the entire job, but at the end of your SAS log, you will see the message:

ERROR: Errors printed on page ....
Typically, this is caused by one or more PROC FACTEX steps failing to find the requested design. When this happens, the macro recovers and continues searching. The macro does not always know in advance if PROC FACTEX will succeed. The only way for it to find out is for it to try. The macro suppresses the PROC FACTEX error messages along with most other notes and warnings that would ordinarily come out. However, SAS still knows that a procedure tried to print an error message, and prints an error at the end of the log. This error can be ignored.

\footnotetext{
*If this happens, please write Warren.Kuhfeld@sas.com, and I will see if I can make the macros better handle that problem in the next release. Send all the code necessary to reproduce what you have done.
}

\title{
Linear Models and Conjoint Analysis with Nonlinear Spline Transformations
}

\author{
Warren F. Kuhfeld \\ Mark Garratt
}

\begin{abstract}
Many common data analysis models are based on the general linear univariate model, including linear regression, analysis of variance, and conjoint analysis. This chapter discusses the general linear model in a framework that allows nonlinear transformations of the variables. We show how to evaluate the effect of each transformation. Applications to marketing research are presented.*
\end{abstract}

\section*{Why Use Nonlinear Transformations?}

In marketing research, as in other areas of data analysis, relationships among variables are not always linear. Consider the problem of modeling product purchasing as a function of product price. Purchasing may decrease as price increases. For consumers who consider price to be an indication of quality, purchasing may increase as price increases but then start decreasing as the price gets too high. The number of purchases may be a discontinuous function of price with jumps at "round numbers" such as even dollar amounts. In any case, it is likely that purchasing behavior is not a linear function of price. Marketing researchers who model purchasing as a linear function of price may miss valuable nonlinear information in their data. A transformation regression model can be used to investigate the nonlinearities. The data analyst is not required to specify the form of the nonlinear function; the data suggest the function.

The primary purpose of this chapter is to suggest the use of linear regression models with nonlinear transformations of the variables-transformation regression models. It is common in marketing research to model nonlinearities by fitting a quadratic polynomial model. Polynomial models often have collinearity problems, but that can be overcome with orthogonal polynomials. The problem that polynomials cannot overcome is the fact that polynomial curves are rigid; they do not do a good job of locally fitting the data. Piecewise polynomials or splines are generalizations of polynomials that provide more flexibility than ordinary polynomials.

\footnotetext{
*This chapter is a revision of a paper that was presented to the American Marketing Association, Advanced Research Techniques Forum, June 14-17, 1992, Lake Tahoe, Nevada. The authors are: Warren F. Kuhfeld, Manager, Multivariate Models R\&D, SAS Institute Inc., Cary NC 27513-2414. Mark Garratt was with Conway | Milliken \& Associates, when this paper was presented and is now with Miller Brewing Company. Copies of this chapter (TS-689I) are available on the web http://support.sas.com/techsup/tnote/tnote_stat.html\#market.
}

\section*{Background and History}

The foundation for our work can be found mostly in the psychometric literature. Some relevant references include: Kruskal \& Shepard (1974); Young, de Leeuw, \& Takane (1976); de Leeuw, Young, \& Takane (1976); Perreault \& Young (1980); Winsberg \& Ramsay (1980); Young (1981); Gifi (1981, 1990); Coolen, van Rijckevorsel, \& de Leeuw (1982); van Rijckevorsel (1982); van der Burg \& de Leeuw (1983); de Leeuw (1986), and many others. The transformation regression problem has also received attention in the statistical literature (Breiman \& Friedman 1985, Hastie \& Tibshirani, 1986) under the names \(A C E\) and generalized additive models.

Our work is characterized by the following statements:
- Transformation regression is an inferential statistical technique, not a purely descriptive technique.
- We prefer smooth nonlinear spline transformations over step-function transformations.
- Transformations are found that minimize a squared-error loss function.

Many of the models discussed in this chapter can be directly fit with some data manipulations and any multiple regression or canonical correlation software; some models require specialized software. Algorithms are given by Kuhfeld (1990), de Boor (1978), and in SAS/STAT documentation.

Next, we present notation and review some fundamentals of the general linear univariate model.

\section*{The General Linear Univariate Model}

A general linear univariate model has the scalar form
\[
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots+\beta_{m} x_{m}+\epsilon
\]
and the matrix form
\[
\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}
\]

The dependent variable \(\mathbf{y}\) is an \((n \times 1)\) vector of observations; \(\mathbf{y}\) has expected value \(E(\mathbf{y})=\mathbf{X} \boldsymbol{\beta}\) and expected variance \(V(\mathbf{y})=\sigma^{2} \mathbf{I}_{n}\). The vector \(\boldsymbol{\epsilon}=\mathbf{y}-\mathbf{X} \boldsymbol{\beta}\) contains the unobservable deviations from the expected values. The assumptions on \(\mathbf{y}\) imply \(E(\epsilon)=\mathbf{0}\) and \(V(\epsilon)=\sigma^{2} \mathbf{I}_{n}\). The columns of \(\mathbf{X}\) are the independent variables; \(\mathbf{X}\) is an \((n \times m)\) matrix of constants that are assumed to be known without appreciable error. The elements of the column vector \(\boldsymbol{\beta}\) are the parameters. The objectives of a linear models analysis are to estimate the parameter vector \(\boldsymbol{\beta}\), estimate interesting linear combinations of the elements of \(\boldsymbol{\beta}\), and test hypotheses about the parameters \(\boldsymbol{\beta}\) or linear combinations of \(\boldsymbol{\beta}\).

We discuss fitting linear models with nonlinear spline transformations of the variables. Note that we do not discuss models that are nonlinear in the parameters such as
\[
\begin{aligned}
& y=e^{x \beta}+\epsilon \\
& y=\beta_{0} x^{\beta_{1}}+\epsilon \\
& y=\frac{\beta_{1} x_{1}+\beta_{2} x_{1}^{2}}{\beta_{3} x_{2}+\beta_{4} x_{2}^{2}}+\epsilon
\end{aligned}
\]

Our nonlinear transformations are found within the framework of the general linear model.
There are numerous special cases of the general linear model that are of interest. When all of the columns of \(\mathbf{y}\) and \(\mathbf{X}\) are interval variables, the model is a multiple regression model. When all of the columns of \(\mathbf{X}\) are indicator variables created from nominal variables, the model is a main-effects analysis of variance model, or a metric conjoint analysis model. The model
\[
y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\beta_{3} x^{3}+\epsilon
\]
is of special interest. It is a linear model because it is linear in the parameters, and it models \(y\) as a nonlinear function of \(x\). It is a cubic polynomial regression model, which is a special case of a spline.

\section*{Polynomial Splines}

Splines are curves that are typically required to be continuous and smooth. Splines are usually defined as piecewise polynomials of degree \(d\) whose function values and first \(d-1\) derivatives agree at the points where they join. The abscissa values of the join points are called knots. The term spline is also used for polynomials (splines with no knots), and piecewise polynomials with more than one discontinuous derivative. Splines with more knots or more discontinuities fit the data better and use more degrees of freedom ( \(d f\) ). Fewer knots and fewer discontinuities provide smoother splines that user fewer \(d f\). A spline of degree three is a cubic spline, degree two splines are quadratic splines, degree one splines are piecewise linear, and degree zero splines are step functions. Higher degrees are rarely used.

A simple special case of a spline is the line,
\[
\beta_{0}+\beta_{1} x
\]
from the simple regression model
\[
y=\beta_{0}+\beta_{1} x+\epsilon
\]

A line is continuous and completely smooth. However, there is little to be gained by thinking of a line as a spline. A special case of greater interest was mentioned previously. The polynomial
\[
\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\beta_{3} x^{3}
\]
from the linear model
\[
y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\beta_{3} x^{3}+\epsilon
\]
is a cubic spline with no knots. This equation models \(y\) as a nonlinear function of \(x\), but does so with a linear regression model; \(y\) is a linear function of \(x, x^{2}\), and \(x^{3}\). Table 1 shows the \(\mathbf{X}\) matrix, \(\left(\begin{array}{lll}1 & \mathrm{x} & \mathrm{x}^{2}\end{array} \mathrm{x}^{3}\right.\) ), for a cubic polynomial, where \(x=-5,-4, \ldots, 5\). Figure 1 plots the polynomial terms (except the intercept). See Smith (1979) for an excellent introduction to splines.


Figure 1. Linear, Quadratic, and Cubic Curves
Figure 2. Curves For Knots at -2, 0, 2

\section*{Splines with Knots}

Here is an example of a polynomial spline model with three knots at \(t_{1}, t_{2}\), and \(t_{3}\).
\[
\begin{aligned}
y= & \beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\beta_{3} x^{3}+ \\
& \beta_{4}\left(x>t_{1}\right)\left(x-t_{1}\right)^{3}+ \\
& \beta_{5}\left(x>t_{2}\right)\left(x-t_{2}\right)^{3}+ \\
& \beta_{6}\left(x>t_{3}\right)\left(x-t_{3}\right)^{3}+\epsilon
\end{aligned}
\]

The Boolean expression \(\left(x>t_{1}\right)\) is 1 if \(x>t_{1}\), and 0 otherwise. The term
\[
\beta_{4}\left(x>t_{1}\right)\left(x-t_{1}\right)^{3}
\]
is zero when \(x \leq t_{1}\) and becomes nonzero, letting the curve change, as \(x\) becomes greater than knot \(t_{1}\). This spline uses more \(d f\) and is less smooth than the polynomial model
\[
y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\beta_{3} x^{3}+\epsilon
\]

Assume knots at \(-2,0\), and 2 ; the spline model is:
\[
\begin{aligned}
y= & \beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\beta_{3} x^{3}+ \\
& \beta_{4}(x>-2)(x--2)^{3}+ \\
& \beta_{5}(x>0)(x-0)^{3}+ \\
& \beta_{6}(x>2)(x-2)^{3}+\epsilon
\end{aligned}
\]


Figure 3. A Spline Curve With Knots at -2, 0, 2
Figure 4. The Components of the Spline

Table 2 shows an \(\mathbf{X}\) matrix for this model, Figure 1 plots the polynomial terms, and Figure 2 plots the knot terms.

The \(\beta_{0}, \beta_{1} x, \beta_{2} x^{2}\), and \(\beta_{3} x^{3}\) terms contribute to the overall shape of the curve. The
\[
\beta_{4}(x>-2)(x--2)^{3}
\]
term has no effect on the curve before \(x=-2\), and allows the curve to change at \(x=-2\). The \(\beta_{4}(x>-2)(x-2)^{3}\) term is exactly zero at \(x=-2\) and increases as \(x\) becomes greater than -2 . The

Table 1
Cubic Polynomial Spline Basis
\begin{tabular}{|rrrr|}
\hline 1 & -5 & 25 & -125 \\
1 & -4 & 16 & -64 \\
1 & -3 & 9 & -27 \\
1 & -2 & 4 & -8 \\
1 & -1 & 1 & -1 \\
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 \\
1 & 2 & 4 & 8 \\
1 & 3 & 9 & 27 \\
1 & 4 & 16 & 64 \\
1 & 5 & 25 & 125 \\
\hline
\end{tabular}

Table 2
Cubic Polynomial
With Knots at \(-2,0,2\)
\begin{tabular}{|rrrrrrr|}
\hline 1 & -5 & 25 & -125 & 0 & 0 & 0 \\
1 & -4 & 16 & -64 & 0 & 0 & 0 \\
1 & -3 & 9 & -27 & 0 & 0 & 0 \\
1 & -2 & 4 & -8 & 0 & 0 & 0 \\
1 & -1 & 1 & -1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 8 & 0 & 0 \\
1 & 1 & 1 & 1 & 27 & 1 & 0 \\
1 & 2 & 4 & 8 & 64 & 8 & 0 \\
1 & 3 & 9 & 27 & 125 & 27 & 1 \\
1 & 4 & 16 & 64 & 216 & 64 & 8 \\
1 & 5 & 25 & 125 & 343 & 125 & 27 \\
\hline
\end{tabular}

Table 3
Basis for a Discontinuous (at 0) Spline
\begin{tabular}{|rrrrrrrr|}
\hline 1 & -5 & 25 & -125 & 0 & 0 & 0 & 0 \\
1 & -4 & 16 & -64 & 0 & 0 & 0 & 0 \\
1 & -3 & 9 & -27 & 0 & 0 & 0 & 0 \\
1 & -2 & 4 & -8 & 0 & 0 & 0 & 0 \\
1 & -1 & 1 & -1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 2 & 4 & 8 & 1 & 2 & 4 & 8 \\
1 & 3 & 9 & 27 & 1 & 3 & 9 & 27 \\
1 & 4 & 16 & 64 & 1 & 4 & 16 & 64 \\
1 & 5 & 25 & 125 & 1 & 5 & 25 & 125 \\
\hline
\end{tabular}
\(\beta_{4}(x>-2)(x--2)^{3}\) term contributes to the shape of the curve even beyond the next knot at \(x=0\), but at \(x=0\),
\[
\beta_{5}(x>0)(x-0)^{3}
\]
allows the curve to change again. Finally, the last term
\[
\beta_{6}(x>2)(x-2)^{3}
\]
allows one more change. For example, consider the curve in Figure 3. It is the spline
\[
\begin{gathered}
y=-0.5+0.01 x+-0.04 x^{2}+-0.01 x^{3}+ \\
0.1(x>-2)(x--2)^{3}+ \\
-0.5(x>0)(x-0)^{3}+ \\
1.5(x>2)(x-2)^{3}
\end{gathered}
\]

It is constructed from the curves in Figure 4. At \(x=-2.0\) there is a branch;
\[
y=-0.5+0.01 x+-0.04 x^{2}+-0.01 x^{3}
\]
continues over and down while the curve of interest,
\[
\begin{aligned}
y= & -0.5+0.01 x+-0.04 x^{2}+-0.01 x^{3}+ \\
& 0.1(x>-2)(x--2)^{3}
\end{aligned}
\]
starts heading upwards. At \(x=0\), the addition of
\[
-0.5(x>0)(x-0)^{3}
\]
slows the ascent until the curve starts decreasing again. Finally, the addition of
\[
1.5(x>2)(x-2)^{3}
\]
produces the final change. Notice that the curves do not immediately diverge at the knots. The function and its first two derivatives are continuous, so the function is smooth everywhere.

\section*{Derivatives of a Polynomial Spline}

The next equations show a cubic spline model with a knot at \(t_{1}\) and its first three derivatives with respect to \(x\).
\[
\begin{aligned}
y= & \beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\beta_{3} x^{3}+ \\
& \beta_{4}\left(x>t_{1}\right)\left(x-t_{1}\right)^{3}+\epsilon \\
\frac{d y}{d x}= & \beta_{1}+2 \beta_{2} x+3 \beta_{3} x^{2}+ \\
& 3 \beta_{4}\left(x>t_{1}\right)\left(x-t_{1}\right)^{2} \\
\frac{d^{2} y}{d x^{2}}= & 2 \beta_{2}+6 \beta_{3} x+ \\
& 6 \beta_{4}\left(x>t_{1}\right)\left(x-t_{1}\right) \\
\frac{d^{3} y}{d x^{3}}= & 6 \beta_{3}+6 \beta_{4}\left(x>t_{1}\right)
\end{aligned}
\]


Figure 5. A Discontinuous Spline Function


Figure 6. A Spline With a Discontinuous Slope

The first two derivatives are continuous functions of \(x\) at the knots. This is what gives the spline function its smoothness at the knots. In the vicinity of the knots, the curve is continuous, the slope of the curve is a continuous function, and the rate of change of the slope function is a continuous function. The third derivative is discontinuous at the knots. It is the horizontal line \(6 \beta_{3}\) when \(x \leq t_{1}\) and jumps to the horizontal line \(6 \beta_{3}+6 \beta_{4}\) when \(x>t_{1}\). In other words, the cubic part of the curve changes at the knots, but the linear and quadratic parts do not change.

\section*{Discontinuous Spline Functions}

Here is an example of a spline model that is discontinuous at \(x=t_{1}\).
\[
\begin{aligned}
y= & \beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\beta_{3} x^{3}+ \\
& \beta_{4}\left(x>t_{1}\right)+ \\
& \beta_{5}\left(x>t_{1}\right)\left(x-t_{1}\right)+ \\
& \beta_{6}\left(x>t_{1}\right)\left(x-t_{1}\right)^{2}+ \\
& \beta_{7}\left(x>t_{1}\right)\left(x-t_{1}\right)^{3}+\epsilon
\end{aligned}
\]

Figure 5 shows an example, and Table 3 shows a design matrix for this model with \(t_{1}=0\). The fifth column is a binary (zero/one) vector that allows the discontinuity. It is a change in the intercept parameter. Note that the sixth through eighth columns are necessary if the spine is to consist of two independent polynomials. Without them, there is a jump at \(t_{1}=0\), but both curves are based on the
same polynomial. For \(x \leq t_{1}\), the spline is
\[
y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\beta_{3} x^{3}+\epsilon
\]
and for \(x>t_{1}\), the spline is
\[
\begin{aligned}
y= & \beta_{0}+\beta_{4}+ \\
& \beta_{1} x+\beta_{5}\left(x-t_{1}\right)+ \\
& \beta_{2} x^{2}+\beta_{6}\left(x-t_{1}\right)^{2}+ \\
& \beta_{3} x^{3}+\beta_{7}\left(x-t_{1}\right)^{3}+\epsilon
\end{aligned}
\]

The discontinuities are as follows:
\[
\beta_{7}\left(x>t_{1}\right)\left(x-t_{1}\right)^{3}
\]
specifies a discontinuity in the third derivative of the spline function at \(t_{1}\),
\[
\beta_{6}\left(x>t_{1}\right)\left(x-t_{1}\right)^{2}
\]
specifies a discontinuity in the second derivative at \(t_{1}\),
\[
\beta_{5}\left(x>t_{1}\right)\left(x-t_{1}\right)
\]
specifies a discontinuity in the derivative at \(t_{1}\), and
\[
\beta_{4}\left(x>t_{1}\right)
\]
specifies a discontinuity in the function at \(t_{1}\). The function consists of two separate polynomial curves, one for \(-\infty<x \leq t_{1}\) and the other for \(t_{1}<x<\infty\). This kind of spline can be used to model a discontinuity in price.

Here is an example of a spline model that is continuous at \(x=t_{1}\) but does not have \(d-1\) continuous derivatives.
\[
\begin{aligned}
y= & \beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\beta_{3} x^{3}+ \\
& \beta_{4}\left(x>t_{1}\right)\left(x-t_{1}\right)+ \\
& \beta_{5}\left(x>t_{1}\right)\left(x-t_{1}\right)^{2}+ \\
& \beta_{6}\left(x>t_{1}\right)\left(x-t_{1}\right)^{3}+\epsilon \\
\frac{d y}{d x}= & \beta_{1}+2 \beta_{2} x+3 \beta_{3} x^{2}+ \\
& \beta_{4}\left(x>t_{1}\right)+ \\
& 2 \beta_{5}\left(x>t_{1}\right)\left(x-t_{1}\right)+ \\
& 3 \beta_{6}\left(x>t_{1}\right)\left(x-t_{1}\right)^{2}
\end{aligned}
\]

Since the first derivative is not continuous at \(t_{1}=x\), the slope of the spline is not continuous at \(t_{1}=x\). Figure 6 contains an example with \(t_{1}=0\). Notice that the slope of the curve is indeterminate at zero.


Table 4
Cubic B-Spline With Knots at \(-2,0,2\)
\begin{tabular}{|lllllll|}
\hline 1.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
0.30 & 0.54 & 0.15 & 0.01 & 0.00 & 0.00 & 0.00 \\
0.04 & 0.45 & 0.44 & 0.08 & 0.00 & 0.00 & 0.00 \\
0.00 & 0.16 & 0.58 & 0.26 & 0.00 & 0.00 & 0.00 \\
0.00 & 0.02 & 0.41 & 0.55 & 0.02 & 0.00 & 0.00 \\
0.00 & 0.00 & 0.14 & 0.71 & 0.14 & 0.00 & 0.00 \\
0.00 & 0.00 & 0.02 & 0.55 & 0.41 & 0.02 & 0.00 \\
0.00 & 0.00 & 0.00 & 0.26 & 0.58 & 0.16 & 0.00 \\
0.00 & 0.00 & 0.00 & 0.08 & 0.44 & 0.45 & 0.04 \\
0.00 & 0.00 & 0.00 & 0.01 & 0.15 & 0.54 & 0.30 \\
0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 1.00 \\
\hline
\end{tabular}

Figure 7. B-Splines With Knots at -2, 0, 2

\section*{Monotone Splines and B-Splines}

An increasing monotone spline never decreases; its slope is always positive or zero. Decreasing monotone splines, with slopes that are always negative or zero, are also possible. Monotone splines cannot be conveniently created from polynomial splines. A different basis, the \(B\)-spline basis, is used instead. Polynomial splines provide a convenient way to describe splines, but B-splines provide a better way to fit spline models.

The columns of the B-spline basis are easily constructed with a recursive algorithm (de Boor, 1978, pages \(134-135)\). A basis for a vector space is a linearly independent set of vectors; every vector in the space has a unique representation as a linear combination of a given basis. Table 4 shows the B-spline \(\mathbf{X}\) matrix for a model with knots at \(-2,0\), and 2 . Figure 7 shows the \(B\)-spline curves. The columns of the matrix in Table 4 can all be constructed by taking linear combinations of the columns of the polynomial spline in Table 2. Both matrices form a basis for the same vector space.

The numbers in the B-spline basis are all between zero and one, and the marginal sums across columns are all ones. The matrix has a diagonally banded structure, such that the band moves one position to the right at each knot. The matrix has many more zeros than the matrix of polynomials and much smaller numbers. The columns of the matrix are not orthogonal like a matrix of orthogonal polynomials, but collinearity is not a problem with the B-spline basis like it is with a polynomial spline. The B-spline basis is very stable numerically.

To illustrate, 1000 evenly spaced observations were generated over the range -5 to 5 . Then a B-spline basis and polynomial spline basis were constructed with knots at \(-2,0\), and 2 . The eigenvalues for the centered \(\mathbf{X}^{\prime} \mathbf{X}\) matrices, excluding the last structural zero eigenvalue, are given in Table 5. In the

Table 5

Polynomial and B-Spline Eigenvalues
\begin{tabular}{|ccc|}
\hline \multicolumn{3}{|c|}{ B-Spline Basis } \\
Eigenvalue & Proportion & Cumulative \\
& & \\
0.107872 & 0.358718 & 0.35872 \\
0.096710 & 0.321599 & 0.68032 \\
0.046290 & 0.153933 & 0.83425 \\
0.030391 & 0.101062 & 0.93531 \\
0.012894 & 0.042878 & 0.97819 \\
0.006559 & 0.021810 & 1.00000 \\
& & \\
\hline
\end{tabular}
\begin{tabular}{|rrr|}
\hline \multicolumn{2}{|c|}{ Polynomial Spline Basis } \\
Eigenvalue & Proportion & Cumulative \\
& & \\
10749.8 & 0.941206 & 0.94121 \\
631.8 & 0.055317 & 0.99652 \\
37.7 & 0.003300 & 0.99982 \\
1.7 & 0.000148 & 0.99997 \\
0.3 & 0.000029 & 1.00000 \\
0.0 & 0.000000 & 1.00000 \\
& & \\
\hline
\end{tabular}
polynomial splines, the first two components already account for more than \(99 \%\) of the variation of the points. In the B-splines, the cumulative proportion does not pass \(99 \%\) until the last term. The eigenvalues show that the B-spline basis is better conditioned than the piecewise polynomial basis. B-splines are used instead of orthogonal polynomials or Box-Cox transformations because B-splines allow knots and more general curves. B-splines also allow monotonicity constraints.

A transformation of \(x\) is monotonically increasing if the coefficients that are used to combine the columns of the B-spline basis are monotonically increasing. Models with splines can be fit directly using ordinary least squares (OLS). OLS does not work for monotone splines because OLS has no method of ensuring monotonicity in the coefficients. When there are monotonicity constraints, an alternating least square (ALS) algorithm is used. Both OLS and ALS attempt to minimize a squared error loss function. See Kuhfeld (1990) for a description of the iterative algorithm that fits monotone splines. See Ramsay (1988) for some applications and a different approach to ensuring monotonicity.

\section*{Transformation Regression}

If the dependent variable is not transformed and if there are no monotonicity constraints on the independent variable transformations, the transformation regression model is the same as the OLS regression model. When only the independent variables are transformed, the transformation regression model is nothing more than a different rendition of an OLS regression. All of the spline models presented up to this point can be reformulated as
\[
y=\beta_{0}+\Phi(x)+\epsilon
\]

The nonlinear transformation of \(x\) is \(\Phi(x)\); it is solved for by fitting a spline model such as
\[
\begin{aligned}
y= & \beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\beta_{3} x^{3}+ \\
& \beta_{4}\left(x>t_{1}\right)\left(x-t_{1}\right)^{3}+ \\
& \beta_{5}\left(x>t_{2}\right)\left(x-t_{2}\right)^{3}+ \\
& \beta_{6}\left(x>t_{3}\right)\left(x-t_{3}\right)^{3}+\epsilon
\end{aligned}
\]
where
\[
\begin{aligned}
\Phi(x)= & \beta_{1} x+\beta_{2} x^{2}+\beta_{3} x^{3}+ \\
& \beta_{4}\left(x>t_{1}\right)\left(x-t_{1}\right)^{3}+ \\
& \beta_{5}\left(x>t_{2}\right)\left(x-t_{2}\right)^{3}+ \\
& \beta_{6}\left(x>t_{3}\right)\left(x-t_{3}\right)^{3}
\end{aligned}
\]

Consider a model with two polynomials:
\[
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{1}^{2}+\beta_{3} x_{1}^{3}+\beta_{4} x_{2}+\beta_{5} x_{2}^{2}+\beta_{6} x_{2}^{3}+\epsilon
\]

It is the same as a transformation regression model
\[
y=\beta_{0}+\Phi_{1}\left(x_{1}\right)+\Phi_{2}\left(x_{2}\right)+\epsilon
\]
where \(\Phi_{\bullet}(\bullet)\) designates cubic spline transformations with no knots. The actual transformations in this case are
\[
\widehat{\Phi}_{1}\left(x_{1}\right)=\widehat{\beta}_{1} x_{1}+\widehat{\beta}_{2} x_{1}^{2}+\widehat{\beta}_{3} x_{1}^{3}
\]
and
\[
\widehat{\Phi}_{2}\left(x_{2}\right)=\widehat{\beta}_{4} x_{2}+\widehat{\beta}_{5} x_{2}^{2}+\widehat{\beta}_{6} x_{2}^{3}
\]

There are six model \(d f\). The test for the effect of the transformation \(\Phi_{1}\left(x_{1}\right)\) is the test of the linear hypothesis \(\beta_{1}=\beta_{2}=\beta_{3}=0\), and the \(\Phi_{2}\left(x_{2}\right)\) transformation test is a test that \(\beta_{4}=\beta_{5}=\beta_{6}=0\). Both tests are \(F\)-tests with three numerator \(d f\). When there are monotone transformations, constrained least-squares estimates of the parameters are obtained.

\section*{Degrees of Freedom}

In an ordinary general linear model, there is one parameter for each independent variable. In the transformation regression model, many of the variables are used internally in the bases for the transformations. Each linearly independent basis column has one parameter and one model \(d f\). If a variable is not transformed, it has one parameter. Nominal classification variables with \(c\) categories have \(c-1\) parameters. For degree \(d\) splines with \(k\) knots and \(d-1\) continuous derivatives, there are \(d+k\) parameters.

When there are monotonicity constraints, counting the number of scoring parameters is less precise. One way of handling a monotone spline transformation is to treat it as if it were simply a spline transformation with \(d+k\) parameters. However, there are typically fewer than \(d+k\) unique parameter estimates since some of those \(d+k\) scoring parameter estimates may be tied to impose the order constraints. Imposing ties is equivalent to fitting a model with fewer parameters. So, there are two available scoring parameter counts: \(d+k\) and a potentially smaller number that is determined during the analysis. Using \(d+k\) as the model \(d f\) is conservative since the scoring parameter estimates are restricted. Using the smaller count is too liberal since the data and the model together are being used to determine the number of parameters. Our solution is to report tests using both liberal and conservative \(d f\) to provide lower and upper bounds on the "true" \(p\)-values.

\section*{Dependent Variable Transformations}

When a dependent variable is transformed, the problem becomes multivariate:
\[
\Phi_{0}(y)=\beta_{0}+\Phi_{1}\left(x_{1}\right)+\Phi_{2}\left(x_{2}\right)+\epsilon
\]

Hypothesis tests are performed in the context of a multivariate linear model, with the number of dependent variables equal to the number of scoring parameters for the dependent variable transformation. Multivariate normality is assumed even though it is known that the assumption is always violated. This is one reason that all hypothesis tests in the presence of a dependent variable transformation should be considered approximate at best.

For the transformation regression model, we redefine three of the usual multivariate test statistics: Pillai's Trace, Wilks' Lambda, and the Hotelling-Lawley Trace. These statistics are normally computed using all of the squared canonical correlations, which are the eigenvalues of the matrix \(\mathbf{H}(\mathbf{H}+\mathbf{E})^{-1}\). Here, there is only one linear combination (the transformation) and hence only one squared canonical correlation of interest, which is equal to the \(R^{2}\). We use \(R^{2}\) for the first eigenvalue; all other eigenvalues are set to zero since only one linear combination is used. Degrees of freedom are computed assuming that all linear combinations contribute to the Lambda and Trace statistics, so the \(F\)-tests for those statistics are conservative. In practice, the adjusted Pillai's Trace is very conservative - perhaps too conservative to be useful. Wilks' Lambda is less conservative, and the Hotelling-Lawley Trace seems to be the least conservative.

It may seem that the Roy's Greatest Root statistic, which always uses only the largest squared canonical correlation, is the only statistic of interest. Unfortunately, Roy's Greatest Root is very liberal and only provides a lower bound on the \(p\)-value. The \(p\)-values for the liberal and conservative statistics are used together to provide approximate lower and upper bounds on \(p\).

\section*{Scales of Measurement}

Early work in scaling, such as Young, de Leeuw, \& Takane (1976), and Perreault \& Young (1980) was concerned with fitting models with mixed nominal, ordinal, and interval scale of measurement variables. Nominal variables were optimally scored using Fisher's (1938) optimal scoring algorithm. Ordinal variables were optimally scored using the Kruskal and Shepard (1974) monotone regression algorithm. Interval and ratio scale of measurement variables were left alone nonlinearly transformed with a polynomial transformation.

In the transformation regression setting, the Fisher optimal scoring approach is equivalent to using an indicator variable representation, as long as the correct \(d f\) are used. The optimal scores are category means. Introducing optimal scaling for nominal variables does not lead to any increased capability in the regression model.

For ordinal variables, we believe the Kruskal and Shepard monotone regression algorithm should be reserved for the situation when a variable has only a few categories, say five or fewer. When there are more levels, a monotone spline is preferred because it uses fewer model \(d f\) and because it is less likely to capitalize on chance.

Interval and ratio scale of measurement variables can be left alone or nonlinearly transformed with splines or monotone splines. When the true model has a nonlinear function, say
\[
y=\beta_{0}+\beta_{1} \log (x)+\epsilon
\]
or
\[
y=\beta_{0}+\beta_{1} / x+\epsilon
\]
the transformation regression model
\[
y=\beta_{0}+\Phi(x)+\epsilon
\]
can be used to hunt for parametric transformations. Plots of \(\widehat{\Phi}(x)\) may suggest log or reciprocal transformations.

\section*{Conjoint Analysis}

Green \& Srinivasan (1990) discuss some of the problems that can be handled with a transformation regression model, particularly the problem of degrees of freedom. Consider a conjoint analysis design where a factor with \(c>3\) levels has an inherent ordering. By finding a quadratic monotone spline transformation with no knots, that variable will use only two \(d f\) instead of the larger \(c-1\). The model \(d f\) in a spline transformation model are determined by the data analyst, not by the number of categories in the variables. Furthermore, a "quasi-metric" conjoint analysis can be performed by finding a monotone spline transformation of the dependent variable. This model has fewer restrictions than a metric analysis, but will still typically have error \(d f\), unlike the nonmetric analysis.

\section*{Curve Fitting Applications}

With a simple regression model, you can fit a line through a \(y \times x\) scatter plot. With a transformation regression model, you can fit a curve through the scatter plot. The \(y\)-axis coordinates of the curve are
\[
\widehat{y}=\widehat{\beta}_{0}+\widehat{\Phi}(x)
\]
from the model
\[
y=\beta_{0}+\Phi(x)+\epsilon
\]

With more than one group of observations and a multiple regression model, you can fit multiple lines, lines with the same slope but different intercepts, and lines with common intercepts but different slopes. With the transformation regression model, you can fit multiple curves through a scatter plot. The curves can be monotone or not, constrained to be parallel, or constrained to have the same intercept. Consider the problem of modeling the number of product purchases as a function of price. Separate curves can be simultaneously fit for two groups who may behave differently, for example those who are making a planned purchase and those who are buying impulsively. Later in this chapter, there is an example of plotting brand by price interactions.
Figure 8 contains an artificial example of two separate spline functions; the shapes of the two curves are independent of each other, and \(R^{2}=0.87\). In Figure 9 , the splines are constrained to be parallel, and \(R^{2}=0.72\). The parallel curve model is more restrictive and fits the data less well than the unconstrained model. In Figure 8, each curve follows its swarm of data. In Figure 9, the curves find paths through the data that are best on the average considering both swarms together. In the vicinity of \(x=-2\), the top curve is high and the bottom curve is low. In the vicinity of \(x=1\), the top curve is low and the bottom curve is high.


Figure 8. Separate Spline Functions, Two Groups


Figure 9. Parallel Spline Functions, Two Groups


Figure 10. Monotone Spline Functions, Two Groups

Figure 10 contains the same data and two monotonic spline functions; the shapes of the two curves are independent of each other, and \(R^{2}=0.71\). The top curve is monotonically decreasing, whereas the bottom curve is monotonically increasing. The curves in Figure 10 flatten where there is nonmonotonicity in Figure 8.

Parallel curves are very easy to model. If there are two groups and the variable \(g\) is a binary variable indicating group membership, fit the model
\[
y=\beta_{0}+\beta_{1} g+\Phi_{1}(x)+\epsilon
\]
where \(\Phi_{1}(x)\) is a linear, spline, or monotone spline transformation. Plot \(\widehat{y}\) as a function of \(x\) to see the two curves. Separate curves are almost as easy; the model is
\[
y=\beta_{0}+\beta_{1} g+\Phi_{1}(x \times(1-g))+\Phi_{2}(x \times g)+\epsilon
\]

When \(x \times(1-g)\) is zero, \(x \times g\) is \(x\), and vice versa.

\section*{Spline Functions of Price}

This section illustrates splines with an artificial data set. Imagine that subjects were asked to rate their interest in purchasing various types of spaghetti sauces on a one to nine scale, where nine indicated definitely will buy and one indicated definitely will not buy. Prices were chosen from typical retail trade prices, such as \(\$ 1.49, \$ 1.99, \$ 2.49\), and \(\$ 2.99\); and one penny more than a typical price, \(\$ 1.00\), \(\$ 1.50, \$ 2.00\), and \(\$ 2.50\). Between each "round" number price, such as \(\$ 1.00\), and each typical price, such as \(\$ 1.49\), three additional prices were chosen, such as \(\$ 1.15, \$ 1.25\), and \(\$ 1.35\). The goal is to allow a model with a separate spline for each of the four ranges: \(\$ 1.00-\$ 1.49, \$ 1.50-\$ 1.99, \$ 2.00-\) \(\$ 2.49\), and \(\$ 2.50-\$ 2.99\). For each range, a spline with zero or one knot can be fit.

One rating for each price was constructed and various models were fit to the data. Figures 11 through 18 contain results. For each figure, the number of model \(d f\) are printed. One additional \(d f\) for the intercept is also used. The SAS/STAT procedure TRANSREG was used to fit all of the models in this chapter.

Figure 11 shows the linear fit, Figure 12 uses a quadratic polynomial, and Figure 13 uses a cubic polynomial. The curve in Figure 13 has a slight nonmonotonicity in the tail, and since it is a polynomial, it is rigid and cannot locally fit the data values.

Figure 14 shows a monotone spline. It closely follows the data and never increases. A range for the model \(d f\) is specified; the larger value is a conservative count and the smaller value is a liberal count.

The curves in Figures 12 through 14 are all continuous and smooth. These curves do a good job of following the data, but inspection of the data suggests that a different model may be more appropriate. There is a large drop in purchase interest when price increases from \(\$ 1.49\) to \(\$ 1.50\), a smaller drop between \(\$ 1.99\) and \(\$ 2.00\), and a still smaller drop between \(\$ 2.49\) and \(\$ 2.50\).

In Figure 15, a separate quadratic polynomial is fit for each of the four price ranges: \(\$ 1.00-\$ 1.49\), \(\$ 1.50-\$ 1.99, \$ 2.00-\$ 2.49\), and \(\$ 2.50-\$ 2.99\). The functions are connected. The function over the range \(\$ 1.00-\$ 1.49\) is nearly flat; there is high purchase interest for all of these prices. Over the range \(\$ 1.50-\$ 1.99\), purchase interest drops more rapidly with a slight leveling in the low end; the slope decreases as the function increases. Over the range \(\$ 2.00-\$ 2.49\), purchase interest drops less


Figure 11. Linear Function, 1 df


Figure 13. Cubic Function, 3 df


Purchase Interest as a Function of Price (Artificial)
Figure 12. Quadratic Function, \(2 d f\)


Figure 14. Monotone Function, 5-7 df


Figure 15. Discontinuous Polynomial, \(11 d f\)


Figure 17. Discontinuous Monotone Spline, 12-15 df

Figure 16. Discontinuous Spline Function, \(15 d f\)


Figure 18. Cell Means, \(19 d f\)
rapidly; the slope increases as the function increases. Over the range \(\$ 2.50-\$ 2.99\), the function is nearly flat. At \(\$ 1.99, \$ 2.49\), and \(\$ 2.99\) there is a slight increase in purchase interest.
In Figure 16, there is a knot in the middle of each range. This gives the spline more freedom to follow the data. Figure 17 uses the same model as Figure 16, but monotonicity is imposed. When monotonicity is imposed the curves touch fewer of the data values, passing in between the nonmonotonic points. In Figure 18, the means for each price are plotted and connected. This analysis uses the most model \(d f\) and is the least smooth of the plots.

\section*{Benefits of Splines}

In marketing research and conjoint analysis, the use of spline models can have several benefits. Whenever a factor has three or more levels and an inherent ordering of the levels, that factor can be modeled as a quadratic monotone spline. The \(d f\) used by the variable is controlled at data analysis time; it is not simply the number of categories minus one. When the alternative is a model in which a factor is designated as nominal, splines can be used to fit a more restrictive model with fewer model \(d f\). Since the spline model has fewer \(d f\), it should yield more reproducible results.

The opposite alternative is also important. Consider a variable with many values, like price in some examples. Instead of using a restrictive single \(d f\) linear model, splines can be used to fit a more general model with more \(d f\). The more general model may show information in the data that is not apparent from the ordinary linear model. This can be a benefit in conjoint analyses that focus on price, in the analysis of scanner data, and in survey research. Splines give you the ability to examine the nonlinearities that may be very important in predicting consumer behavior.

Fitting quadratic and cubic polynomial models is common in marketing research. Splines extend that capability by adding the possibility of knots and hence more general curves. Spline curves can also be restricted to be monotone. Monotone splines are less restrictive than a line and more restrictive than splines that can have both positive and negative slopes. You are no longer restricted to fitting just a line, polynomial, or a step function. Splines give you possibilities in between.

\section*{Conclusions}

Splines allow you to fit curves to your data. Splines may not revolutionize the way you analyze data, but they will provide you with some new tools for your data analysis toolbox. These new tools allow you to try new methods for solving old problems and tackle new problems that could not be adequately solved with your old tools. We hope you will find these tools useful, and we hope that they will help you to better understand your marketing data.

\title{
Graphical Scatter Plots of Labeled Points
}

\section*{Warren F. Kuhfeld}

\begin{abstract}
The \%PlotIt (PLOT ITeratively) macro creates graphical scatter plots of labeled points. It is designed to make it easy to display raw data, regressions, and the results of many other data analyses. You can draw curves, vectors, and circles, and you can control the colors, sizes, fonts, and general appearance of the plots. The \%PlotIt macro is a part of the SAS autocall library.*
\end{abstract}

\section*{Introduction}

SAS has provided software for producing scatter plots for many years (for example, the PLOT and GPLOT procedures). For many types of data analyses, it is useful to have each point in the plot labeled with the value of a variable. However, before the creation of the \%PlotIt macro, there was not a satisfactory way to do this. PROC GPLOT produces graphical scatter plots. Combined with the Annotate facility, it allows long point labels, but it does not provide any way to optimally position them. The PLOT procedure can optimally position long point labels in the scatter plot, however PROC PLOT cannot create a graphical scatter plot. The PROC PLOT label-placement algorithm was developed by Kuhfeld (1991), and the PROC PLOT options are documented in Base SAS documentation.

The macro, \%PlotIt (PLOT ITeratively), creates graphical scatter plots of labeled points. It can fit curves, draw vectors, and draw circles. It has many options, but only a small number are needed for many types of plots. The \%PlotIt macro uses DATA steps and multiple procedures, including PLOT and GANNO. The \%PlotIt macro is over 5700 lines long, so it is not printed here. It is fully documented in the header comments. This article illustrates through examples some of the main features of the \%PlotIt macro.

\footnotetext{
*This chapter originally appeared in the SAS Journal Observations, Fourth Quarter, 1994, pages 23-37. This version of the chapter has been updated for SAS Version 8.2. Copies of this chapter (TS-689J) are available on the web http://support.sas.com/techsup/tnote/tnote_stat.html\#market. Color plots are available on the web in a separate file.
}

\section*{An Overview of the \%PlotIt Macro}

The \%PlotIt macro performs the following steps.
1. It reads an input data set and preprocesses it. The preprocessed data set contains information such as the axis variables, the point-symbol and point-label variables, and symbol and label types, sizes, fonts, and colors. The nature of the preprocessing depends on the type of data analysis that generated the input data set. For example, if the option DATATYPE \(=\) MDPREF was specified with an input data set created by PROC PRINQUAL for a multidimensional preference analysis, then the \%PlotIt macro creates blue points for _TYPE_ = 'SCORE' observations and red vectors for _TYPE_ = 'CORR' observations.
2. A DATA step, using the DATA Step Graphics Interface, determines how big to make the graphical plot.
3. PROC PLOT determines where to position the point labels. The results are sent to output SAS data sets using ODS. By default, if some of the point label characters are hidden, the \%PlotIt macro recreates the printer plot with a larger line and page size, and hence creates more cells and more room for the labels.
4. The PROC PLOT output data sets are read, and information from them and the preprocessed data set are combined to create an Annotate data set. The label position information is read from the PROC PLOT output, and all of the symbol, size, font, and color information is extracted from the preprocessed data set. The Annotate data set contains all of the instructions for drawing the axes, ticks, tick marks, titles, point symbols, point labels, axis labels, and so on.
5. The Annotate data set is displayed with the GANNO procedure. The \%PlotIt macro does not use PROC GPLOT.

With the \%PlotIt macro, you can:
- display plots and create graphics stream files and gout= entries
- easily display the results of correspondence analysis, multidimensional preference analysis, preference mapping, multidimensional scaling, regression analysis, and density estimation
- use single or multi-character symbols and control their color, font, and size
- use multi-character point labels and control their color, font, and size
- use fixed, variable, and random colors, and use colors to display changes in a third dimension
- automatically determine a good line size, page size, and list of point label placements
- automatically equate the axes for all devices
- control the colors, sizes, fonts, and general appearance of all aspects of the plot
- pre- and post-process the data
- specify many goptions

Since \%PlotIt is a macro, you can modify it, change the defaults, add new options, and so on. The \%PlotIt macro is heavily commented to make it easier for you to modify it to suit your needs. There is substantial error checking and options to print intermediate results for debugging when you do not get the results you expect. Furthermore, you have complete access to all of the data sets it creates, including the preprocessed version of the input and the Annotate data set. You can modify the results by editing the Annotate and preprocessed data sets.

\section*{Examples}

This section contains examples of some of the capabilities of the \%PlotIt macro. Rather than interpreting the plots or discussing the details of the statistical analyses, this section concentrates on showing what the \%PlotIt macro can do. Most of the examples are based on SAS/STAT example data sets. Data for all of the examples can be found in the SAS/STAT sample program plotitex.sas.

\section*{Example 1: Principal Components of Mammal's Teeth}

Principal component analysis computes a low-dimensional approximation to a set of data. Principal components are frequently displayed graphically. This example is based on the Mammal's Teeth data set. To perform a principal component analysis, specify:
```

proc princomp data=teeth out=scores(keep=prin1 prin2 mammal);
title "Principal Components of Mammals' Teeth";
run;
%plotit()

```

The plot is shown in Figure 1. No options were specified in the \%PlotIt macro, so by default a plot is constructed from the first two numeric variables and the last character variable in the last data set created. The \%PlotIt macro printed the following information to the log:
```

 Iterative Scatter Plot of Labeled Points Macro
 | Iteration | Place | Line Size | Page Size | Penalty |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 65 | 45 | 34 |
| 2 | 3 | 80 | 50 | 0 |

The following code will create the printer plot on which the graphical
plot is based:
options nonumber ls=80 ps=50;
proc plot nolegend formchar='|----|+|---' data=preproc vtoh=2;
plot Prin2 * Prin1 \$ mammal = _symbol_ /
haxis=by 1 vaxis=by 1 box list=1
placement=((h=2 -2 : s=right left) (v=1 to 2 by alt * h=0 -1 to -10
by alt));
label Prin2 = '\#' Prin1 = '\#';
run; quit;

```


Figure 1
```

The plot was created with the following goptions:
goptions reset=goptions erase hpos=99 vpos=34 hsize=11.71in vsize=7.98in
device=XCOLOR;
The OUT=anno Annotate data set has 148 observations.
The PLOTIT macro used 8.4 seconds to create OUT=anno.

```

The iteration table shows that the \%PlotIt macro tried twice to create the plot, with line sizes of 65 and 80. It stopped when all point label characters were plotted with zero penalty. \({ }^{\dagger}\) The \%PlotIt macro displays PROC PLOT code for the printer plot, on which the graphical plot is based. It also displays the goptions statement that was used with PROC GANNO. \(\ddagger\)

\footnotetext{
\({ }^{\dagger}\) Penalties accrue when point labels are nonoptimally placed, such as when two label characters map to the same location. PROC PLOT tries to minimize the penalties for all point labels. See PROC PLOT documentation for more information.
\({ }^{\ddagger}\) This code could be different depending on your device. By default, the macro uses your default device.
}

There are several notable features of the plot in Figure 1.
1. Symbols for several pairs of points, such as Elk and Reindeer, are coincident. By default, the \%PlotIt macro slightly offsets coincident symbols so that it is clear that more than one point maps to the same location.
2. Point labels map into discrete rows, just as they would in a printer plot produced by PROC PLOT. However, unlike printer plots, the \%PlotIt macro uses proportional fonts.
3. Symbols are not restricted to fixed cells. Their mapping is essentially continuous, more like PROC GPLOT's than PROC PLOT's.
4. A fixed distance represents the same data range along both axes, which means the axes are equated so that distances and angles will have meaning. In contrast, procedures such as PLOT and GPLOT fill the available space by default, so the axes are not equated.

\section*{Example 2: Principal Components of Crime Rates}

A typical plot has for each point a single-character symbol and a multi-character label; however, this is not required. This example is based on the Crime data set. The point labels are state names, and the symbol for each label is a two-character postal code.
```

proc princomp data=crime out=crime2;
title 'Crime Rates Per 100,000 Population by State';
run;
%plotit(data=crime2,plotvars=prin2 prin1,
symvar=postcode,symlen=2,symsize=0.6,paint=larceny,
labelvar=state,label=typical)

```

This plot request specifies:
- the input data set: crime2
- the \(y\)-axis and x -axis variables: prin2 and prin1
- the symbol variable: postcode
- the number of symbol characters: 2
- the size of the symbol font in the plot: 0.6
- the colors are based on the variable: larceny
- the point label variable: state
- the typical method of generating variable labels for the plot axes

A symbol size of 0.6 instead of the normal 1.0 is specified to make the symbol small, because two characters are mapping to a location where there is usually just one. The option paint=larceny creates interpolated label and symbol colors, by default between blue, magenta, and red, so that states that have a low larceny rate are blue and high-rate states are red. \({ }^{\S}\) Label=typical for variables prin2 and prin1 generates the following label statement:
```

label prin2 = 'Dimension 2' prin1 = 'Dimension 1';

```

This plot request is much more complicated than most. Often, you need to specify only the type of analysis that generated the data set.

The plot is shown in Figure 2.

\footnotetext{
\({ }^{\S}\) If you are viewing a black and white version of this chapter, all colors for all plots will be shown in black or shades of gray.
}


Figure 2

Examples 3 \& 4: Correspondence Analysis of the Car Ownership Survey
Correspondence analysis graphically displays crosstabulations. These examples use the Car Survey data. To perform a correspondence analysis, specify:
```

proc corresp data=cars outc=coors;
title 'Car Owners and Car Origin';
tables marital, origin;
run;
%plotit(data=coors,datatype=corresp)

```

The plot is shown in Figure 3. With datatype=corresp, the \%PlotIt macro automatically incorporates the proportion of inertia into the axis labels and plots the row points in red and the column points in blue.

\footnotetext{
\({ }^{\top}\) Inertia in correspondence analysis is analogous to variance in principal component analysis.
}


\section*{Figure 3}

For a multiple correspondence analysis, specify:
```

proc corresp mca observed data=cars outc=coors;
title 'MCA of Car Owners and Car Origin';
tables origin size type income home marital sex;
run;
%plotit(data=coors,datatype=mca)

```

The plot is shown in Figure 4.
Examples 5 \& 6: Multidimensional Preference Analysis of Recreational Activities
Multidimensional preference analysis is a variant on principal component analysis that simultaneously displays people and their preferences for objects. Each person is a variable in the input data set, and each object is a row. Each person is represented in the plot as a vector that points in approximately the direction of his or her most preferred objects. These examples use the Preferences for Recreational Activities data set. For multidimensional preference analysis, specify:
```

proc prinqual cor data=recreate out=rec score std rep;
title1 'Multidimensional Preference Analysis of Recreational Activities';
transform identity(sub1-sub56);
id activity;
run;
%plotit(data=rec,datatype=mdpref 3)

```

The plot is shown in Figure 5. With datatype=mdpref, the \%PlotIt macro automatically displays the people as vectors and the activities as points (based on the _TYPE_ variable). The 3 after the MDPREF


\section*{Figure 4}
is a scaling factor for the vectors. The lengths of all the vectors are increased by a factor of three to create a better graphical display. You can also label the vectors by specifying:
\%plotit (data=rec, datatype=mdpref2 3)
MDPREF2 specifies a MDPREF analysis with labeled vectors (the 2 means labels too). This plot is not shown because in this input data set, each subject is identified by a variable name of the form sub1, sub2, ..., and the graphical display looks cluttered with all those sub's. The default point label variable is the ID statement variable activity, because it is the last character variable in the data set. PROC PRINQUAL fills in this variable for the _TYPE_ = 'CORR' observations (the people that plot as vectors) with the variable names: sub1-sub56. You can preprocess the input data set directly in the \%PlotIt macro to remove the sub's as follows:
```

%plotit(data=rec,datatype=mdpref2 3,
adjust1=%str(if _type_ = 'CORR' then
activity = substr(activity,4);))

```

The plot is shown in Figure 6. The adjust1 option adds DATA step statements to the end of the preprocessing step. By default, the \%PlotIt macro tries to position the vector labels outward, not between the vector head and the origin.

\section*{Examples 7 83 8: Preference Mapping of Cars}

Preference mapping simultaneously displays objects and attributes of those objects. These examples use the Car Preference data set to illustrate preference mapping. The following code fits a preference mapping vector model:


Figure 5


Figure 6
```

*---Compute Coordinates for a 2-Dimensional Scatter plot of Cars---;
proc prinqual data=carpref out=presults(drop=judge1-judge25) n=2
replace standard scores;
title 'Preference Ratings for Automobiles Manufactured in 1980';
id model mpg reliable ride;
transform ide(judge1-judge25);
run;
*---Compute Endpoints for Vectors---;
proc transreg data=presults;
title2 'Preference Mapping, Vector Model';
model ide(mpg reliable ride)=identity(prin1 prin2);
output tstandard=center coefficients replace out=vector;
id model;
run;
%plotit(data=vector,datatype=vector 2.5)

```

The plot is shown in Figure 7. Each attribute is represented as a vector that points in approximately the direction of the objects with larger values of the attribute. The datatype=vector 2.5 option requests the vector model, with the vectors stretched by a factor of 2.5 . Alternatively, you can represent attributes as points by specifying:
```

*---Compute Ideal Point Coordinates---;
proc transreg data=presults;
title2 'Preference Mapping, Ideal Point Model';
model identity(mpg reliable ride)=point(prin1 prin2);
output tstandard=center coordinates replace out=ideal;
id model;
run;
%plotit(data=ideal,datatype=ideal, antiidea=1)

```

The plot is shown in Figure 8. The option datatype=ideal requests a preference mapping, with each attribute represented as an ideal point. Circles are drawn to show distances between the cars and the ideal points, which are locations of hypothetical cars that have the ideal amount of the attribute. The antiidea \(=1\) option specifies how anti-ideal points are recognized. \(\|\) By default, the labels for the attributes are larger than the other point labels and hence sometimes extend slightly beyond the plot. This happened with "Miles per gallon" in Figure 8. You can move the label up one character unit and to the left 12 character units by adding the following option:
```

adjust4=%str(if text =: 'Miles' then do; y = y + 1; x = x - 12; end;)

```

The adjust4 option adds DATA step statements to the end of the final Annotate DATA step. The \%PlotIt macro has no sense of esthetics; sometimes a little human intervention is needed for the final production plots.

\section*{Examples 9 छ 10: Curve Fitting of Birth and Death Rates}

It is often useful to display a set of points along with a regression line or nonlinear function. The \%PlotIt macro can fit and display lines and curves (and optionally print the regression and ANOVA table). These examples use the Vital Statistics data set. The following requests a cubic-polynomial regression function:

\footnotetext{
\({ }^{\|}\)Anti-ideal points have their signs wrong, so the macro must reverse them before plotting. When small ratings are good, specify antiidea=-1, and when small ratings are not good, specify antiidea=1.
}

Preference Ratings for Automobiles Manufactured in 1980 Preference Mapping, Vector Model


\section*{Figure 7}
```

title 'Crude Death Rate as a Function of Crude Birth Rate';
%plotit(data=vital,vtoh=1.75,datatype=curve2)

```

The plot is shown in Figure 9. The option vtoh=1.75 specifies the PROC PLOT aspect ratio (vertical to horizontal). The default is 2.0 . Smaller values create plots with more cells for label characters, which is helpful when the point cloud is relatively dense. The option datatype=curve2 instructs the \%PlotIt macro to fit a curve and have the point labels avoid the curve (the 2 means label avoidance too).

You can control the type of curve. The \%PlotIt macro uses PROC TRANSREG to fit the curve, and you can specify PROC TRANSREG options. For example, to request a monotone spline regression function with two knots, specify:
```

%plotit(data=vital,datatype=curve,bright=128,maxiter=4,
symvar=country,regfun=mspline,nknots=2)

```

The plot is shown in Figure 10. There are several differences between Figures 9 and 10, in addition to the difference in the regression function. The option datatype=curve was specified, not datatype=curve2, so there is more overlap between the point labels and the curve. For each point in the plot, the plotting symbol is the first letter of the country and the point label is the country. Each label/symbol pair is

Preference Ratings for Automobiles Manufactured in 1980 Preference Mapping, Ideal Point Model


Figure 8
a different random color with brightness (average RGB or red-green-blue value) of 128. These options make it much easier to find the symbol that corresponds to each label. Also, the default vtoh=2 was used to decrease the number of cells and make the labels larger. With these data, the penalty sum at iteration four is eight. Specifying maxiter=4 prevents the algorithm from reaching iteration 5, which prevents the line size from increasing from 125 to 150 . This also makes the labels larger. The price is that some label characters collide (for example, "Germany" and "S") and the plot looks more cluttered because there are fewer cells with white space.

\section*{Availability}

If your site has installed the autocall libraries supplied by SAS and uses the standard configuration of SAS supplied software, you need only to ensure that the SAS system option mautosource is in effect to begin using autocall macros. That is, the macros do not have to be included (for example with a \(\%\) include statement). They can be called directly. For more information about autocall libraries, refer to SAS Macro Language: Reference and page 479. On a PC for example, the autocall library may be installed in the stat \sasmacro directories. On MVS, each macro will be a different member of a PDS. For details on installing autocall macros, consult your host documentation.


Figure 9


Figure 10

Base SAS and SAS/GRAPH software are required to run the \%PlotIt macro. The datatype=curve and datatype=curve2 options use PROC TRANSREG, which is in SAS/STAT. All of the other datatype= values assume an input data set in a form created by a SAS/STAT procedure.

\section*{Conclusions}

The \%PlotIt macro provides a convenient way to display the results from many types of data analyses. Usually, only a small number of options are needed; the macro does the rest. The \%PlotIt macro does not replace procedures like GPLOT and PLOT. Instead, it makes it easy to generate many types of plots that are extremely difficult to produce with standard procedures.

\title{
Graphical Methods for Marketing Research
}

\author{
Warren F. Kuhfeld
}

\begin{abstract}
Correspondence analysis, multiple correspondence analysis, preference mapping, and multidimensional preference analysis are descriptive statistical methods that generate graphical displays from data matrices. These methods are used by marketing researchers to investigate relationships among products and individual differences in preferences for those products. The end result is a two- or three-dimensional scatter plot that shows the most salient information in the data matrix. This chapter describes these methods, shows examples of the graphical displays, and discusses marketing research applications.*
\end{abstract}

\section*{Introduction}

Correspondence analysis (CA), multiple correspondence analysis (MCA), preference mapping (PREFMAP), and multidimensional preference analysis (MDPREF) are descriptive statistical methods that generate graphical displays from data matrices. These methods are sometimes referred to as perceptual mapping methods. They simultaneously locate two or more sets of points in a single plot, and all emphasize presenting the geometry of the data. CA simultaneously displays in a scatter plot the row and column labels from a two-way contingency table or crosstabulation constructed from two categorical variables. MCA simultaneously displays in a scatter plot the category labels from more than two categorical variables. MDPREF displays both the row labels (products) and column labels (people) from a data matrix of continuous variables. PREFMAP shows rating scale data projected into a plot of row labels-for example, from an MDPREF analysis. These methods are used by marketing researchers to investigate relationships among products and individual differences in preferences for those products.

This chapter will only discuss these techniques as methods of generating two-dimensional scatter plots. However, three-dimensional and higher-dimensional results can also be generated and displayed with modern interactive graphics software and with scatter plot matrices.

\footnotetext{
\({ }^{*}\) This chapter is a revision of a paper that was published in the 1992 National Computer Graphics Association Conference Proceedings. Copies of this chapter (TS-689K) are available on the web http://support.sas.com/techsup/tnote/tnote_stat.html\#market .
}

\section*{Methods}

This section presents the algebra and example plots for MDPREF, PREFMAP, CA, and MCA. These methods are all similar in spirit to the biplot, which is discussed first to provide a foundation for the other methods.

The Biplot. A biplot (Gabriel 1981) simultaneously displays the rows and columns of a data matrix in a low-dimensional (typically two-dimensional) plot. The "bi" in "biplot" refers to the joint display of rows and columns, not to the dimensionality of the plot. Consider an \((n \times m)\) data matrix \(\mathbf{Y}\), an \((n \times q)\) matrix \(\mathbf{A}\) with row vectors \(\mathbf{a}_{1}^{\prime}, \mathbf{a}_{2}^{\prime}, \ldots, \mathbf{a}_{n}^{\prime}\), and an \((m \times q)\) matrix \(\mathbf{B}\) with row vectors \(\mathbf{b}_{1}^{\prime}, \mathbf{b}_{2}^{\prime}, \ldots, \mathbf{b}_{m}^{\prime}\). The \(n\) rows of \(\mathbf{A}\) correspond to the rows of \(\mathbf{Y}\), and the \(m\) columns of \(\mathbf{B}^{\prime}\) correspond to the columns of \(\mathbf{Y}\). The rank of \(\mathbf{Y}\) is \(q \leq \operatorname{MIN}(n, m)\). A and \(\mathbf{B}\) are chosen such that \(y_{i j}=\mathbf{a}_{i}^{\prime} \mathbf{b}_{j}\). If \(q=2\) and the rows of \(\mathbf{A}\) and \(\mathbf{B}\) are plotted in a two-dimensional scatter plot, the scalar product of the coordinates \(\mathbf{a}_{i}^{\prime}\) and \(\mathbf{b}_{j}^{\prime}\) exactly equals the data value \(y_{i j}\). This kind of scatter plot is a biplot; it geometrically shows the algebraic relationship \(\mathbf{A B}^{\prime}=\mathbf{Y}\). Typically, the row coordinates are plotted as points, and the column coordinates are plotted as vectors.
When \(q>2\) and two dimensions are plotted, then \(\mathbf{a}_{i}^{\prime} \mathbf{b}_{j}\) is approximately equal to \(y_{i j}\), and the display is an approximate biplot.* The approximate biplot geometrically shows the algebraic relationship \(\mathbf{A B}^{\prime} \approx \mathbf{Y}\). The best values for \(\mathbf{A}\) and \(\mathbf{B}\), in terms of minimum squared error in approximating \(\mathbf{Y}\), are found using a singular value decomposition (SVD), \({ }^{\dagger} \mathbf{Y}=\mathbf{A B}^{\prime}=\mathbf{U D V}^{\prime}\), where \(\mathbf{D}\) is a \((q \times q)\) diagonal matrix and \(\mathbf{U}^{\prime} \mathbf{U}=\mathbf{V}^{\prime} \mathbf{V}=\mathbf{I}_{q}\), a \((q \times q)\) identity matrix. Solutions for \(\mathbf{A}\) and \(\mathbf{B}\) include \(\mathbf{A}=\mathbf{U}\) and \(\mathbf{B}\) \(=\mathbf{V D}\), or \(\mathbf{A}=\mathbf{U D}\) and \(\mathbf{B}=\mathbf{V}\), or more generally \(\mathbf{A}=\mathbf{U D}^{r}\) and \(\mathbf{B}=\mathbf{V D}^{(1-r)}\), for \(0 \leq r \leq 1\). See Gabriel (1981) for more information on the biplot.

Multidimensional Preference Analysis. Multidimensional Preference Analysis (Carroll 1972) or MDPREF is a biplot analysis for preference data. Data are collected by asking respondents to rate their preference for a set of objects. Typically in marketing research, the objects are products-the client's products and the competitors'. Questions that can be addressed with MDPREF analyses include: Who are my customers? Who else should be my customers? Who are my competitors' customers? Where is my product positioned relative to my competitors' products? What new products should I create? What audience should I target for my new products?

For example, consumers can be asked to rate their preference for a group of automobiles on a 0 to 9 scale, where 0 means no preference and 9 means high preference. \(\mathbf{Y}\) is an \((n \times m)\) matrix that contains ratings of the \(n\) products by the \(m\) consumers. The data are stored as the transpose of the typical data matrix, since the columns are the people. The goal is to produce a plot with the cars represented as points and the consumers represented as vectors. Each person's vector points in approximately the direction of the cars that the person most preferred and away from the cars that are least preferred.
Figure 1 contains an example in which 25 consumers rated their preference for 17 new (at the time) 1980 automobiles. This plot is based on a principal component model. It differs from a proper biplot of \(\mathbf{Y}\) due to scaling factors. In principal components, the columns in data matrix \(\mathbf{Y}\) are standardized to mean zero and variance one. The SVD is \(\mathbf{Y}=\mathbf{U D V}^{\prime}\), and the principal component model is \(\mathbf{Y}=\left((n-1)^{1 / 2} \mathbf{U}\right)\left((n-1)^{-1 / 2} \mathbf{D}\right)\left(\mathbf{V}^{\prime}\right)\). The standardized principal component scores matrix, \(\mathbf{A}=\) \((n-1)^{1 / 2} \mathbf{U}\), and the component structure matrix, \((n-1)^{-1 / 2} \mathbf{D} \mathbf{V}^{\prime}\), are plotted. The advantage of creating a biplot based on \((n-1)^{1 / 2} \mathbf{U}\) and \((n-1)^{-1 / 2} \mathbf{D} \mathbf{V}^{\prime}\) instead of \(\mathbf{U}\) and \(\mathbf{D} \mathbf{V}^{\prime}\) is that the coordinates

\footnotetext{
*In practice, the term biplot is sometimes used without qualification to refer to an approximate biplot.
\({ }^{\dagger}\) SVD is sometimes referred to in the psychometric literature as an Eckart-Young (1936) decomposition.
}


Figure 1. Multidimensional Preference Analysis
do not get smaller as sample size increases. The fit, or proportion of the variance in the data accounted for by the first two dimensions, is the sum of squares of the first two elements of \((n-1)^{-1 / 2} \mathbf{D}\) divided by the sum of squares of all of the elements of \((n-1)^{-1 / 2} \mathbf{D}\).

The dimensions of the MDPREF biplot are the first two principal components. The first principal component represents the information that is most salient to the preference judgments. At one end of the plot of the first principal component are the most preferred automobiles; the least preferred automobiles are at the other end of the plot. The second principal component represents the direction that is most salient to the preference judgments that is orthogonal to the first principal component. The automobile point coordinates are the scores of the automobile on the first two principal components. The judge vectors point in approximately the direction of judges most preferred cars, with preference
increasing as the vector moves from the origin.
Let \(\mathbf{a}_{i}^{\prime}\) be row \(i\) of \(\mathbf{A}=(n-1)^{1 / 2} \mathbf{U}, \mathbf{b}_{j}^{\prime}\) be row \(j\) of \(\mathbf{B}=(n-1)^{-1 / 2} \mathbf{V D},\left\|\mathbf{a}_{i}\right\|\) be the length of \(\mathbf{a}_{i}\), \(\left\|\mathbf{b}_{j}\right\|\) be the length of \(\mathbf{b}_{j}\), and \(\theta\) be the angle between the vectors \(\mathbf{a}_{i}\) and \(\mathbf{b}_{j}\). The predicted degree of (scaled) preference that an individual judge has for an automobile is \(\mathbf{a}_{i}^{\prime} \mathbf{b}_{j}=\left\|\mathbf{a}_{i}\right\|\left\|\mathbf{b}_{j}\right\| \cos \theta\). Each car point can be orthogonally projected onto each judge's vector. The projection of the \(i t h\) car on the \(j t h\) judge vector is \(\mathbf{b}_{j}\left(\left(\mathbf{a}_{i}^{\prime} \mathbf{b}_{j}\right) /\left(\mathbf{b}_{j}^{\prime} \mathbf{b}_{j}\right)\right)\), and the length of this projection is \(\left\|\mathbf{a}_{i}\right\| \cos \theta\). The automobile that projects farthest along a judge vector has the highest predicted preference. The length of this projection, \(\left\|\mathbf{a}_{i}\right\| \cos \theta\), differs from the predicted preference, \(\left\|\mathbf{a}_{i}\right\|\left\|\mathbf{b}_{j}\right\| \cos \theta\), only by \(\left\|\mathbf{b}_{j}\right\|\), which is constant within each judge. Since the goal is to look at projections of points onto the vectors, the absolute length of a judge's vector is unimportant. The relative lengths of the vectors indicate fit, with longer vectors indicating better fit. The coordinates for the endpoints of the vectors were multiplied by 2.5 to extend the vectors and create a better graphical display. The direction of the preference scale is important. The vectors point in the direction of increasing values of the data values. If the data had been ranks, with 1 the most preferred and \(n\) the least preferred, then the vectors would point in the direction of the least preferred automobiles.

The people in the top left portion of the plot most prefer the large American cars. Other people, with vectors pointing up and nearly vertical, also show this pattern of preference. There is a large cluster of people who prefer the Japanese and European cars. A few people, most notably the person whose vector passes through the "e" in "Chevette", prefer the small and inexpensive American Cars. There are no vectors pointing through the bottom left portion of the of the plot, which suggests that the smaller American cars are generally not preferred by anyone within this group.

The first dimension, which is a measure of overall evaluation, discriminates between the American cars on the left and the Japanese and European cars on the right. The second dimension seems to reflect the sizes of the automobiles. Some cars have a similar pattern of preference, most notably Continental and Eldorado, which share a symbol in the plot. Marketers of Continental or Eldorado may want to try to distinguish their car from the competition. Dasher, Accord, and Rabbit were rated similarly, as were Malibu, Mustang, Volare, and Horizon.

This 1980 example is quite prophetic even though it is based on a small nonrandom sample. Very few vectors point toward the smaller American cars, and Mustang is the only one of them that is still being made. Many vectors are pointing toward the European and Japanese cars, and they are still doing quite well in the market place. Many vectors are pointing in the one to two o'clock range where there are no cars in the plot. One can speculate that these people would prefer Japanese and European luxury cars such as Accura, Lexus, Infinity, BMW, and Mercedes.

Preference Mapping. Preference mapping \({ }^{\ddagger}\) (Carroll 1972) or PREFMAP plots resemble biplots, but are based on a different model. The goal in PREFMAP is to take a set of coordinates for a set of objects, such as the MDPREF car coordinates in example in Figure 1, and project in external information that can aid in interpreting the configuration of points. Questions that can be addressed with PREFMAP analyses include: Where is my product positioned relative to my competitors' products? Why is my product positioned there? How can I reposition my existing products? What new products should I create?

\footnotetext{
\({ }^{\ddagger}\) Preference mapping is sometimes referred to as external unfolding.
}

Preference Ratings for Automobiles Manufactured in 1980 Preference Mapping (PREFMAP) Analysis


Figure 2. Preference Mapping, Vector Model

The Preference Mapping Vector Model. Figure 2 contains an example in which three attribute variables (ride, reliability, and miles per gallon) are displayed in the plot of the first two principal components of the car preference data. Each of the automobiles was rated on these three dimensions on a 1 to 5 scale, where 1 is poor and 5 is good. Figure 2 is based on the simplest version of PREFMAP - the vector model. The vector model assumes that some is good and more is always better. This model is appropriate for miles per gallon and reliability-the more miles a motorist can travel without refueling or breaking down, the better. The end points for the attribute vectors are obtained by projecting the attribute variables into the car space. If the attribute ratings are stored in matrix \(\mathbf{R}\), then the coordinates for the end points are in the matrix \(\boldsymbol{\beta}\) from the multivariate linear regression model \(\mathbf{R}=\) \(\mathbf{A} \boldsymbol{\beta}+\boldsymbol{\epsilon}\). \(\mathbf{A}\) is the matrix of standardized principal component scores, or \(\mathbf{A}\) could be the coordinates from a multidimensional scaling analysis. The relative lengths of the vectors indicate fit, which is given


Figure 3. Preference Mapping, Ideal Point Model
by the \(R^{2}\). As with MDPREF, the lengths of all vectors can be scaled by the same constant to make a better graphical display.

PREFMAP analyses can help in the interpretation of principal component, multidimensional scaling, and MDPREF analyses by projecting in external information that helps explain the configuration. Orthogonal projections of the product points on an attribute vector give an approximate ordering of the products on the attribute. The ride vector points almost straight up showing that the larger cars, such as the Eldorado and Continental, have the best ride. In Figure 1, it was shown that most people preferred the DL, Japanese cars, and larger American cars. Figure 2 shows that the DL and Japanese cars were rated as the most reliable and have the best fuel economy. The small American cars are not rated highly on any of the three dimensions, although some are on the positive end of miles per gallon.

The Preference Mapping Ideal Point Model. The ideal point model differs from the vector model in that the ideal point model does not assume that more is better, ad infinitum. Consider the sugar content of cake. There is an ideal amount of sugar that cake should contain-not enough sugar is not good, and too much sugar is also not good. In the current example, the ideal number of miles per gallon and the ideal reliability are unachievable. It makes sense to consider a vector model, because the ideal point is infinitely far away. This argument is less compelling for ride; the point for a car with smooth, quiet ride may not be infinitely far away. Figure 3 shows the results of fitting an ideal point model for the three attributes. In the vector model, results are interpreted by orthogonally projecting the car points on the attribute vectors. In the ideal point model, Euclidean distances between car points and ideal points are compared. Eldorado and Continental have the best predicted ride, because they are closest to the ride ideal point. The concentric circles drawn around the ideal points help to show distances between the cars and the ideal points. The numbers of circles and their radii are arbitrary. The overall interpretations of Figures 2 and 3 are the same. All three ideal points are at the edge of the car points, which suggests the simpler vector model is sufficient for these data.

The ideal point model is fit with a multiple regression model and some pre- and post-processing. First the \(\mathbf{A}\) matrix is augmented by a variable that is the sum of squares of columns of \(\mathbf{A}\) creating \(\mathbf{A}^{*}\). Then solve for \(\boldsymbol{\beta}\) from \(\mathbf{R}=\mathbf{A}^{*} \boldsymbol{\beta}+\boldsymbol{\epsilon}\). For a two-dimensional scatter plot, the ideal point coordinates are given by dividing each coefficient for the two axes by the coefficient for the sum-of-squares variable, then multiplying the resulting values by -0.5 . The coordinates are \(-0.5 \boldsymbol{\beta} \operatorname{diag}\left(\boldsymbol{\beta}_{3}\right)^{-1}\), where \(\operatorname{diag}\left(\boldsymbol{\beta}_{3}\right)\) is a diagonal matrix constructed from the third row of \(\boldsymbol{\beta}\). This is a constrained response-surface model. The fit is given by the \(\mathrm{R}^{2}\). See Carroll (1972) for the justification for the formula.

The results in Figure 3 were modified from the raw results to eliminate anti-ideal points. The ideal point model is a distance model. The rating data are interpreted as distances between attribute ideal points and the products. In this example, each of the automobiles was rated on these three dimensions, on a 1 to 5 scale, where 1 is poor and 5 is good. The data are the reverse of what they should be-a ride rating of 1 should mean this car is similar to a car with a good ride, and a rating of 5 should mean this car is different from a car with a good ride. So the raw coordinates must be multiplied by -1 to get ideal points. Even if the scoring had been reversed, anti-ideal points can occur. If the coefficient for the sum-of-squares variable is negative, the point is an anti-ideal point. In this example, there is the possibility of anti-anti-ideal points. When the coefficient for the sum-of-squares variable is negative, the two multiplications by -1 cancel, and the coordinates are ideal points. When the coefficient for the sum-of-squares variable is positive, the coordinates are multiplied by -1 to get an ideal point.

Other PREFMAP Models. The ideal point model presented here is based on an ordinary Euclidean distance model. All points falling on a circle centered around an ideal point are an equal distance from the ideal point. Two more PREFMAP models are sometimes used. The more general models allow for differential weighting of the axes and rotations, so ellipses, not circles, show equal weighted distances. All three ideal point models are response surface models. See Carroll (1972) for more information.

Correspondence Analysis. Correspondence analysis (CA) is a weighted SVD of a contingency table. It is used to find a low-dimensional graphical representation of the association between rows and columns of a table. Each row and column is represented by a point in a Euclidean space determined from cell frequencies. Like MDPREF, CA is based on a singular value decomposition, but ordinary SVD of a contingency table does not portray a desirable geometry.

Questions that can be addressed with CA and MCA include: Who are my customers? Who else should be my customers? Who are my competitors' customers? Where is my product positioned relative to my competitors' products? Why is my product positioned there? How can I reposition my existing products? What new products should I create? What audience should I target for my new products?

CA is a popular data analysis method in France and Japan. In France, CA was developed under the strong influence of Jean-Paul Benzécri; in Japan, under Chikio Hayashi. CA is described in Lebart, Morineau, and Warwick (1984); Greenacre (1984); Nishisato (1980); Tenenhaus and Young (1985); Gifi (1990); Greenacre and Hastie (1987); and many other sources. Hoffman and Franke (1986) provide a good introductory treatment using examples from marketing research.

Simple CA. This section is primarily based on the theory of CA found in Greenacre (1984). Let \(\mathbf{N}\) be an \(\left(n_{r} \times n_{c}\right)\) contingency table of rank \(q \leq \operatorname{MIN}\left(n_{r}, n_{c}\right)\). Let \(\mathbf{1}\) be a vector of ones of the appropriate order, \(\mathbf{I}\) be an identity matrix, and \(\operatorname{diag}()\) be a matrix-valued function that creates a diagonal matrix from a vector. Let \(f=\mathbf{1}^{\prime} \mathbf{N} \mathbf{1}, \mathbf{P}=(1 / f) \mathbf{N}, \mathbf{r}=\mathbf{P} \mathbf{1}, \mathbf{c}=\mathbf{P}^{\prime} \mathbf{1}, \mathbf{D}_{\mathbf{r}}=\operatorname{diag}(\mathbf{r})\), and \(\mathbf{D}_{\mathbf{c}}=\operatorname{diag}(\mathbf{c})\). The scalar \(f\) is the sum of all elements in \(\mathbf{N}\). \(\mathbf{P}\) is a matrix of relative frequencies. The vector \(\mathbf{r}\) contains row marginal proportions or row masses. The vector contains column marginal proportions or column masses. \(\mathbf{D}_{\mathbf{r}}\) and \(\mathbf{D}_{\mathbf{c}}\) are diagonal matrices of marginals. The coordinates of the CA are based on the generalized singular value decomposition of \(\mathbf{P}, \mathbf{P}=\mathbf{A} \mathbf{D}_{\mathbf{u}} \mathbf{B}^{\prime}\), where \(\mathbf{A}^{\prime} \mathbf{D}_{\mathbf{r}}{ }^{-1} \mathbf{A}=\mathbf{B}^{\prime} \mathbf{D}_{\mathbf{c}}{ }^{-1} \mathbf{B}=\mathbf{I}\). \(\mathbf{A}\) is an \(\left(n_{r} \times q\right)\) matrix of left generalized singular vectors, \(\mathbf{D}_{\mathbf{u}}\) is a \((q \times q)\) diagonal matrix of singular values, and \(\mathbf{B}\) is an \(\left(n_{c} \times q\right)\) matrix of right generalized singular vectors. The first (trivial) column of \(\mathbf{A}\) and \(\mathbf{B}\) and the first singular value in \(\mathbf{D}_{\mathbf{u}}\) are discarded before any results are displayed. This step centers the table and is analogous to centering the data in ordinary principal component analysis. In practice, this centering is done by subtracting ordinary chi-square expected values from \(\mathbf{P}\) before the SVD. The columns of \(\mathbf{A}\) and \(\mathbf{B}\) define the principal axes of the column and row point clouds, respectively. The fit, or proportion of the inertia (analogous to variance) in the data accounted for by the first two dimensions, is the sum of squares of the first two singular values, divided by the sum of squares of all of the singular values. Three sets of coordinates are typically available from CA, one based on rows, one based on columns, and the usual set is based on both rows and columns.
The row profile (conditional probability) matrix is defined as \(\mathbf{R}=\mathbf{D}_{\mathbf{r}}{ }^{-1} \mathbf{P}=\mathbf{D}_{\mathbf{r}}{ }^{-1} \mathbf{A} \mathbf{D}_{\mathbf{u}} \mathbf{B}^{\prime}\). Each \((i, j)\) element of \(\mathbf{R}\) contains the observed probability of being in column \(j\) given membership in row \(i\). The values in each row of \(\mathbf{R}\) sum to one. The row coordinates, \(\mathbf{D}_{\mathbf{r}}{ }^{-1} \mathbf{A} \mathbf{D}_{\mathbf{u}}\), and column coordinates, \(\mathbf{D}_{\mathbf{c}}{ }^{-1} \mathbf{B}\), provide a CA based on the row profile matrix. The principal row coordinates, \(\mathbf{D}_{\mathbf{r}}{ }^{-1} \mathbf{A} \mathbf{D}_{\mathbf{u}}\), and standard column coordinates, \(\mathbf{D}_{\mathbf{c}}{ }^{-1} \mathbf{B}\), provide a decomposition of \(\mathbf{D}_{\mathbf{r}}{ }^{-1} \mathbf{A D}_{\mathbf{u}} \mathbf{B}^{\prime} \mathbf{D}_{\mathbf{c}}{ }^{-1}=\mathbf{D}_{\mathbf{r}}{ }^{-1} \mathbf{P D}_{\mathbf{c}}{ }^{-1}=\mathbf{R D}_{\mathbf{c}}{ }^{-1}\). Since \(\mathbf{D}_{\mathbf{r}}{ }^{-1} \mathbf{A D} \mathbf{D}_{\mathbf{u}}=\mathbf{R D}_{\mathbf{c}}{ }^{-1} \mathbf{B}\), the row coordinates are weighted centroids of the column coordinates. Each column point, with coordinates scaled to standard coordinates, defines a vertex in ( \(n_{c}-1\) )dimensional space. All of the principal row coordinates are located in the space defined by the standard column coordinates. Distances among row points have meaning, but distances among column points and distances between row and column points are not interpretable.

The formulas for the analysis of the column profile matrix can easily be derived by applying the row profile formulas to the transpose of \(\mathbf{P}\). The principal column coordinates \(\mathbf{D}_{\mathbf{c}}{ }^{-1} \mathbf{B D}_{\mathbf{u}}\) are weighted centroids of the standard row coordinates \(\mathbf{D}_{\mathbf{r}}{ }^{-1} \mathbf{A}\). Each row point, with coordinates scaled to standard
coordinates, defines a vertex in \(\left(n_{r}-1\right)\)-dimensional space. All of the principal column coordinates are located in the space defined by the standard row coordinates. Distances among column points have meaning, but distances among row points and distances between row and column points are not interpretable.

The usual sets of coordinates \({ }^{\S}\) are given by \(\mathbf{D}_{\mathbf{r}}{ }^{-1} \mathbf{A} \mathbf{D}_{\mathbf{u}}\) and \(\mathbf{D}_{\mathbf{c}}{ }^{-1} \mathbf{B} \mathbf{D}_{\mathbf{u}}\). One advantage of using these coordinates is that both sets are postmultiplied by the diagonal matrix \(\mathbf{D}_{\mathbf{u}}\), whose diagonal values are all less than or equal to one. When \(\mathbf{D}_{\mathbf{u}}\) is a part of the definition of only one set of coordinates, that set forms a tight cluster near the centroid, whereas the other set of points is more widely dispersed. Including \(\mathbf{D}_{\mathbf{u}}\) in both sets makes a better graphical display. However, care must be taken in interpreting such a plot. No correct interpretation of distances between row points and column points can be made. Less specific statements, such as "two points are on the same side of the plot" have meaning.

Another property of this choice of coordinates concerns the geometry of distances between points within each set. Distances between row (or column) profiles are computed using a chi-square metric. The rationale for computing distances between row profiles using the non-Euclidean chi-square metric is as follows. Each row of the contingency table may be viewed as a realization of a multinomial distribution conditional on its row marginal frequency. The null hypothesis of row and column independence is equivalent to the hypothesis of homogeneity of the row profiles. A significant chi-square statistic is geometrically interpreted as a significant deviation of the row profiles from their centroid, \(\mathbf{c}^{\prime}\). The chi-square metric is the Mahalanobis metric between row profiles based on their estimated covariance matrix under the homogeneity assumption (Greenacre and Hastie 1987). A parallel argument can be made for the column profiles.

The row coordinates are \(\mathbf{D}_{\mathbf{r}}{ }^{-1} \mathbf{A D} \mathbf{D}_{\mathbf{u}}=\mathbf{D}_{\mathbf{r}}{ }^{-1} \mathbf{A} \mathbf{D}_{\mathbf{u}} \mathbf{B}^{\prime} \mathbf{D}_{\mathbf{c}}{ }^{-1} \mathbf{B}=\left(\mathbf{D}_{\mathbf{r}}{ }^{-1} \mathbf{P}\right)\left(\mathbf{D}_{\mathbf{c}}{ }^{-1 / 2}\right)\left(\mathbf{D}_{\mathbf{c}}{ }^{-1 / 2} \mathbf{B}\right)\). They are row profiles \(\mathbf{D}_{\mathbf{r}}{ }^{-1} \mathbf{P}\) rescaled by \(\mathbf{D}_{\mathbf{c}}{ }^{-1 / 2}\) (rescaled so that distances between profiles are transformed from a chi-square metric to a Euclidean metric), then orthogonally rotated with \(\mathbf{D}_{\mathbf{c}}{ }^{-1 / 2} \mathbf{B}\) to a principal axes orientation. Similarly, the column coordinates are column profiles rescaled to a Euclidean metric and orthogonally rotated to a principal axes orientation.

CA Example. Figure 4 contains a plot of the results of a simple CA of a survey of car owners. The questions included origin of the car (American, Japanese, European), and marital/family status (single, married, single and living with children, and married living with children). Both variables are categorical. Table 1 contains the crosstabulation and the observed minus expected frequencies. It can be seen from the observed minus expected frequencies that four cells have values appreciably different from zero (Married w Kids/American, Single/American, Married w Kids/Japanese, Single/Japanese). More people who are married with children drive American cars than would be expected if the rows and columns are independent, and more people who are single with no children drive Japanese cars than would be expected if the rows and columns are independent.

CA graphically shows the information in the observed minus expected frequencies. The right side of Figure 4 shows the association between being married with children and owning an American Car. The left side of the plot shows the association between being single and owning a Japanese Car. This interpretation is based on points being located in approximately the same direction from the origin and in approximately the same region of the space. Distances between row points and column points are not defined.

\footnotetext{
\({ }^{\S}\) This set is often referred to as the French standardization due to its popularity in France.
}


Figure 4. Simple Correspondence Analysis

Table 1
Simple Correspondence Example Input
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{Contingency Table} & \multicolumn{3}{|l|}{Observed Minus Expected Values} \\
\hline & American & European & Japanese & American & European & Japanese \\
\hline Married & 37 & 14 & 51 & -1.5133 & 0.4602 & 1.0531 \\
\hline Married w Kids & 52 & 15 & 44 & 10.0885 & 0.2655 & -10.3540 \\
\hline Single & 33 & 15 & 63 & -8.9115 & 0.2655 & 8.6460 \\
\hline Single w Kids & 6 & 1 & 8 & 0.3363 & -0.9912 & 0.6549 \\
\hline
\end{tabular}


Figure 5. Multiple Correspondence Analysis

Multiple Correspondence Analysis. Multiple correspondence analysis (MCA) is a generalization of simple CA for more than two variables. The input is a Burt table, which is a partitioned symmetric matrix containing all pairs of crosstabulations among a set of categorical variables. Each diagonal partition is a diagonal matrix containing marginal frequencies (a crosstabulation of a variable with itself). Each off-diagonal partition is an ordinary contingency table. Each contingency table above the diagonal has a transposed counterpart below the diagonal. A Burt table is the inner product of a partitioned design matrix. There is one partition per categorical variable, and each partition is a binary design matrix. Each design matrix has one column per category, and a single 1 in each row. The partitioned design matrix has exactly \(m\) ones in each row, where \(m\) is the number of categorical variables. The results of a MCA of a Burt table, \(\mathbf{N}\), are the same as the column results from a simple CA of the design matrix whose inner product is the Burt table. MCA is not a simple CA of the

Burt table. The coordinates for MCA are \(\mathbf{D}_{\mathbf{c}}{ }^{-1} \mathbf{B D} \mathbf{D}\), from \((1 / f) \mathbf{N}=\mathbf{P}=\mathbf{P}^{\prime}=\mathbf{B D}_{\mathbf{u}}{ }^{2} \mathbf{B}^{\prime}\), where \(\mathbf{B}^{\prime} \mathbf{D}_{\mathbf{c}}{ }^{-1} \mathbf{B}=\mathbf{I}\).

MCA Example. Figure 5 contains a plot of the results of an MCA of a survey of car owners. The questions included origin of the car (American, Japanese, European), size of car (small, medium, large), type of car (family, sporty, work vehicle), home ownership (owns, rents), marital/family status (single, married, single and living with children, and married living with children), and sex (male, female). The variables are all categorical.

The top-right quadrant of the plot shows that the categories single, single with kids, 1 income, and renting a home are associated. Proceeding clockwise, the categories sporty, small, and Japanese are associated. In the bottom-left quadrant we see the association between being married, owning your own home, and having two incomes. Having children is associated with owning a large American family car. Such information could be used in marketing research to identify target audiences for advertisements. This interpretation is based on points being located in approximately the same direction from the origin and in approximately the same region of the space. Distances between points are not interpretable in MCA.

Other CA Standardizations. Other standardizations have been proposed for CA by several authors. The usual goal is to provide a standardization that avoids the problem of row and column distances being undefined. Unfortunately, this problem remains unsolved. Carroll, Green, and Schaffer (1986) proposed that simple CA coordinates should be transformed to MCA coordinates before they are plotted. They argued that all distances are then comparable, but Greenacre (1989) showed that their assertion was incorrect. Others have also claimed to have discovered a method of defining the between row and column differences, but so far no method has been demonstrated to be correct.

\section*{Notes}

The Geometry of the Scatter Plots. All of the scatterplots in this chapter were created with the axes equated so that a centimeter on the y -axis represents the same data range as a centimeter on the x -axis. This is important. Distances, angles between vectors, and projections are evaluated to interpret the plots. When the axes are equated, distances and angles are correctly represented in the plot. When axes are scaled independently, for example to fill the page, then the correct geometry is not presented. The important step of equating the axes is often overlooked in practice.
In a true biplot, \(\mathbf{A}=\mathbf{U D}^{r}\) and \(\mathbf{B}=\mathbf{V D}^{(1-r)}\) are plotted, and the elements of \(\mathbf{Y}\) can be approximated from \(y_{i j} \approx \mathbf{a}_{i}^{\prime} \mathbf{b}_{j}\). For MDPREF and PREFMAP, the absolute lengths of the vectors are not important since the goal is to project points on vectors, not look at scalar products of row points and column vectors. It is often necessary to change the lengths of all of the vectors to improve the graphical display. If all of the vectors are relatively short with end points clustered near the origin, the display will not look good. To avoid this problem in Figure 1, both the x-axis and y-axis coordinates were multiplied by the constant 2.5 , to lengthen all vectors by the same relative amount. The coordinates must not be scaled independently.

Software. All data analyses were performed with Release 8.00 of the SAS System. MDPREF is performed with PROC PRINQUAL, simple and multiple correspondence analysis are performed with PROC CORRESP, and PREFMAP is performed with PROC TRANSREG. The plots are prepared with the SAS \%PlotIt autocall macro. If your site has installed the autocall libraries supplied by SAS Institute and uses the standard configuration of SAS software supplied by the Institute, you need only to ensure that the SAS system option mautosource is in effect to begin using the autocall macros. For more information about autocall libraries, refer to SAS Macro Language: Reference. The macro is documented in the macro comments.

\section*{Conclusions}

Marketing research helps marketing decision makers understand their customers and their competition. Correspondence analysis compactly displays survey data to aid in determining what kinds of consumers are buying certain products. Multidimensional preference analysis shows product positioning, group preferences, and individual preferences. The plots may suggest how to reposition products to appeal to a broader audience. They may also suggest new groups of customers to target. Preference mapping is used as an aid in understanding MDPREF and multidimensional scaling results. PREFMAP displays product attributes in the same plot as the products. The insight gained from perceptual mapping methods can be a valuable asset in marketing decision making. These techniques can help marketers gain insight into their products, their customers, and their competition.

\section*{Concluding Remarks}

I hope you like this book and the new macros. In particular, I hope you find the \%MktEx macro to be very powerful and useful. My goal in writing this book and tool set is to help you do better research and do it more quickly and more easily. I would like to hear what you think. Many of my examples and enhancements to the software are based on feedback from people like you. This book has already been revised many times, and future revisions are likely. If you have comments or suggestions for future revisions, write Warren F. Kuhfeld, (Warren.Kuhfeld@sas.com) at SAS Institute Inc. Almost all of our examples are artificial. We would welcome any real data sets that we could use in future examples. Please direct questions to the technical support division. My goal to provide you with enough examples so that you can easily adapt aspects of one or more examples to fit your particular needs. When I do not succeed, tell me about it and I will try to add a new example to the next revision. Please email me. I would like to hear from you!

I would like to put in a plug for the American Marketing Association's Advanced Research Techniques Forum (ART Forum), which is a conference held each year in June. I have been to every one since 1991, and that is a streak that I hope to keep going for a long time. It is a great place to meet academic researchers and top practitioners in the areas of conjoint, choice, and other branches of marketing research. It always draws a diverse and international crowd. There are a number of great tutorials including (most years including 2003) one by Don Anderson and myself on choice designs.

I leave you with this old Irish blessing.

> May the road rise up
> to meet you
> may the wind be
> always at your back
> May the sun shine warm
> on your face
> And the rain fall soft
> upon your fields
... along with this additional thought ...
May your designs always be efficient and your standard errors small

\section*{The Kuhfeld Conundrum}

What do all of the random number seeds used in the "Conjoint Analysis Examples," "Multinomial Logit, Discrete Choice Modeling," and "Experimental Design and Choice Modeling Macros" have in common? Send answers to Warren.Kuhfeld@sas.com. I will send a small prize to the first person to send me the answer that I have in mind. Hint: The relationship is not mathematical. An answer like "they are all less than 619 ," while true, is not what I have in mind.* I first put this challenge out there quite a few years ago now. I keep hoping that one of these days, one of you will send me the answer. Heed this admonition: stick to the middle of the road.

\footnotetext{
*If you can't get that one, here is an easy one - no prize for this one though. Find the joke embedded in the index.
}

\section*{References}

Addelman, S. (1962a), "Orthogonal Main-Effects Plans for Asymmetrical Factorial Experiments," Technometrics, 4, 21-46.

Addelman, S. (1962b), "Symmetrical and Asymmetrical Fractional Factorial Plans," Technometrics, 4, 47-58.

Agresti, A. (1990), Categorical Data Analysis. New York: John Wiley and Sons.
Anderson, D.A. and Wiley, J.B. (1992), "Efficient Choice Set Designs for Estimating Cross-Effects Models," Marketing Letters, 3, 357-370.
de Boor, C. (1978), A Practical Guide to Splines, New York: Springer Verlag.
Bose, R.C. (1947), "Mathematical Theory of the Symmetrical Factorial Design," Sankhya, 8, 107-166.
Booth, K.H.V. and Cox, D.R. (1962), "Some Systematic Super-Saturated Designs," Technometrics, 4, 489-495.

Breiman, L. and Friedman, J.H. (1985), "Estimating Optimal Transformations for Multiple Regression and Correlation," (with discussion), Journal of the American Statistical Association, 77, 580-619.

Breslow, N. and Day, N.E. (1980), Statistical Methods in Cancer Research, Vol. II: The Design and Analysis of Cohort Studies, Lyon: IARC.

Bunch, D.S., Louviere, J.J., and Anderson, D.A. (1996), "A Comparison of Experimental Design Strategies for Choice-Based Conjoint Analysis with Generic-Attribute Multinomial Logit Models," Working Paper, Graduate School of Management, University of California at Davis.
van der Burg, E. and de Leeuw, J. (1983), "Non-linear Canonical Correlation," British Journal of Mathematical and Statistical Psychology, 36, 54-80.

Carmone, F.J. and Green, P.E. (1981), "Model Misspecification in Multiattribute Parameter Estimation," Journal of Marketing Research, 18 (February), 87-93.

Carroll, J.D. (1972), "Individual Differences and Multidimensional Scaling," in Multidimensional Scaling: Theory and Applications in the Behavioral Sciences (Volume 1), in Shepard, R.N., Romney, A.K., and Nerlove, S.B. (ed.), New York: Seminar Press.

Carroll, J.D, Green, P.E., and Schaffer, C.M. (1986), "Interpoint Distance Comparisons in Correspondence Analysis," Journal of Marketing Research, 23, 271-280.

Carson, R.T., Louviere, J.J, Anderson, D.A., Arabie, P., Bunch, D., Hensher, D.A., Johnson, R.M., Kuhfeld, W.F., Steinberg, D., Swait, J., Timmermans, H., and Wiley, J.B. (1994), "Experimental Analysis of Choice," Marketing Letters, 5(4), 351-368.

Chakravarti, I.M. (1956), "Fractional Replication in Asymmetrical Factorial Designs and Partially Balanced Arrays," Sankhya, 17, 143-164.

Chrzan, K. and Elrod, T. (1995), "Partial Profile Choice Experiments: A Choice-Based Approach for Handling Large Numbers of Attributes," paper presented at the AMA's 1995 Advanced Research Techniques Forum, Monterey, CA.

Cook, R.D. and Nachtsheim, C.J. (1980), "A Comparison of Algorithms for Constructing Exact Doptimal Designs," Technometrics, 22, 315-324.

Cook, R.D. and Nachtsheim, C.J. (1989), "Computer-Aided Blocking of Factorial and ResponseSurface Designs," Technometrics 31 (August), 339-346.

Coolen, H., van Rijckevorsel, J., and de Leeuw, J. (1982), "An Algorithm for Nonlinear Principal Components with B-splines by Means of Alternating Least Squares," in H. Caussinus, P. Ettinger, and R. Tomassone (ed.), COMPUSTAT 1982, Part 2, Vienna: Physica Verlag.

De Cock, D. and Stufken, J. (2000), "On Finding Mixed Orthogonal Arrays of Strength 2 With Many 2-Level Factors," Statistics and Probability Letters, 50, 383-388.

Dey, A. (1985), Orthogonal Fractional Factorial Designs, New York: Wiley.
DuMouchell, W. and Jones, B. (1994), "A Simple Bayesian Modification of D-Optimal Designs to Reduce Dependence on an Assumed Model," Technometrics 36 (February), 37-47.

Dykstra, O. (1971), "The Augmentation of Experimental Data to Maximize \(\left|\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right|, "\) Technometrics, 13 (August), 682-688.

Eckart, C. and Young, G. (1936), "The Approximation of One Matrix by Another of Lower Rank," Psychometrika, 1, 211-218.

Elrod, T., Louviere, J.J, and Davey, K.S. (1992), "An Empirical Comparison of Ratings-Based and Choice-Based Conjoint Models," Journal of Marketing Research, 29 (August), 368-377.

Fedorov, V.V. (1972), Theory of Optimal Experiments, translated and edited by W.J. Studden and E.M. Klimko, New York: Academic Press.

Finkbeiner, C.T. (1988), "Comparison of Conjoint Choice Simulators," Sawtooth Software Conference Proceedings.

Fisher, R. (1938), Statistical Methods for Research Workers, 10th Edition, Edinburgh: Oliver and Boyd Press.

Gabriel, K.R. (1981), "Biplot Display of Multivariate Matrices for Inspection of Data and Diagnosis," Interpreting Multivariate Data, V. Barnett (ed.), London: John Wiley and Sons, Inc.

Gail, M.H., Lubin, J.H., and Rubinstein, L.V. (1981), "Likelihood Calculations for Matched Casecontrol Studies and Survival Studies with Tied Death Times," Biometrika, 68, 703-707.

Gifi, A. (1981), Nonlinear Multivariate Analysis, Department of Data Theory, The University of Leiden, The Netherlands.

Gifi, A. (1990), Nonlinear Multivariate Analysis, New York: Wiley.
Green, P.E. (1974), "On the Design of Choice Experiments involving Multifactor Alternatives," Journal of Consumer Research, 1, 61-68.

Green, P.E. and Rao, V.R. (1971), "Conjoint Measurement for Quantifying Judgmental Data," Journal of Marketing Research, 8, 355-363.

Green, P.E. and Srinivasan, V. (1990), "Conjoint Analysis in Marketing: New Developments with Implications for Research and Practice," Journal of Marketing, 54, 3-19.

Green, P.E. and Wind, Y. (1975), "New Way to Measure Consumers' Judgments," Harvard Business Review, July-August, 107-117.

Green, P.E. and Rao, V.R. (1971), "Conjoint Measurement for Quantifying Judgmental Data," Journal of Marketing Research, 8, 355-363.

Greenacre, M.J. (1984), Theory and Applications of Correspondence Analysis, London: Academic Press.

Greenacre, M.J. (1989), "The Carroll-Green-Schaffer Scaling in Correspondence Analysis: A Theoretical and Empirical Appraisal," Journal of Market Research, 26, 358-365.

Greenacre, M.J. and Hastie, T. (1987), "The Geometric Interpretation of Correspondence Analysis," Journal of the American Statistical Association, 82, 437-447.

Hadamard, J. (1893), "Resolution d'une Question Relative Aux Determinants," Bull. des Sciences Math, (2), 17, 240-246.

Hastie, T. and Tibshirani, R. (1986), "Generalized Additive Models," Statistical Science, 3, 297-318.
Hedayat, A.S., Sloane, N.J.A., and Stufken, J. (1999), Orthogonal Arrays, New York: Springer.
Hoffman, D.L., and Franke, G.R. (1986), "Correspondence Analysis: Graphical Representation of Categorical Data in Marketing Research," Journal of Marketing Research, 23, 213-227.

Hoffman, S.D. and Duncan, G.J. (1988), "Multinomial and Conditional Logit Discrete-choice Models in Demography," Demography, 25 (3), 415-427.

Huber, J. and Zwerina, K. (1996), "The Importance of Utility Balance in Efficient Choice Designs," Journal of Marketing Research, 33, 307-317.

Huber, J., Wittink, D.R., Fiedler, J.A., and Miller, R. (1993), "The Effectiveness of Alternative Preference Elicitation Procedures in Predicting Choice," Journal of Marketing Research, 30 (February), 105-114.

Kirkpatrick, S., Gellat, C.D., and Vecchi, M.P. (1983), "Optimization by Simulated Annealing," Science, 220, 671-680.

Krieger, A.B. and Green, P.E. (1991), "Designing Pareto Optimal Stimuli for Multiattribute Choice Experiments," Marketing Letters, 2, 337-348.

Kruskal, J.B. and Wish, M. (1978), Multidimensional Scaling, Sage University Paper series on Quantitative Applications in the Social Sciences, 07-011, Beverly Hills and London: Sage Publications.

Kruskal, J.B. and Shepard, R.N. (1974), "A Nonmetric Variety of Linear Factor Analysis," Psychometrika, 38, 123-157.

Kuhfeld, W.F. (1991), "A Heuristic Procedure for Label Placement in Scatter Plots," Presented to the joint meeting of the Psychometric Society and Classification Society of North America, Rutgers University, New Brunswick NJ, June 13-16, 1991.

Kuhfeld, W.F. (2003), "Marketing Research Methods in SAS," [http://support.sas.com/techsup/tnote/tnote_stat.html\#market].

Kuhfeld, W.F. (1990), SAS Technical Report R-108: Algorithms for the PRINQUAL and TRANSREG Procedures, Cary NC: SAS Institute Inc.

Kuhfeld, W.F., Tobias, R.D., and Garratt, M. (1994), "Efficient Experimental Design with Marketing Research Applications," Journal of Marketing Research, 31, 545-557.

Kuhfeld, W.F. and Garratt, M. (1992), "Linear Models and Conjoint Analysis with Nonlinear Spline Transformations," Paper presented to the American Marketing Association Advanced Research Techniques Forum, Lake Tahoe, Nevada.

Lazari, A.G. and Anderson, D.A. (1994), "Designs of Discrete Choice Set Experiments for Estimating Both Attribute and Availability Cross Effects," Journal of Marketing Research, 31, 375-383.

Lebart, L., Morineau, A., and Warwick, K.M. (1984), Multivariate Descriptive Statistical Analysis: Correspondence Analysis and Related Techniques for Large Matrices, New York: Wiley.
de Leeuw, J. (1986), "Regression with Optimal Scaling of the Dependent Variable," Department of Data Theory, The University of Leiden, The Netherlands.
de Leeuw, J., Young, F.W., and Takane, Y. (1976), "Additive Structure in Qualitative Data: an Alternating Least Squares Method with Optimal Scaling features," Psychometrika, 41, 471-503.

Louviere, J.J. (1988), Analyzing Decision Making, Metric Conjoint Analysis, Sage University Papers, Beverly Hills: Sage.

Louviere, J.J. (1991), "Consumer Choice Models and the Design and Analysis of Choice Experiments," Tutorial presented to the American Marketing Association Advanced Research Techniques Forum, Beaver Creek, Colorado.

Louviere, J.J. and Woodworth, G. (1983), "Design and Analysis of Simulated Consumer Choice of Allocation Experiments: A Method Based on Aggregate Data," Journal of Marketing Research, 20 (November), 350-367.

Louviere, J.J. (1991), "Consumer Choice Models and the Design and Analysis of Choice Experiments," Tutorial presented to the American Marketing Association Advanced Research Techniques Forum, Beaver Creek, Colorado.

Manski, C.F. and McFadden, D. (1981), Structural Analysis of Discrete Data with Econometric Applications. Cambridge: MIT Press.

Mardia, K.V., Kent, J.T., and Bibby, J.M. (1979), Multivariate Analysis, New York: Academic Press.
McFadden, D. (1974), "Conditional logit Analysis Of Qualitative Choice Behavior," in P. Zarembka (ed.) Frontiers in Econometrics, New York: Academic Press, 105-142.

McKelvey, R.D. and Zavoina, W. (1975), "A Statistical Model for the Analysis Of Ordinal Level Dependent Variables," Journal of Mathematical Sociology, 4, 103-120.

Meyer, R.K. and Nachtsheim, C.J. (1995), "The Coordinate-Exchange Algorithm for Constructing Exact Optimal Experimental Designs," Technometrics, 37, 60-69.

Mitchell, T.J. and Miller, F.L. Jr. (1970), "Use of Design Repair to Construct Designs for Special Linear Models," Math. Div. Ann. Progr. Rept. (ORNL-4661), 130-131, Oak Ridge, TN: Oak Ridge National Laboratory.

Mitchell, T.J. (1974), "An Algorithm for the Construction of D-optimal Experimental Designs," Technometrics, 16 (May), 203-210.

Nishisato, S. (1980), Analysis of Categorical Data: Dual Scaling and Its Applications, Toronto: University of Toronto Press.

Paley, R.E.A.C (1933), "On Orthogonal Matrices," J. Math. Phys, 12, 311-320.
Perreault, W.D. and Young, F.W. (1980), "Alternating Least Squares Optimal Scaling: Analysis of Nonmetric Data in Marketing Research," Journal of Marketing Research, 17, 1-13.

Raktoe, B.L., Hedayat, A.S., and Federer, W.T. (1981), Factorial Designs, New York: John Wiley and Sons.

Ramsay, J.O. (1988), "Monotone Regression Splines in Action," Statistical Science, 3, 425-461.
Rao, C.R. (1947), "Factorial Experiments Derivable from Combinatorial Arrangements of Arrays," Journal of the Royal Statistical Society, Suppl., 9, 128-139.
van Rijckevorsel, J. (1982), "Canonical Analysis with B-splines," in H. Caussinus, P. Ettinger, and R. Tomassone (ed.), COMPUSTAT 1982, Part I, Vienna: Physica Verlag.

Schiffman, S.S., Reynolds, M.L., and Young, F.W. (1981), Introduction to Multidimensional Scaling, New York: Academic Press.

Sloane, N.J.A. (2002), "A Library of Orthogonal Arrays," [http://www.research.att.com/~njas/oadir].
Smith, P.L. (1979), "Splines as a Useful and Convenient Statistical Tool," The American Statistician, 33, 57-62.

Steckel, J.H., DeSarbo, W.S., and Mahajan, V. (1991), "On the Creation of Acceptable Conjoint Analysis Experimental Designs," Decision Sciences, 22, 435-442.

Suen, C.Y. (1989a), "A Class of Orthogonal Main Effects Plans," Journal of Statistical Planning and Inference, 21, 391-394.

Suen, C.Y. (1989b), "Some Resolvable Orthogonal Arrays with Two Symbols," Communications in Statistics, Theory and Methods, 18, 3875-3881.

Taguchi, G. (1987), System of Experimental Design: Engineering Methods to Optimize Quality and Minimize Costs. White Plains, NY: UNIPIB, and Dearborn, MI: American Supplier Institute.

Tenenhaus, M. and Young, F.W. (1985), "An Analysis and Synthesis of Multiple Correspondence Analysis, Optimal Scaling, Dual Scaling, Homogeneity Analysis, and Other Methods of Quantifying Categorical Multivariate Data," Psychometrika, 50, 91-119.

Wang, J.C. (1996a), "Mixed Difference Matrices and the Construction of Orthogonal Arrays," Statist. Probab. Lett., 28, 121-126.

Wang, J.C. (1996b), A Recursive Construction of Orthogonal Arrays, Preprint.
Wang, J.C. and Wu, C.F.J. (1989), "An Approach to the Construction of Asymmetrical Orthogonal Arrays," IIQP Research Report RR-89-01, University of Waterloo.

Wang, J.C. and Wu, C.F.J. (1991), "An Approach to the Construction of Asymmetrical Orthogonal Arrays," Journal of the American Statistical Association, 86, 450-456.

Williamson, J. (1944), "Hadamard's Determinant Theorem and the Sum of Four Squares," Duke Math. J., 11, 65-81.

Winsberg, S. and Ramsay, J.O. (1980), "Monotonic Transformations to Additivity Using Splines," Biometrika, 67, 669-674.

Wittink, D.R. and Cattin, P. (1989), "Commercial Use of Conjoint Analysis: An Update," Journal of Marketing, 53 (July), 91-96.

Wittink, D.R., Krishnamurthi, L., and Reibstein, D.J. (1989), "The Effect of Differences in the Number of Attribute Levels in Conjoint Results," Marketing Letters, 1:2, 113-123.

Xu, H. (2002), "An Algorithm for Constructing Orthogonal and Nearly Orthogonal Arrays with Mixed Levels and Small Runs," Technometrics, 44, 356-368.

Young, F.W. (1981), "Quantitative Analysis of Qualitative Data," Psychometrika, 46, 357-388.
Young, F.W. (1987), Multidimensional Scaling: History, Theory, and Applications, R.M. Hamer (ed.), Hillsdale, NJ: Lawrence Erlbaum Associates.

Young, F.W., de Leeuw, J., and Takane, Y. (1976), "Regression with Qualitative and Quantitative Variables: an Alternating Least Squares Approach with Optimal Scaling Features," Psychometrika, 41, 505-529.

Zhang, Y.S., Lu, Y., and Pang, S. (1999), "Orthogonal Arrays Obtained by Orthogonal Decompositions of Projection Matrices," Statistica Sinica, 9, 595-604.

Zhang, Y.S., Pang, S., and Wang, Y. (2001), "Orthogonal Arrays Obtained by Generalized Hadamard Product," Discrete Mathematics, 238, 151-170.

\section*{Index}

\section*{@@ 98}
\(A\)-efficiency 4286365
abbreviating option names 467
accept defined 556
accept option 551 555-559 573-575
active observations 474
Addelman, S. 506165547691
adjust1= defined 636
adjust2= defined 637
adjust3= defined 637
adjust4= defined 637
adjust5= defined 637
Age variable 276
aggregate data 202-206 220-224 269-271 292 297299358
Agresti, A. 345691
algorithm options 468-469
aliased 84364
aliasing structure 246
allcode defined 531
allocation study 284-297
ALLOCS data set 513
Alt variable 128 522-524
Alt_ variable 598
alt= 118-119 524598
alt= defined 524598
alternative-specific effects 171-173 199209214 219230260264 347-348 351-353 487494
Anderson, D.A. 33945536174230245 689-691 694
Ann 553
anneal= defined 561
annealfun= defined 566
annealing 143-144 189 549-550 561566
anniter= defined 561
antiidea= defined 629
anti-ideal points 20681
Arabie, P. 691
arrays 106116 130-132 152-153 193-195 205220 267291318 349-351 354
artificial data 81195267
asymmetry 178228 494-505 585-587
attribute levels, order 468
attributes, design 361-364
augmenting an existing design 325
autocall macros 365479
availability cross effects 228-231 245271
available, not 579
average importance 424-426
bad variable 231-232 558-559
balance 85-86 109191256365
balance \(=242-244555-557\)
balance \(=\) defined 555
balanced and orthogonal 85-86 9295109 364-365
Benzécri, J.P. 21682
bestcov= defined 507
bestout \(=\) defined 507
beta= 260307482 489-490 508
beta= defined 508
Bibby, J.M. 694
big designs 178
big= 528531564
big= defined 528564
bin of attributes 87-88 118153
binary coding 91 122-123 158168199208
biplot 16676
blank header 148
Block variable 155286297518524582
block= 524
block= defined 524
BLOCKED data set 525
blocking 146-148 191-193 241244 248-251 285
518-526 544 582-583 588-589
blocks \(=157\)
blocks= defined 544588
blue bus 229
blue \(=\) defined 635
Booth, K.H.V. 43691
border defined 624
Bose, R.C. 547691
Bradley, R.A. 30431 448-451 455-458
Bradley-Terry-Luce model
compared to other simulators 449
defined 448
market share 457
brand choice (aggregate data) example 205
Brand variable 118-123 208 212-213 256 260-265 276291 294-296 493496499512 595-598
branded defined 540
Breiman, L. 644691
Breslow likelihood 226
Breslow, N. 226-227 346-349 359691
brief 124-126 161283
bright= defined 633
britypes= defined 626
B-splines 651
Bunch, D.S. 6165691
bundles of attributes 303337
Burt table, correspondence analysis 685
bus 229
by statement, syntax 473
\(\mathrm{c}=2\) - (i eq choice) 100
c variable 98-101 121126130157 212-213 270 295512 588-589
\(\mathrm{c} * \mathrm{c}\) (2) 101-102 124
c*c (3) 102
Can 188235553
cand= 531
cand= defined 528
candidate set 142230236305310314318337 481 485-486 548 573-575
canditer \(=\) defined 561
candy example (choice) 96
candy example (conjoint) 369
canonical correlation 90-91 113381
canonical initialization 468
cards, printing in a DATA step 382396439
Carmone, F.J. 39691
Carroll, J.D. 17-19 676-678 681686691
Carson, R.T. 4145717481359691
CATMOD procedure, see PROC CATMOD
Cattin, P. 39696
CB data set 545
cfill= defined 585
cframe= defined 633
chair (generic attributes) example 303
Chakravarti, I.M. 454857691
change, market share 458466
check the data entry 103
check defined 531556
check option 146560
chi-square metric, correspondence analysis 683
Chi-Square statistic 103
chocolate candy example (choice) 96
chocolate candy example (conjoint) 369
choice design
87-89 109 118-121 595
efficiency 88-89 259-267 304-307 310-312 315 320341481484 487-490 493
generation 306 310-312 315320481 485-493 535-536
choice model
96-98 106 226-228
coding \(122158 \quad 163-165169173198 \quad 207-209\) 213 219-224 270276296
fitting 124160163166170175200203 208210217 222-224 271280 297-299 348-349 352-353 356-357
choice modeling 81
choice probabilities 106
choice sets, minimum number 303
choice simulators
Bradley-Terry-Luce model 448
compared 449-450
defined 448
example 455-457
logit model 448
macro 451
maximum utility model 448451
Choice variable 100
choice-based conjoint 81363
\%ChoicEff macro
707682256 259-262 271 304-307 310-315 318322 332-334 337342 479-496 500 506-507 518521524 535-536 585
alternative swapping 314322
documentation 481-511
set swapping 318322
versus the \%MktEx macro 322
choose 564
Choose variable 132
chosen alternative 100
Chrzan, K. 331557691
cirsegs= defined 637
class 122-123 158162 168-169 173199 208-210
213245 258-261 269-271 294303306369
372385402444448 461-463 476-478489 609
class PROC TRANSREG syntax 471
class statement 245529532
classopts= defined 529
Client variable 579
close defined 624
cluster analysis 428
coded defined 509
coding down 184529563
coding the choice model 122158 163-165 169173 198 207-209 213 219-224 270276296
coding
binary 91 122-123 158199208
effects 92168
orthogonal 91-92
coding \(=\) defined 529
coefficients 402444448 461-463
coefficients PROC TRANSREG syntax 470
Color variable 596-597
color= defined 633
colors= defined 626
column profiles, correspondence analysis 682
column defined 610
column statement 368608
combinations
printing in a DATA step 382396439
unrealistic 434
Conforms 553
confounded 84364
conjoint analysis 2227361655
conjoint analysis
defined 362
model 371
typical options 476
conjoint measurement 23361
constant alternative 108128205
constrained part-worth utilities 477
CONTENTS procedure, see PROC CONTENTS
converge \(=488\)
converge= defined 508
converge= PROC TRANSREG syntax 468
convergence criterion 468
Cook, R.D. 444964142306549692
Coolen, H. 644692
coordinate-exchange algorithm 142549
CORR data set 545
CORR procedure, see PROC CORR
correlations 417
CORRESP procedure, see PROC CORRESP
correspondence analysis 2132 682-683
Count variable 291-292 512
cov= defined 508
Cox, D.R. 43691
cross effects 207 212-220 228-231 245260265 269271274 278-280
cursegs= defined 637
curve fitting 655
curvecol= defined 634
customizing
multinomial logit output 95
PHREG output 95 606-609
TRANSREG output 367
cyclic design 483
D-efficiency 4286365
\(D\)-efficiency, 0 to 100 scale 86 92-94 245366
data collection, rank data 397
data entry 98-100 118132154197205220268 274290346
data entry
checking 103
rank data 383397
rating-scale data 369443
simulation 459463
data processing 133169172 256-258 290-291 294
299318 349-351 354369383397443
data validation, rank data 397
data, generating artificial 195267
data= 101121126259286295307402444448 461-463 476-478 482509513525540 579580585 588-589
data= defined 508513524540544585589621
data \(=\) PROC TRANSREG syntax 467
datatype= defined 622
Davey, K.S. 3949692
Day, N.E. 346691
de Boor, C. 644651691
De Cock, D. 547692
de Leeuw, J. 644654 691-696
debug= defined 637
define statement 368
degree, spline 472
degree= 166
degree \(=\) PROC TRANSREG syntax 472
demographic information 274
DenDF variable 447
_depend_ variable 415-416 469
_depvar_ variable 415-419 423-424 446 461-463
derivatives of a polynomial spline 648
DeSarbo, W.S. 48695
DESIGN data set 516531548560
design
attributes 361-364
differences 378510517526532560
efficient choice 88-89 259-267 304-307 310-312 315320341481484 487-490 493
efficient linear 41-42 86-88 365-366 378 389-392 400431434546
evaluation 112144150181189237 241-242 245287379389434515
example 378389434
factors 4184364
fractional-factorial 4184364
full-factorial 41-42 84 142-143 230364400481
generation 110128138 146-148 181-184 191 232237 241-242 285 303-305 \(314318323-\) 326330481 485-486 489-491 518521 535539 546-548 577 580-583 586-587 595-597
holdouts 391
key 118-119 155172197256293318485 489491504521 535-537 576 595-599
levels 415084364
methods compared 322
nonorthogonal 391434
response 364
runs 4084364600
saturated 94
size 108135179183240284304555 600-603
testing 256
design 122158199208
Design variable 137309
design= 119-121 155588595 598-599
design= defined 589599
Dest variable 153
detail defined 509
determinant 86365
detfuzz= defined 566
Dey, A. 547692
diag defined 624
differences (machine) in designs 510517526532 560
different designs 378
diminishing returns on iterations 236
discontinuous function, sample specification 478
discontinuous spline functions 649
discrete choice 81
dolist= defined 585
dollar format 286
D-optimality 546
drop \(=488508\)
drop= defined 508
\&droplist variable 446-448 459463
dropping variables 123159
dummy variables 88
dummy PROC TRANSREG syntax 468
DuMouchell, W. 55692
Duncan, G.J. 354693
duplicate runs 551
Dykstra, O. 44692
Eckart, C. 17676692
edit statement 368608
effects coding 92 168-169 489-490 506
effects 168489
efficiency
choice design 88-89 259-267 304-307 310-312 315320341481484 487-490 493
linear design 41-42 86-88 365-366 378 389-392 400431434546
Efficiency variable 309
eigenvalues 86365
Elrod, T. 3949331557 691-692
errors in running macros 641
\%EvalEff macro 245
evaluation, design 379389434
evenly spaced knots 472
evenly PROC TRANSREG syntax 472
examine \(=113146381529556\)
examine= defined 529556
examining the design 112144150181189237 241-242 245287515
example
Bradley-Terry-Luce model 457
brand choice (aggregate data) 205
candy (choice) 96
candy (conjoint) 369
chair (generic attributes) 303
chocolate candy (choice) 96
chocolate candy (conjoint) 369
design 378389434
fabric softener 108
food product (availability) 228
frozen diet entrées (advanced) 389
frozen diet entrées (basic) 376
logit model 457
market share 451 457-458
maximum utility model 451
metric conjoint analysis 369402444
new products 458465
nonmetric conjoint analysis 372385
nonorthogonal design 431
prescription drugs (allocation) 284
simulation 451 457-458
spaghetti sauce 431
stimulus creation 382396439
vacation 134
vacation (alternative-specific) 178
exchange \(=557-558562\)
exchange \(=\) defined 564
excolors= defined 634
existing design, improving 323
expand defined 624
expansion
class 471
polynomial spline 472
experimental design
defined 84
evaluation 112144150181189237 241-242 245287515
generation 110128138 146-148 181-184 191 232237 241-242 285 303-305 314318 323326330481 485-486 489-491 518521 535539 546-548 577 580-583 586-587 595-597
saturated 94
size 108135179183240284304555 600-603
testing 256
extend= defined 629
external attributes 274
external unfolding 678
extraobs= defined 628
extreme value type I distribution 228
exttypes= defined 626
f variable 325
f1 variable 496
f2 variable 496
fabric softener example 108
facopts= defined 529
FACTEX procedure, see PROC FACTEX
factors, design 4184364
factors statement 531
factors= 529-530 536
factors= defined 524529541544
failed initialization 551
FASTCLUS procedure, see PROC FASTCLUS
Federer, W.T. 63695
Fedorov, modified 142481549
Fedorov, V.V. 44-45 505564 142-143 306-307 481530549692
Fiedler, J.A. 693
file statement 116
filepref= defined 622
FINAL data set 586
Finkbeiner, C.T. 450692
Fisher, R. 654692
fitting the choice model 101104124160163166 170175 200-203 208-210 217 222-224 271 280 297-299 348-349 352-353 356-357
fixed choice sets 325
fixed= 325
fixed= defined 508564
flags= 307320482 506-508
flags= defined 507
font= defined 630
food product (availability) example 228
Form variable 128157202
FORMAT procedure, see PROC FORMAT
format statement 172589
format= defined 544
formats 107-110 115130 197-198 205220252258
formatting a weight variable 400474
\&forms variable 128
fractional-factorial design 4184364
framecol= defined 634
Franke, G.R. 21682693
FREQ data set 545
FREQ procedure, see PROC FREQ
freq statement 202-203 222-224 271 297-299
Freq variable 222
_FREQ- variable 202-203 270-271
freq= 295 513-514
freq= defined 513
freqs= 544
freqs= defined 544
frequencies, n-way 544
frequency variable 202205 220-224
Friedman, J.H. 644691
frozen diet entrées (advanced) example 389
frozen diet entrées (basic) example 376
FSUM data set 545
full-factorial design 41-42 84 142-143 230364400 481
\(G\)-efficiency 4286365
Gabriel, K.R. 16-17 676692
Gail, M.H. 359692
GANNO procedure, see PROC GANNO
Garratt, M. 3394862108228231365478546 578643694
gdesc= defined 622
Gellat, C.D. 550693
general linear univariate model 644
generate statement 530
generate \(=\) defined 530
generic attributes 160
generic design 303-310 314-322
generic defined 540
geometric mean 4286365
Gifi, A. 21362644682692
GLM procedure, see PROC GLM
gname= defined 622
gopplot= defined 621
gopprint= defined 621
gopts2= defined 621
gopts= defined 621
gout= defined 622
GPLOT procedure, see PROC GPLOT
graphical scatter plots 611
Green, P.E. 2239455861361655686 691-693
green= defined 635
Greenacre, M.J. 21 682-683 686693
Hadamard matrices 547557 577-578
Hadamard, J. 547693
Hastie, T. 21644 682-683 693
Hayashi, C. 21682
header, blank or null 148
header statement 368
Hedayat, A.S. 63547 693-695
Hensher, D.A. 691
hminor= defined 630
hnobs= defined 636
Hoffman, D.L. 21682693
Hoffman, S.D. 354693
holdouts
design 391
validation 417
holdouts \(=325330\)
holdouts= defined 564
host differences 378510517526532560
hpos= defined 638
href= defined 630
HRLowerCL 609
HRUpperCL 609
hsize \(=\) defined 638
Huber, J. 339 61-64 69 73-74 306693
(i eq choice) 100
i variable 558
id statement 123159199208
ID statement, syntax 473
id= defined 525
ideal point model 20681
identity attribute, sample specification 477
identity 123163 208-209 213261271369402 444448 461-463 475-478 609
identity PROC TRANSREG syntax 471
IIA 213219228 354-358
IML procedure, see PROC IML
imlopts= defined 566
importance
average 424-426
defined 372
inflated 372
outtest= 467
improving an existing design 323
inc= defined 630
Income variable 276
independence 124
independence from irrelevant alternatives 213 219228
Index variable 309488
indicator variables 8891
individual R-square 424 446-447 461-464
inertia, correspondence analysis 682
infinite, see recursion
inflated, importance 372
information matrix 4286365
informats 459
Ini 553
init= \(146259323-325333484488\) 508-509 556
560564
init= defined 508560
initblock= defined 525
initialization failed 551
initialization switching 551
initvars \(=484488508\)
initvars= defined 509
input data 98
input function 122156
input statement 98
int \(=305481\)
int= defined 585
interact= 531
interact= defined 530556
interactions 84171182202 229-230 247-248 256 364
interpol= defined 630
interval scale of measurement 654
interval variables 471
intiter \(=260484\) 509-510
intiter= defined 509
invalid page errors 641
ireplace 385402444448 461-463 476-478
ireplace PROC TRANSREG syntax 470
iter= 342527530
iter= defined 509516525530562
iteration
history suppressed 469
history, \%MktEx 552-553
maximum number of 468
metric conjoint analysis 371
nonmetric conjoint analysis 372
iterative algorithm 468
j1 variable 558565 574-575
j2 variable 558565 574-575
j3 variable 558 574-575
Johnson, R.M 61691
Jones, B. 355692
justinit defined 556
justparse defined 605
keep= 256530
keep= defined 530599
Kendall Tau 417
Kent, J.T. 694
KEY data set
\%MktLab 252287503 578-585
\%MktRoll 119155172197256293318485 489-491 504521 535-537 576 595-599
key= \(119252256287479576-580583587595-\) 599
key= defined 585599
Kirkpatrick, S. 550693
knots 645
knots
evenly spaced 472
number of 473
specifications 472
knots= 166478
knots \(=\) PROC TRANSREG syntax 472
Krieger, A.B. 61693
Krishnamurthi, L. 372696
Kruskal, J.B. 22644654693
Kuhfeld, W.F. 14 15-16 23-27 38-39 4448 61-64 707681108228231345 359-361 365478 479546578 643-644 652661675 689-694
labcol= defined 626
label prefix option 468
label separator characters 469
label, variable 101-104 115 122-123 148159 163-
165169199 207-209 213-224 252260270
276583586 608-609
label statement 589
label= defined 631
labelcol= defined 634
labels= 583
labels= defined 586
labelvar= defined 624
labfont= defined 626
labsize= defined 627
large data sets 202220
largedesign defined 557
Lazari, A.G. 3945536174230245359694
Lebart, L. 21682694
levels
design 415084364
order 468
likelihood 9598 101-102 124177203212 224-227 346-349 357-359
lineage defined 593
linear design 87-89 108-109 118-121 135154179 197252 256-257 303322337595
linear defined 540
linesleft= 116
LIST data set 545
list defined 516555576604
list= defined 545
Lodge variable 155158173 197-199
-2 LOG L 103212 224-226 358
LOGISTIC procedure, see PROC LOGISTIC
logit model
compared to other simulators 449
defined 448
market share 457
Louviere, J.J. 339496181361 691-694
lprefix= 123158199 208-210 260444448 461463
lprefix= PROC TRANSREG syntax 468
ls= defined 631
lsinc= defined 631
lsizes= defined 631
Lu, Y. 696
Lubin, J.H. 359692
Luce, R.D. 30431 448-451 455-458
machine differences 378510517526532560
macro errors 641
macro variables 109128
macro
\%ChoicEff 707682256 259-262 271 304-307 310-315 318-322 332-334 337342 479-511 518521524 535-536 585
\%EvalEff 245
\%MktAllo 82 295-296 479 512-514
\%MktBal 82244479 515-517 555
\%MktBlock \(82191 \quad 244 \quad 248-250479 \quad 518-526\) 582-583
\%MktDes 479-480 527-533 560-561
\%MktDups \(82337341479510534-541\)
\%MktEval 4982 112-113 144150181189237

241-243 287 379-381 389-391 434437479 515518526 542-545 583
\%MktEx \(3 \quad 25 \quad 39445182\) 86-89 110-113 118 128 137-139 142-149 181-184 191 231-232 237 241-244 285-286 303-307 314318 322-\(326330335-339365\) 377-381 389-392 400 431-434 479-481 485-486 489-491 494515 518524 527-528 532 535-539542 546-587 590-597 601-602 641689
\%MktKey 155293 318-319 341479504576595
\%MktLab 82122128 149-150 251-253 286-287 305332 378-379 389-391 434 479-481 486 503-504 518536548 577-587
\%MktMerge 82100121157172198269275479 588-589
\%MktOrth 82137 479-480 590-594
\%MktRoll 8288 118-119 155172198252 256-\(257293303310318-319341479\) 485-486 489-492 503-505 518521524 535-537 576 588-589 595-599
\%MktRuns \(4382108135179183231240-241\) 284304 376-377 431-432 479-480 516530 555593 600-605 641
notes, 550
\%PhChoice 8295102125 161-163 200208271 297479 606-610 641
\%PlotIt 479 611-620 637 661-671 674687708
\%SIM 451457 462-464
macros, autocall 365479
Mahajan, V. 48695
main effect 364
main effects 84 229-230 247
\&main variable 574-575
makefit= defined 638
Manski, C.F. 81694
Mardia, K.V. 76694
Market Research Analysis Application 27
market share
Bradley-Terry-Luce model 448457
change 458466
example 451
logit model 448457
maximum utility model 448451
simulation 451
mass, correspondence analysis 682
match_all 148
mautosource 480
\(\max =183\) 602-604
\(\max =\) defined 604
maxdesigns= 564
maxdesigns= defined 561
maximum number of iterations 468
maximum utility model
compared to other simulators 449
defined 448
example 451
maxiter \(=237307\) 476-478 509 515-516 562
maxiter= defined 509516525530562631
maxiter= PROC TRANSREG syntax 468
maxn= defined 594
maxokpen= defined 631
maxstages \(=\) defined 562
maxstages=1 557
maxstarts \(=515-516\)
maxstarts= defined 516
maxtime= 144237339 562-564
maxtime= defined 562
maxtries= 515
maxtries \(=\) defined 517
MCA 2134 685-686
McFadden, D. 526281 228-229 346694
McKelvey, R.D. 345694
MDPREF 1735 676-678
MDS 2236
MEANS procedure, see PROC MEANS
memory, running with less 202
method= 402444448 461-463
method= defined 530621
method= PROC TRANSREG syntax 468
metric conjoint analysis 23
metric conjoint analysis
defined 362
example 369-370 402444
iteration 371
sample specification 476
versus nonmetric 362476
Meyer, R.K. 4451142549694
Micro variable 256-260 264
Miller, F.L. 44694
Miller, R. 693
minimum number of choice sets 303
missing 252
missing statement 252443
Mitchell, T.J. 44694
\%MktAllo macro 82 295-296 479 512-513
\%MktAllo macro documentation 512-514
\%MktBal macro 82244479 515-516 555
\%MktBal macro documentation 515-517
\%MktBlock macro 82191244 248-250 479518521 524-526 582-583
\%MktBlock macro documentation 518-526
\%MktDes macro 479-480 527-532 560-561
\%MktDes macro documentation 527-533
MKTDESCAT data set 593
MKTDESLEV data set 593
\%MktDups macro 82337341479510 534-540
\%MktDups macro documentation 534-541
\%MktEval macro 4982 112-113 144150181189 237 241-243 287 379-381 389-391 434437 479515518526 542-544 583
\%MktEval macro documentation 542-545
\%MktEx macro 32539445182 86-89 110-113 118 128 137-139 142-149 181-184 191 231-232 237 241-244 285-286 303-307 314318 322326330 335-339 365 377-381 389-392 400 431-434 479-481 485-486 489-491 494515 518524 527-528 532 535-539 542 546-557 564-573 577-587 590-597 601-602 641689
\%MktEx macro algorithm 142-144 549-550
\%MktEx macro documentation 546-575
\%MktEx macro notes 550
\%MktEx macro versus the \%ChoicEff macro 322
\%MktEx macro, common options explained 110 138146
mktex defined 593
\%MktKey macro 155293 318-319 341479504576 595
\%MktKey macro documentation 576
\%MktLab macro 82122128 149-150 251-253 286287305332 378-379 389-391 434 479-481 486 503-504 518536548 577-587
\%MktLab macro documentation 577-587
\%MktMerge macro 82100121157172198269275 479588
\%MktMerge macro documentation 588-589
\%MktOrth macro 82137 479-480 590-593
\%MktOrth macro documentation 590-594
\%MktRoll macro 8288 118-119 155172198252 256-257 293303310 318-319 341479 485486 489-492 503-505 518521524 535-537 576 588-589 595-598
\%MktRoll macro documentation 595-599
\%MktRuns macro 4382108135179183231 240241284304 376-377 431-432 479-480 516 530555593 600-604
\%MktRuns macro documentation 600-605
\%MktRuns macro errors 641
\%MktRuns macro, with interactions 183
mktruns defined 593
model comparisons 177212226 357-358
model 369372385402444448463 476-478 507
model statement 101-102 123-124 158-160 199 208-209 213245318482506 531-532
model statement
options 468
transformation options 472
transformations 471
model= 307482 506-508
model= defined 506
monochro= defined 634
monotone attribute, sample specification 477
monotone spline
sample specification 477
transformation 471
monotone splines 651
monotone 372385 474-477
monotone PROC TRANSREG syntax 471
MORALS algorithm 468
morevars= defined 509
Morineau, A. 21682694
mother logit 212219229271 356-357
mspline 474 477-478
mspline PROC TRANSREG syntax 471
multidimensional preference analysis 1735 676678
multidimensional scaling 2236
multinomial logit 96 101-102 124 207-209 228347
multiple choices 284
multiple correspondence analysis 2134 685-686
Mut 553
mutate \(=561-563\)
mutate \(=\) defined 563
mutations 143-144 549-550
mutiter \(=563\)
mutiter= defined 563
.N special missing value 579
n variable 137309
n= \(110128184230481490-491509530\)
n= defined 509516530555604
Nachtsheim, C.J. 44 49-51 64142306549 692694
nalts= 121157260269295320486 506-508 513 524-526 540588
nalts= defined 507513525540589
nblocks= defined 525
new products example 458465
next \(=\) defined 525
nfill= 332
nfill= defined 586
Nishisato, S. 21682695
nknots= 166477
nknots= defined 638
nknots= PROC TRANSREG syntax 473
nlev= 529532
nlev= defined 530
nocenter defined 624
noclip defined 624
nocode defined 509531624
nodelete defined 625
nodups defined 510557
nodups option 113381391556561
nofinal defined 557
nohistory defined 557625
nolegend defined 625
nominal scale of measurement 654
nominal variables 471
None alternative 230256271274280283
nonlinear transformations 643
nonmetric conjoint analysis 23
nonmetric conjoint analysis
defined 362
example 372385
iteration 372
sample specification 476
versus metric 362476
nonorthogonal design 391434
noprint 448 461-463
noprint defined 517540625
noprint PROC TRANSREG syntax 468
norestoremissing 122158 168-169 173199208
nosort defined 557
nosort option 325560
not available 579
notes, \%MktEx macro 550
notests defined 510
notruncate 299
nowarn defined 599
nowarn option 155
nozeroconstant 122158199208
nsets= 121157259307482506588
nsets= defined 507589
null header 148
number of choice sets, minimum 303
number of runs 4084364600
number of stimuli 376

NumDF variable 447
NUMS data set 605
n-way frequencies 544
ODS 95366606
ods exclude statement 367-369 372385402444
\[
461-463 \text { 476-478 }
\]
ods listing statement 417
ods output 148
ods output statement 417
offset= defined 631
onoff defined 610
OPTEX procedure, see PROC OPTEX
options
algorithm 468-469
output 469-470
transformation 472-473
options defined 540
options= defined 509517531556593599605 624
options=accept 551 555-559 573-575
options=allcode 531
options=border 624
options=branded 540
options=check 146531556560
options=close 624
options=coded 509
options=detail 509
options=diag 624
options=expand 624
options=generic 540
options=justinit 556
options=justparse 605
options=largedesign 557
options=lineage 593
options=linear 540
options=mktex 593
options=mktruns 593
options=nocenter 624
options=noclip 624
options=nocode 509531624
options=nodelete 625
options=nodups 113381391510 556-557 561
options=nofinal 557
options=nohistory 557625
options=nolegend 625
options=noprint 517540625
options=nosort 325557560
options=notests 510
options=nowarn 155599
options=orthcan 510
options=progress 517
options=resrep 557 568-570
options=square 625
options=textline 625
optiter= 339 561-563
optiter= defined 563
order of the spline 478
order= 199385
order= defined 565
order \(=\) PROC TRANSREG syntax 468
order=data 123158
order=random 557
ordering the attribute levels in the output 468
ordinal scale of measurement 654
ordinal variables 471-472
orthcan defined 510
orthogonal 85-86 364-365
orthogonal and balanced 85-86 9295109 364-365
orthogonal array 85364
orthogonal coding 91-94
otherfac= defined 531
otherint= defined 531
out= 119-122 158199208287295402444448 461-463 470513525536548556560 579580585 588-589 595 598-599
out=
predicted utilities 470
syntax 470
transformation 470
out= defined 510513516525531541560586 589599605622
outall= 556593
outall= defined 560593
outcat \(=\) defined 593
outcb= defined 545
outcorr= defined 545
OUTDUPS data set 541
outest= 101
outfreq= defined 545
outfsum= defined 545
outlev= 591-593
outlev= defined 593
outlist= defined 541545
output delivery system 95366606
output options 469-470
output 372402469 476-478
output statement 123159199208
outr= 548556560578
outr= defined 526560
outtest= 402423444448 461-463
outtest=
importance 467
part-worth utilities 467
R-square 467
syntax 467
utilities 467
outward= defined 638
p 385402444448 461-463 470 476-478
p PROC TRANSREG syntax 470
page errors 641
page, new 130
paint= defined 634
Paley, R.E.A.C 547695
Pang, S. 547696
param=orthref 245
parameters 96101 104-106 165168226 229-230 346-347 351356359
partial profiles 331 336-339 557
partial= 332 335-337 556-557 560575
partial= defined 557
part-worth utilities
constrained 477
defined 362
output option 470
outputting predicted 470
outtest \(=467\)
printing 469
summing to zero 473
part-worth utility 2396106167196202
\&pass variable 574-575
Pattern variable 597
p_depend_ variable 416-419 469
Pearson r 417
perceptual mapping 16
permanent SAS data set 115118128149379434 470507 525-526 531541560586
Perreault, W.D. 644654695
persist 148
\%PhChoice macro 8295102125 161-163 200208 271297479606609641
\%PhChoice macro documentation 606-610
\%PhChoice macro errors 641
PHREG output, customizing 95 606-609
PHREG procedure, see PROC PHREG
Place variable 155158 172-173 197-199
place= defined 631
PLAN procedure, see PROC PLAN

PLOT procedure, see PROC PLOT
\%PlotIt macro 479 611-620 637 661-671 674687 708
\%PlotIt macro
documentation 611-640
plotopts= defined 632
plotting the transformation 372
plotvars= defined 625
point labels, scatter plots 611
point \(=100130\)
polynomial spline expansion 472
polynomial splines 645
post= defined 622
Pre 553
predicted utilities
option 470
out \(=470\)
variables 415
preference mapping 19678
prefix, label option 468
prefix= defined 586
PREFMAP 19678
preproc= defined 628
prescription drugs (allocation) example 284
price sample specification 478
price, assigning actual 122156165172198
Price variable 118-123 126 155-158 163173 197199208 212-213 229252256 260-265 296 493512 595-597
PriceL variable 165-166
pricing study 494
principal row coordinates, correspondence analysis 682
PRINCOMP procedure, see PROC PRINCOMP PRINQUAL procedure, see PROC PRINQUAL print= 113381
print= defined 526545
printing questionnaire 382396439
Prob variable 309
probability of choice 96-98 106-107 126-128 228 347-351
PROBIT procedure, see PROC PROBIT
PROC CATMOD 350
PROC CONTENTS 423
PROC CORR 417
PROC CORRESP 612 666-667
PROC DISCRIM 615
PROC FACTEX 142 527-532 548560 573-574
PROC FASTCLUS 428

PROC FORMAT 107110148156197205220 252379 389-391 400434459474
PROC FREQ 535
PROC GANNO 617
PROC GLM 246-247
PROC GPLOT 97236374450
PROC IML 307558613
PROC LOGISTIC 345
PROC MEANS 127424
PROC OPTEX 142 236-237 245 527-532 549-550 557 560-561 564 573-574
PROC PHREG 95101104 123-124 159-160 163 166-170 175 200-205 208-210 217 222-224 271280 297-299 348-353 356-359 606
PROC PHREG, common options explained 101
PROC PLAN 142 527-528 531548560 573-574
PROC PLOT 614-616 625 628-632 636-640
PROC PRINCOMP 663-665
PROC PRINQUAL 612-613 667-668
PROC PROBIT 345
PROC SCORE 126
PROC SORT 107132374383387419428465
PROC SUMMARY 202-203 269292
PROC TEMPLATE 95 366-368 606-609 641
PROC TRANSPOSE 129132383399424443 446463502
PROC TRANSREG 122-124 158-160 163-165 168-173 198 207-209 213 217-224 270276 296318369372385402444448 461-463 467-474 606609612 668-670
PROC TRANSREG, common options explained 122199
PROC TRANSREG
advanced sample 477
customizing output 367
discontinuous price sample 478
monotone spline sample 477
nonmetric example 372
nonmetric sample 476
rank data sample 476
samples 476-478
simple example 369
specifications 467
syntax 467-474
typical example 402
processing
data 369383397443
results 387 417-419 423-424 427-428 446451 455-465
procopts= defined 531632
progress defined 517
proportional hazards 95101224348
proportions, analyzing 299
proximity data 22
ps= defined 638
pseudo-factors 529
pspline 166
pspline PROC TRANSREG syntax 472
put function 122156
put statement 196
quadratic price effects 165-166 169230
quantitative factor 126 163-165 202
questionnaire 116 128-132 152193
questionnaire, printing 382396439
radii= defined 638
Raktoe, B.L. 63695
Ramsay, J.O. 644652695
Ran 553
random mutations 143-144 189 549-550
random number seeds 110138146236244248 307378482510517526532559
randomization 114-115 128193256379
RANDOMIZED data set 548560
range= defined 594
rank data
data collection 397
data entry 383397
data validation 397
reflect 476
sample specification 476
versus rating-scale data 476
rank PROC TRANSREG syntax 472
Rank variable 383-387
Rao, C.R. 547695
Rao, V.R. 22361 692-693
Rating variable 370
rating-scale data
data entry 369443
versus rank data 476
recursion, see infinite
red bus 229
red= defined 635
reference level 106162168230
Reference variable 137
reflect 385402 476-478
reflect
rank data 476
syntax 473
reflection 385473
regdat \(=\) defined 628
regfun= defined 639
regopts= defined 638
regprint= defined 639
Reibstein D.J. 372696
replacing independent variables, ireplace 470
residuals PROC TRANSREG syntax 470
resolution 85
response, design 364
resrep defined 557
resrep option 568-570
restrictions 231-232 237 241-242 331 336-339 433 558-559 573
restrictions not met 551
restrictions= 232 555-560
restrictions= defined 558
RESULTS data set 510
results processing 387 417-419 423-424 427-428 446451 455-465
Reynolds, M.L. 22695
rgbround= defined 635
rgbtypes= defined 627
ridge= defined 526566
rolled out data set 469
row profiles, correspondence analysis 682
RowHeader 608
rowname variable 148
R -square
individual 424 446-447 461-464
outtest= 467
Rubinstein, L.V. 359692
Run variable 524-526 582
run= defined 531
runs
design 4084364600
sample specification
discontinuous function 478
identity attribute 477
metric conjoint analysis 476
monotone attribute 477
monotone spline 477
nonmetric conjoint analysis 476
price 478
rank data 476
saturated design 94 108-109 135179
scales of measurement 654
scatter plots 611
Scene variable 155158173 197-199

Schaffer, C.M. 686691
Schiffman, S.S. 22695
SCORE procedure, see PROC SCORE
score= 126-127
second choice 98 101-102
seed= 110307378482510517526532559
seed= defined 510517526532559
separator characters 469
separators \(=199\) 209-210 213260369372385 402444448 461-463
separators= PROC TRANSREG syntax 469
sequential algorithm 245
Set 526
set statement 100130
Set variable 98 101-103 121124 128-132 202205
212-213 222259294309333524599
set= defined 526599
setvars= 121157588
setvars= defined 589
Shape variable 596-597
Shelf variable 256-260 264
shelf-talker 228251256274
Shepard, R.N. 644654693
short 369385402444448 461-463 476-478
short PROC TRANSREG syntax 469
Side variable 197-199
\%SIM macro 451457 462-464
simulated annealing 143-144 189 549-550 561566
simulation
data entry 459463
example 451 457-458
market share 451
observations 400419423474
simulators
Bradley-Terry-Luce model 448
compared 449-450
example 455
logit model 448
macro 451
maximum utility model 448451
Size variable 596-597
size \(=\) defined 532
Sloane, N.J.A. 3547 693-695
Smith, P.L. 645695
So, Y.C. 381345
SORT procedure, see PROC SORT
source statement 608
source stat.phreg statement 606
source stat.transreg statement 367
spaghetti sauce example 431
special missing value 252
spline
degree 472
order 478
spline 474
spline PROC TRANSREG syntax 472
splines 643
splines with knots 646
square defined 625
Srinivasan, V. 22361655692
standard column coordinates, correspondence analysis 682
statement
class 245529532
column 608
edit 608
factors 531
file 116
format 172589
freq 202222299
generate 530
id 123159199208
input 98
label 589
missing 252
model 101-102 123-124 158-160 199 208-209 213245318482506 531-532
output 123159199208
put 196
set 100130
source stat.phreg 606
source stat.transreg 367
source 608
strata 101124205222
where 245269297533
statements= 391
statements= defined 587-589
Statistic variable 424
Steckel, J.H. 48695
Steinberg, D. 691
step \(=531-532\)
step= defined 532
stimuli, number of 376 431-432
stimulus creation, DATA step 382396439
stmts= 172
stopearly= 551
stopearly= defined 565
stopping early 551

Stove variable 252
strata 101-103 124-126 202205220 224-227 348349359
strata statement 101124205222
structural zeros 106168177
Stufken, J. 547 692-693
Style=RowHeader 608
subdesign 230245
Subj variable 98 101-103 121124 205-206 212-213 270
subject attributes 274
submat= defined 510
subsequent choice 98 101-102 157205
Suen, C.Y. 547695
suitable orthogonal coding 91
SUMMARY procedure, see PROC SUMMARY
summary table 102-103 224274
summing to zero, part-worth utilities 473
survival analysis 95101348
Swait, J. 691
switching initialization 551
symbols= defined 627
symcol= defined 627
symfont= defined 627
symlen= defined 625
symsize \(=566\)
symsize \(=\) defined 627
symtype= defined 627
symvar= defined 625
Tab 189553
tabiter \(=339\)
tabiter= defined 563
tabsize \(=\) defined 565
Taguchi, G. 547695
Takane, Y. 644654 694-696
target= defined 566
t_depend_ variable 416-419 469
tempdat1= defined 629
tempdat2= defined 629
tempdat3= defined 629
tempdat4= defined 629
tempdat5 \(=\) defined 629
tempdat6= defined 629
TEMPLATE procedure, see PROC TEMPLATE
template, utilities table 367
_temporary_ 116496
Tenenhaus, M. 682695
Terry, M.E. 30431 448-451 455-458
textline defined 625

Tibshirani, R. 644693
tickaxes= defined 632
tickcol= defined 634
tickfor= defined 632
ticklen= defined 633
ties=breslow 95 101-102 124224
time (computer), saving 202
Timmermans, H. 691
titlecol= defined 634
Tobias, R.D. 3396281108228231365546578 694
trace 86365
trade-offs 361
TRank variable 387
transformation
class 471
identity 471
monotone spline 471
monotone 471
mspline 471
options 472-473
out= 470
plot 372
polynomial spline 472
pspline 472
rank 472
regression 643 652-653
spline 472
TRANSPOSE procedure, see PROC TRANSPOSE
TRANSREG procedure, see PROC TRANREG
\&_trgind variable 124127160163166170175 200-202 208-210 214217 222-224 271280 297-299 415-416 419 427-428
tsize \(=\) defined 633
-2 LOG L 103212 224-226 358
type= 127
types \(=510-511\)
types= defined 510628
typevar= 510-511
typevar= defined 511628
typical options, conjoint analysis 476
Unb 553
unbalanced= defined 563
unit= defined 639
UNIVARIATE algorithm 468
unrealistic combinations 434
utilities table, template 367
utilities
constrained 477
defined 362371
outputting predicted 470
outtest= 467
predicted 415-416
printing 469
utilities 369372385402444448 461-463 476478
utilities PROC TRANSREG syntax 469
utility 23
vacation (alternative-specific) example 178
vacation example 134
validation, holdouts 417
Value variable 424447
values= \(583-587\)
values= defined 587
van der Burg, E. 644691
van Rijckevorsel, J. 644692695
variable label 101-104 115 122-123 148159 163-
165169199 207-209 213-224 252260270
276583586 608-609
variable
Age 276
Alt 128 522-524
Alt_ 598
bad 231-232 558-559
Block 155286297518524582
Brand 118-123 208 212-213 256 260-265 276 291 294-296 493496499512 595-598
c 98-101 121126130157 212-213 270295512 588-589
Choice 100
Choose 132
Client 579
Color 596-597
Count 291-292 512
DenDF 447
_depend_ 415-416 469
_depvar_ 415-419 423-424 446 461-463
Design 137309
Dest 153
\&droplist 446-448 459463
Efficiency 309
f 325
f1 496
f2 496
Form 128157202
\&forms 128
Freq 222
_FREQ_ 202-203 270-271
i 558
Income 276
Index 309488
j1 558565 574-575
j2 558565 574-575
j3 558 574-575
Lodge 155158173 197-199
\&main 574-575
Micro 256-260 264
n 137309
NumDF 447
\&pass 574-575
Pattern 597
p_depend_ 416-419 469
Place 155158 172-173 197-199
Price 118-123 126 155-158 163173 197-199 208 212-213 229252256 260-265 296493 512 595-597
PriceL 165-166
Prob 309
Rank 383-387
Rating 370
Reference 137
rowname 148
Run 524-526 582
Scene 155158173 197-199
Set 98 101-103 121124 128-132 202205 212213222259294309333524599
Shape 596-597
Shelf 256-260 264
Side 197-199
Size 596-597
Statistic 424
Stove 252
Subj 98 101-103 121124 205-206 212-213 270
t_depend_ 416-419 469
TRank 387
\&_trgind 124127160163166170175 200-202
208-210 214217 222-224 271280 297-299
415-416 419 427-428
Value 424447
w 258-260 269391415
weight 402459
x 558-559
x1 558
x[j] 559
xmat 559
variables
interval 471
nominal 471
ordinal 471-472
predicted utilities 415
replacing in output data set 470
residuals 470
variance matrix 4286365
vars= 149295513
vars= defined 514524541544587
Vecchi, M.P. 550693
vechead= defined 639
vector model 20679
view= 245
Violations 553
vminor= defined 633
vnobs= defined 636
vpos= defined 639
vref= defined 633
vsize \(=\) defined 639
vtoh= defined 639
w variable 258-260 269391415
Wang, J.C. 3547 695-696
Warwick, K.M. 21682694
Watson, W. 327
weight format 400474
weight 402 461-463 476-478
weight statement
holdouts 474
sample specification 477
syntax 474
weight variable 402459
weight= 260
weight= defined 511
weighted loss function 474
where statement 245269297533
where= 126
where \(=\) defined 533
Wiley, J.B. 61691
Williamson, J. 547695
Wind, Y. 22394558361693
Winsberg, S. 644696
Wish, M. 22693
With Covariates 103177212
Wittink, D.R. 39372693696
Woodworth, G. 396181694
worksize= 566
Wu, C.F.J. 547695
x variable 558-559
x1 variable 558
x[j] variable 559
xmat variable 559
\(x \max =\) defined 640
Xu, H. 547696
ymax \(=\) defined 640
Young, F.W. 422362644654682 694-696
Young, G. 17676692
Zavoina, W. 345694
zero= 123158 162-163 168-169 199 208-209 219 260-261 271333369372385402444448 461-463 476-478 493
zero=list 163199
zero= PROC TRANSREG syntax 473
zero=' , 199487
Zhang, Y.S. 547696
Zwerina, K. 3 61-64 69 73-74 306693```


[^0]:    *This is a minor modification of a paper that was presented to SUGI 17 by Warren F. Kuhfeld and to the 1992 Midwest SAS Users Group meeting by Russell D. Wolfinger. Copies of this chapter (TS-689A) are available on the web http://support.sas.com/techsup/tnote/tnote_stat.html\#market .

[^1]:    ${ }^{\dagger}$ Also see Kuhfeld (2003) starting on pages 661 and 675.
    ${ }^{\ddagger}$ Figure 2 does not contain the decomposition that would be used for an actual biplot. Small integers were chosen to simplify the arithmetic.

[^2]:    ${ }^{\S}$ In practice, the term biplot is sometimes used without qualification to refer to an approximate biplot.
    ${ }^{\text {I }}$ SVD is sometimes referred to in the psychometric literature as an Eckart-Young (1936) decomposition. SVD is closely tied to the statistical method of principal component analysis.

[^3]:    "Preference mapping is sometimes referred to as external unfolding.

[^4]:    ${ }^{* *}$ If the plot axes are not equated in this chapter, it is due to unequal distortions of the axes that occurred during the final printing process.

[^5]:    ${ }^{\dagger \dagger}$ See Kuhfeld (2003) starting on page 361 for more information on conjoint analysis. Note that the results in Figure 8 have been customized using ODS. See page 366 for more information on customizing conjoint analysis output.

[^6]:    *For current documentation on the Market Research Application see SAS Institute Inc, Getting Started with The Market Research Application, Cary, NC: SAS Institute Inc., 1997, 56 pp . This paper was written and presented at SUGI 20 (1995) by Wayne E. Watson. This paper was also presented to SUGI-Korea (1995) by Warren F. Kuhfeld. Wayne Watson is a Research Statistician at SAS and wrote the Marketing Research Application which uses procedures and macros written by Warren F. Kuhfeld. Copies of this chapter (TS-689B) are available on the web http://support.sas.com/techsup/tnote/tnote_stat.html\#market .

[^7]:    ${ }^{\dagger}$ Utility coefficients are estimates of the value or worth to a subject of each level of an attribute. The most preferred combination of attributes for a subject is the one with the attribute levels having the highest utility coefficient values for each attribute.

[^8]:    ${ }^{\ddagger}$ Each dummy-coded variable has the value of 1 for a different level of the attribute. In this way, each dummy-coded variable represents the presence of that level and the absence of the other levels.

[^9]:    ${ }^{\S}$ A Burt table is a partitioned symmetric matrix containing all pairs of crosstabulations among a set of categorical variables. For further explanation, see the SAS/STAT User's Guide

[^10]:    *This chapter is a revision of a paper that appeared in Journal of Marketing Research, November, 1994, pages 545-557. Warren F. Kuhfeld is now Manager, Multivariate Models R\&D, SAS. Randall D. Tobias is now Manager, Linear Models R\&D, SAS. Mark Garratt was Vice President, Conway | Milliken \& Associates when this paper was first published in 1994 and is now with Miller Brewing Company. The authors thank Jordan Louviere, JMR editor Barton Weitz, and three anonymous reviewers for their helpful comments on earlier versions of this article. Thanks to Michael Ford for the idea for the second example. The $J M R$ article was based on a presentation given to the AMA Advanced Research Techniques Forum, June 14, 1993, Monterey CA.

    Our primary message when this paper was published in 1994 was that marketing researchers should use $D$-efficient experimental designs. This message remains as strong as ever, but today, we have much better tools for accomplishing this than we had in 1994. Most of the revisions of the original paper are due to improvements in the tools. Our new design tool, the \%MktEx SAS macro, is easier to use than our old tools, and it usually makes better designs. Copies of this chapter (TS-689C) are available on the web http://support.sas.com/techsup/tnote/tnote_stat.html\#market .

[^11]:    ${ }^{\dagger}$ In fact, this restriction is not strictly necessary. So called "super-saturated" designs (Booth and Cox, 1962) have more runs than parameters. However, such designs are typically not used in marketing research. The \%MktRuns SAS macro provides some guidance on the selection of $N_{D}$. See page 600 .

[^12]:    ${ }^{\ddagger}$ In order for the design to be both balanced and orthogonal, the number of runs must be divisible by $2,3,2 \times 2$, $3 \times 3$, and $2 \times 3$. Since 18 is not divisible by $2 \times 2$, orthogonality and balance are not both simultaneously possible for this design.

[^13]:    *See the \%MktEval macro, page 542, for a tool that helps evaluate designs.

[^14]:    ${ }^{\dagger}$ This is the design that was presented in the original 1994 paper, which due to differences in the random number seeds, is not reproduced by today's tools.

[^15]:    *Klaus Zwerina is a consultant at BASF AG, Ludwigshafen, Germany. Joel Huber is Professor of Marketing, Fuqua School of Business, Duke University. Warren F. Kuhfeld is Manager, Multivariate Models R\&D, Statistical Research and Development, SAS Institute Inc. We would like to thank Jim Bettman and Richard Johnson for their helpful comments on an earlier version of this chapter. Copies of this chapter (TS-689D) are available on the web http://support.sas.com/techsup/tnote/tnote_stat.html\#market .

[^16]:    ${ }^{\dagger}$ We were not able to analytically prove this, but after examining scores of designs, we have never found more efficient designs than those that satisfy all four principles.

[^17]:    ${ }^{\ddagger}$ We assume for simplicity that the interaction has parameter values of zero. Note, this also produces minimal variance of estimates around zero, implying greatest power of a test in the region of that null hypothesis.
    ${ }^{\S}$ The assumption that price has a different impact depending on the brand is testable. The ability to make that test is just one of the advantages of these choice designs.
    ${ }^{4}$ We need the fourth two-way interaction, price $\times$ container, to be able to estimate the three-way interaction brand $\times$ price $\times$ container. Of course, there are many other ways of coding a design.

[^18]:    *The appendix contains a SAS/IML program that performs the search for this design. Focusing on the principles of the algorithm, the program was deliberately kept simple, specific, and small. A general macro for searching for choice designs, \%ChoicEff, is documented in Kuhfeld (2003) starting on pages 479 and 481. See page 303 for an example.

[^19]:    ${ }^{\dagger}$ Substituting a linear price term for a three-level categorical one has two immediate implications. First, any change in coding results in quite different absolute values of $D$-error. Second, in optimizing a linear coding for price, the search routine will try to eliminate alternatives with the middle level of price within brand. This focus on extremes is appropriate given the linear assumption, but, may preclude estimation of quadratic effects.

[^20]:    ${ }^{*}$ Copies of this chapter (TS-689E) are available on the web http://support.sas.com/techsup/tnote/tnote_stat.html\#market . This document would not be possible without the help of Randy Tobias who contributed to the discussion of experimental design and Ying So who contributed to the discussion of analysis. Randy Tobias wrote PROC FACTEX and PROC OPTEX. Ying So wrote PROC PHREG. Warren F. Kuhfeld wrote PROC TRANSREG and the macros.
    ${ }^{\dagger}$ All of the example data sets are artificially generated.

[^21]:    $\ddagger$ The two-level effects coding is orthogonal, but the three-level and beyond codings are not.

[^22]:    ${ }^{\S}$ Of course real studies would use real brands. Since we have not collected real data, we cannot use real brand names. We picked these silly names so no one would confuse our artificial data with real data.

[^23]:    ${ }^{\top}$ See page 87 for an illustration of linear versus choice designs.

[^24]:    ${ }^{\text {|| }}$ By specifying a random number seed, results should be reproducible within a SAS release for a particular operating system. However, due to machine differences, some results may not be exactly reproducible on other machines. For most orthogonal and balanced designs, the results should be reproducible. When computerized searches are done, it is likely that you will not get the same design as the one in the book, although you would expect the efficiency differences to be slight.

[^25]:    *By specifying a random number seed, results should be reproducible within a SAS release for a particular operating system. However, due to machine differences, some results may not be exactly reproducible on other machines. For most orthogonal and balanced designs, the results should be reproducible. When computerized searches are done, it is likely that you will not get the same design as the one in the book, although you would expect the efficiency differences to be slight.

[^26]:    ${ }^{\dagger}$ See page 87 for an illustration of linear versus choice designs.

[^27]:    ${ }^{\ddagger}$ See page 87 for an illustration of linear versus choice designs.

[^28]:    ${ }^{\S}$ Ideally, each subject would only make one choice, since the choice model is based on this assumption (which is almost always ignored). As the number of blocks increases, the correlations will mostly go to one, and ultimately be undefined when there is only one choice set per block.

[^29]:    'Note that the '.' in '. N' is not typed in the data, nor is it typed in the missing statement. Furthermore, it does not appear in the printed output. However, you need to type it if you ever refer to a special missing value in code: if $\mathrm{x} 1 \mathrm{eq} . \mathrm{N}$ then ....

[^30]:    *See page 87 for an illustration of linear versus choice designs.

